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a b s t r a c t

Let k ≥ 1 be an integer and G be a graph. Let kG denote the graph obtained from G by
replacing each edge of G with k parallel edges. We say that G has all [1, k]-factors or
all fractional [1, k]-factors if G has an h-factor or a fractional h-factor for every function
h : V (G) → {1, 2, . . . , k} with h(V (G)) even. In this note, we come up with simple
characterizations of a graph G such that kG has all [1, k]-factors or all fractional [1, k]-
factors. These characterizations are extensions of Tutte’s 1-Factor Theorem and Tutte’s
Fractional 1-Factor Theorem.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are multigraphs, which may have multiple edges but have no loops. A graph having
neither loops nor multiple edges is called a simple graph. For convenience, we simply call a multigraph a graph when we
give definitions and notations. Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). Let kG denote the
graph obtained from G by replacing each edge of G with k parallel edges. The number of vertices of G is referred to as the
order of G and denoted by |G|. We denote the degree of a vertex v in G by dG(v). For two disjoint subsets S, T ⊆ V (G),
let eG(S, T ) denote the number of edges of G joining S to T . For a set X , we denote the cardinality of X by |X |. A vertex
of degree zero is called an isolated vertex. Let Iso(G) denote the set of isolated vertices of G, and let iso(G) = |Iso(G)|. Let
ω≥k(G) denote the number of components of G with order at least k and let ω(G) = ω≥1(G). For a vertex x of G, NG(x)
denotes the set of the vertices adjacent to x in G. For a subset X ⊆ V (G), we write NG(X) =

⋃
x∈X NG(x).

Let Z+ denote the set of non-negative integers. Let g, f : V (G) → Z+ be integer-valued functions defined on V (G) such
that 0 ≤ g(x) ≤ f (x) for all x ∈ V (G). A (g, f )-factor of G is a spanning subgraph F of G satisfying g(x) ≤ dF (x) ≤ f (x) for all
x ∈ V (G). If g(x) = f (x) for all vertices x ∈ V (G), then a (g, f )-factor is called an f -factor. Let k ≥ 1 be a fixed integer, then
a [1, k]-factor is a (g, f )-factor with g(x) ≡ 1 and f (x) ≡ k for every vertex x. For a real-valued function w : E(G) → [0, 1],
we write Ew>0 = {e ∈ E(G) | w(e) > 0}. If an edge e is incident with a vertex x, then we write x ∼ e or e ∼ x. For given
functions g and f , if g(x) ≤

∑
e∼x w(e) ≤ f (x) holds for every x ∈ V (G), then the spanning subgraph F = (V (G), Ew>0)
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is called a fractional (g, f )-factor of G with indicator function w. If no confusion can arise, we briefly call w a fractional
(g, f )-factor of G. When g(x) = f (x) for all x ∈ V (G), a fractional (g, f )-factor is referred to as a fractional f -factor. Clearly,
a (g, f )-factor is a fractional (g, f )-factor w satisfying w(e) ∈ {0, 1} for every e ∈ E(G) and vice versa.

For a function f defined on V (G) and a subset X ⊆ V (G), we write f (X) :=
∑

x∈X f (x). For two functions g, f : V (G) → Z+

with g ≤ f , define

Hg,f = {h : V (G) → Z+
| g(x) ≤ h(x) ≤ f (x) for all x ∈ V (G)}

and

Heven
g,f = {h : V (G) → Z+

| g(x) ≤ h(x) ≤ f (x) for all x ∈ V (G),
and h(V (G)) is even}.

Then we say that G has all (g, f )-factors if G contains an h-factor for every h ∈ Heven
g,f . If, for every h ∈ Hg,f , G contains a

fractional h-factor, then we say that G has all fractional (g, f )-factors.
Tutte (1947) gave sufficient and necessary conditions for a simple graph to have 1-factors.

Theorem 1.1 (Tutte, [3]). A simple graph G has a 1-factor if and only if

odd(G − S) ≤ |S| for all S ⊂ V (G), (1)

where odd(G − S) denotes the number of components of G − S with odd order.

For fractional 1-factors, Tutte (1953) obtained the following criterion.

Theorem 1.2 (Tutte, [4]). Let G be a simple graph. Then G has a fractional 1-factor if and only if

iso(G − S) ≤ |S| for all S ⊆ V (G). (2)

In this note, we characterize a graph G such that kG has all [1, k]-factors or all factional [1, k]-factors, respectively, and
these characterizations generalize the above Tutte’s Theorems. The following two theorems are the main results.

Theorem 1.3. Let k ≥ 2 be an integer and G be a connected multigraph. Then kG has all [1, k]-factors if and only if for every
S ⊂ V (G), we have

k · iso(G − S) + ω≥k+1(G − S) ≤ |S| + 1. (3)

Theorem 1.4. Let k ≥ 1 be an integer and G be a multigraph. Then kG has all fractional [1, k]-factors if and only if

k · iso(G − S) ≤ |S| for all S ⊂ V (G). (4)

In the proofs of main theorems, we need the following theorems.

Theorem 1.5 (Niessen, [2]). Let G be a connected multigraph and g, f : V (G) → Z+ such that 0 ≤ g(v) < f (v) for all v ∈ V (G).
Then G has all (g, f )-factors if and only if for all S, T ⊆ V (G) with T ∩ S = ∅,

g(S) − f (T ) +

∑
x∈T

dG−S(x) − ω(G − S − T ) ≥ −1,

where ω(G − S − T ) denotes the number of components of G − (S ∪ T ).

Theorem 1.6 (Lu, [1]). Let G be a multigraph and g, f : V (G) → Z+ such that 0 ≤ g(v) ≤ f (v) for all v ∈ V (G). Then G has
all fractional (g, f )-factors if and only if for all S, T ⊆ V (G) with T ∩ S = ∅,

g(S) − f (T ) +

∑
x∈T

dG−S(x) ≥ 0.

Note that many results on factional factors can be found in [5].

2. Proofs of Theorems 1.3 and 1.4

In this section, we prove the main results.

Proof of Theorem 1.3. Necessity (⇒). Suppose that kG contains all [1, k]-factors. Since G is connected, the result holds
for S = ∅. So we may assume that S ̸= ∅. Let q = ω≥k+1(G− S) and let D1, . . . ,Dq be the components of G− S with order
at least k + 1. We choose a vertex vi ∈ V (Di) for 1 ≤ i ≤ q and u ∈ S. Define h′, h′′

: V (G) → Z+ as

h′(v) =

{ k, if v ∈ Iso(G − S);
2, if v = vi and |Di| ≡ 0 (mod 2);
1, otherwise,
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and

h′′(v) =

⎧⎪⎨⎪⎩
k, if v ∈ Iso(G − S);
2, if v = vi and |Di| ≡ 0 (mod 2);
2, if v = u;
1, otherwise.

One can see that h′(V (G)) + h′′(V (G)) is odd. Let h : V (G) → Z+ be defined as

h =

{
h′, if h′(V (G)) ≡ 0 (mod 2);
h′′, otherwise.

So we have h ∈ Heven
1,k . By the hypothesis, kG contains an h-factor F . If h = h′, then we have

|S| =

∑
v∈S

dF (v) ≥ eF (S, Iso(G − S)) + eF (S, ∪
q
i=1V (Di))

≥ k · iso(G − S) + ω≥k+1(G − S).

Next assume that h = h′′. Since kG has an h′′-factor F , we have

|S| + 1 =

∑
v∈S

dF (v) ≥ eF (S, Iso(G − S)) + eF (S, ∪
q
i=1V (Di)) (5)

≥ k · iso(G − S) + ω≥k+1(G − S).

Hence,

k · iso(G − S) + ω≥k+1(G − S) ≤ |S| + 1.

Sufficiency (⇐). Suppose to the contrary that kG does not have all [1, k]-factors. By Theorem 1.5, there exist two
disjoint subsets S, T such that

δkG(S, T ) = |S| − k|T | +

∑
x∈T

dkG−S(x) − ω(kG − S − T ) ≤ −2.

We choose S, T so that T is minimal. Set U = V (G) − S − T . One can see that ω(kG − S − T ) = ω(G − S − T ).
Claim 1. T = ∅ or G[T ] consists of isolated vertices.

Suppose that there exists an edge uv in G[T ]. Let T ′
:= T − u. If eG(u,U) ≥ 1, then we have

δkG(S, T ′) = |S| − k|T ′
| +

∑
x∈T ′

dkG−S(x) − ω(G − S − T ′)

≤ |S| − k(|T | − 1) +

∑
x∈T

dkG−S(x) − k(1 + eG(u,U))

−
(
ω(G − S − T ) − eG(u,U) + 1

)
= δkG(S, T ) − (k − 1)eG(u,U) − 1

≤ δkG(S, T ) ≤ −2.

This contradicts the choice of S, T . If eG(u,U) = 0, then

δkG(S, T ′) = |S| − k|T ′
| +

∑
x∈T ′

dkG−S(x) − ω(G − S − T ′)

≤ |S| − k(|T | − 1) +

∑
x∈T

dkG−S(x) − k − (ω(G − S − T ) + 1)

= δkG(S, T ) ≤ −2.

This contradicts the choice of T . Therefore Claim 1 holds.
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Claim 2. EG(T ,U) = ∅.
Assume that there exist u ∈ U and v ∈ T such that uv ∈ E(G). Then we have

δkG(S, T − v) = |S| − k(|T | − 1) +

∑
x∈T−v

dkG−S(x) − ω(G − S − (T − v))

≤ |S| − k|T | + k +

∑
x∈T

dkG−S(x) − k · eG(v,U)

−
(
ω(G − S − T ) − eG(v,U) + 1

)
= δkG(S, T ) − (k − 1)(eG(v,U) − 1)
≤ δkG(S, T ) ≤ −2.

This contradicts the minimality of T again. Hence Claim 2 holds.
By Claims 1 and 2, we have

∑
x∈T dkG−S(x) = 0 and iso(G − S) = iso(G − S − T ) + |T |. Thus

−2 ≥ δkG(S, T ) = |S| − k|T | +

∑
x∈T

dkG−S(x) − ω(G − S − T )

= |S| − k|T | − ω(G − S − T )
= |S| − k|T | − iso(G − S − T ) − ω≥2(G − S − T )
= |S| − k · iso(G − S) + (k − 1) · iso(G − S − T ) − ω≥2(G − S)
≥ |S| − k · iso(G − S) − ω≥2(G − S).

It follows that

|S| + 2 ≤ k · iso(G − S) + ω≥2(G − S). (6)

We choose a maximal S such that the inequality (6) holds.
Claim 3. Every non-trivial component of G − S contains at least k + 1 vertices.

Suppose that there is a component D in G − S with 2 ≤ |V (D)| ≤ k. Let u ∈ V (D) and S ′
= S ∪ (V (D) − u). Then, we

have

|S ′
| − k · iso(G − S ′) − ω≥2(G − S ′)

=|S| + |V (D)| − 1 − k · (iso(G − S) + 1) − (ω≥2(G − S) − 1)
≤|S| − k · iso(G − S) − ω≥2(G − S) ≤ −2.

This contradicts the choice of S and thus completes the proof of Claim 3.
By Claim 3 and (6), we have

|S| + 2 ≤ k · iso(G − S) + ω≥k+1(G − S). (7)

This inequality contradicts the assumption (3). Consequently, the proof is completed. □

Proof of Theorem 1.4. By Theorem 1.2, we may assume that k ≥ 2.
Necessity (⇒). Let S ⊂ V (G). Suppose that kG contains all fractional [1, k]-factors. Define h : V (G) → Z+ by

h(v) =

{
k, if v ∈ Iso(G − S);
1, otherwise.

Then kG contains a fractional h-factor F with an indicator function w. Thus we have

|S| =

∑
v∈S

dF (v) ≥

∑
e∈EkG(S,Iso(G−S))

w(e)

=

∑
x∈Iso(G−S)

dF (x)

= k · iso(G − S).

Sufficiency (⇐). Assume that kG does not have all fractional [1, k]-factors. By Theorem 1.6, there exist two disjoint
subsets S, T such that

δkG(S, T ) = |S| − k|T | +

∑
v∈T

dkG−S(x) < 0. (8)

We choose S and T so that T is minimal.
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Claim 1. EG(T , V (G) − S) = ∅.
Suppose there exists an edge uv ∈ EG(T , V (G) − S) with u ∈ T . Let T ′

:= T − u. Then we have

δkG(S, T ′) = |S| − k|T ′
| +

∑
x∈T ′

dkG−S(x)

≤ |S| − k(|T | − 1) +

∑
x∈T

dkG−S(x) − k · eG(u, V (G) − S)

≤ δkG(S, T ) < 0,

contradicting the choice of T . This completes the proof of Claim 1.
By Claim 1, T ⊂ Iso(G − S). The inequality (8) and Claim 1 imply

0 > δkG(S, T ) = |S| − k|T | +

∑
v∈T

dkG−S(x) (9)

≥ |S| − k · iso(G − S), (10)

namely,

k · iso(G − S) > |S|.

This contradicts (4). Therefore the proof is completed. □

Remark: For graphs having all (g, f )-factors or all fractional (g, f )-factors, their characterizations are known (i.e.,
Theorems 1.5 and 1.6). However, in this note, we provide much simpler criteria for graphs to have all [1, k]-factors or
all fractional [1, k]-factors in terms of isolated vertices. The criteria only use single subset S of V (G) much like that in
Tutte’s 1-Factor Theorem, rather than examining all pairs of disjoint vertex sets. The simple criteria will be helpful to
yield structures of graphs containing such factors and thus obtain algorithms to identifying these factors.
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