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a b s t r a c t

The structural balance theory offers a comprehensive way to understand stability and
tensions in social systems. However, most of the real social networks are unbalanced in
which people are not exclusively divided into groups such that people within a group are
friendly to each other but hostile to everyone in other groups. That is, there are conflict
edges in a partition regardless of how we divide people in a given social network. The
natural question to ask is that how many conflict edges should be changed to make
a network balanced. Alternatively, the clustering problem is formulated to optimize
minimum conflicts or maximum balanceness. In this paper, utilizing the relationship be-
tween balancedness and spectrum space, we propose a spectral algorithm based leading
eigenvectors of signed networks to partition clusters and make balancedness maximum.
The spectral algorithm is a two stages approach, partition subnetworks corresponding
to temporary clusters to increase the objective value and fine-tune partition based on
the fitness of nodes. The robustness of the algorithm is completely dependent on the
adjacent matrixes of signed networks. And it can measure the balanceness of network in
global way with the lowest errors. The experimental results on both real signed networks
and synthetic networks demonstrate that the leading eigenvector based method is highly
effective and accuracy.
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1. Introduction

In social networks, relations among members not only exhibit friendship and cooperation, but also hostility and
competition. Positive and negative edges were used to describe cooperative (friendly/trustful) and competitive (hos-
tile/distrustful) relationships. Assigning signs to edges were a better way to include additional information to networks
than traditional binary or weighted approaches [1,2]. With the increase of popularity of online social networks such as
Slashdot, Wikipedia and Epinions et al. signed networks as a possible theoretical model for such networks have attracted
more studies, including link prediction [3,4], clustering [5,6], evolution [7,8] and so on.

The theoretical foundation of signed networks is the structural balance theory, introduced by psychologist Heider. It
assumes that ‘‘the friend of my friend is my friend’’ and ‘‘the enemy (friend) of my friend (enemy) is my enemy’’ [9].
Such opinion lays the base of structural balance theory which provided a scheme to understand stability and tensions
in an social system. Heider defined a balanced network as two clusters in which the nodes are positively connected
within each cluster whereas negatively connected between two clusters [9,10]. Davis et al. generalized balancedness of
the structural balance theory to weak balancedness. A weakly balanced network is composed of more than two clusters
without conflicting edges [10]. This means that weakly balanced networks satisfy ‘‘the enemy of my enemy is my enemy’’.

However, real social networks are usually not structural balanced or weak balanced. Therefore, an interesting topic is
raised: What is the minimum conflict edges are required to change their signs such that the resulting network becomes
structural (weak) balanced? Up to now, a large number of approximate algorithms on detecting clusters and computing
conflicts in signed networks have emerged, despite that the problem has been proved to be NP-hard [11].

The clustering algorithms for signed networks are roughly divided into four categories: (i) The first class is generalizing
the traditional algorithms in unsigned networks to signed networks, such as the signed graph Laplacian matrix [12] which
is generalized from the traditional unsigned Laplacian matrix [13], SBDSLPA algorithm [14] based on traditional label
propagation algorithm [15], and GN-H algorithm [16], FEC algorithm [17], and CRA algorithm [18] which are called two-
stage algorithms. In the two-stage algorithms, the initial clusters are detected on positive subnetwork and then modified
by the information of negative edges in the first and the second stage respectively. The normalized cut [19] or approximate
signed cut [17] have been used to modify initial results at the second stage. However, it is because the initial clusters are
detected by the positive subgraphs without negative information, the modify stage have no chance to get optimal clusters
basically. (ii) The second class is cluster dynamics to partition signed networks. The main idea of cluster dynamics is
that two nodes with a positive link approaching to each other gradually while two nodes with a negative link growing
away from each other, such as DEC algorithm [20] and DBAS algorithm [21]. In these methods, a dynamical equation is
introduced to evolve the phases of nodes, and when reach to convergence state the nodes have consistent phase belong
to a cluster and the nodes with inconsistent phases belong to different clusters. Yet, these methods have two defects [22]:
One is the boundaries between clusters are not obvious if the number of clusters is very large. The other is the elements in
clusters cannot get consistent phase state if the network deviates from balance to a greater extent. (iii) The third class is
taking the evolutionary methods to optimize the objective function which represents the sum of negative weights inside
clusters and positive weights across clusters [23]. When the objective function value is optimized, the corresponding
node’s classification is cluster. The possible optimization methods include genetic algorithm [24], memetic algorithm [25],
particle algorithm [26], non-negative matrix factorization [27] and so forth. However, the evolutionary algorithms depend
on the rational parameters and effective initialization very much during evolution. And the evolutionary results will vary
greatly for the different parameters or initialization, thus leading to the partition results not being unique and lacking
robustness. In addition, some algorithms such as non-negative matrix factorization [27] partition the fixed number of
clusters. As a result, the value of the objective function is not optimal for the system. (iv) The fourth class is establishing
statistical probability models to measure the blockness of the network such as SSBMmodel [28] etc. The model parameters
provide vital clues about the probabilities that each node belongs to different clusters and the centrality of each node in
its corresponding cluster. Ref. [29] extended Potts model incorporating negative links and social balance theory, resulting
in a method to partition the signed networks. The comparison experiments proves that the method of calculating network
connection by mathematical scaler can improve the accuracy of partition.

To tackle some of above shortcomings, we explore the relationship between network balance and spectral characteris-
tics proposing a new algorithm based on the spectral characteristics to partition the signed networks into 2 or more
clusters, the positive (negative) edges inside the cluster as much (few) as possible and the positive (negative) edges
between clusters as few (more) as possible. The spectral algorithm transforms the balancedness of the network into
spectral features of the adjacent matrix for measurement, and calculates the information of positive and negative edges
simultaneously. The spectral algorithm does not involve any variable parameters both in initialization and partitioning
process. Combining with the hierarchical idea of GN-H [16], the spectral algorithm improves the objective function by
repeatedly partitioning clusters. Moreover, we add an optimizing segment to fine-tune the obtained clusters further.

The arrangement of this issue is as follows: The basic definitions are introduced in Section 2. In Section 3, a novel
spectral method to partition signed networks into clusters is presented. The feasibility of this method is verified by a
benchmark. In Section 4, experiments on both real and synthetic networks are presented to test the robustness of this
method, and the superiors are proved by comparing with other five algorithms. Discussions and conclusions are in the
final section of this paper.
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Fig. 1. The partition process. The lateral axis shows the time.

2. Signed networks and its cluster structures

A signed network is denoted by G = (V , E), where V = {v1, v2, . . . , vn} is the set of nodes and E = {(vi, vj) | vi, vj ∈ V }

is the set of edges, its adjacent weight matrix is denoted by A = (Aij)n×n, where Aij > 0, < 0, or = 0 indicates a positive
edge, a negative edge, or no edge between nodes vi and vj, respectively, and absolute value |Aij| denotes connection
strength on the edge (vi, vj). Throughout this paper, we assume that networks are undirected and connected.

In (weak) balanced signed networks, nodes are partitioned into two (or more than two) clusters such that the nodes
within the same cluster are connected by positive edges while the nodes between different clusters are connected by
negative edges [10]. Yet, for unbalance signed networks, no matter how nodes are partitioned, there always exist conflict
edges, that is, either positive edges between two clusters or negative edges within a cluster. The problem of cluster
partition is to find some nodal groups, among which the number of conflict edges is minimized [7,23]. Therefore, the
objective function is

H =

∑
(vi,vj)∈E

AijΘcicj . (1)

where ci is a cluster with vi belonging to, Θcicj = 1 if ci = cj; Otherwise, Θcicj = −1. We rewrite the objective function
(1) in an equivalent form

H =

∑
ci=cj

Aij −
∑
ci ̸=cj

Aij. (2)

Radicchi et al. [30] proved that minimizing conflict edges in unbalance networks is equivalent to a satisfiability
problem, which means the optimization of Eq. (1) or (2) is NP-Complete. So we turn to design an approximate algorithm to
find nearly optimal solutions for Eq. (1) or (2). To get a good approximation to optimal solutions quickly, we use a heuristic
approach which refining a partition further by partitioning a cluster each time to create a hierarchical structure displayed
in Fig. 1. In this process, each term in the second sum

∑
ci ̸=cj

Aij of (2) remains there as process goes on, because once a
pair of nodes vi, vj is partitioned into different clusters, they will always belong to different clusters in remaining process.
This process offers a robust way to increase the value of objective function (2) and thus reaching to an approximation of
optimal value quickly.

3. Detect method

In this section, we propose a method that partitions a signed network into two clusters, which relies on the relationship
between eigenvectors of the adjacent matrix A and its topological structure (balanced or unbalanced). Let λi be the ith
largest eigenvalue of A, and ui be the eigenvector corresponding to λi.

3.1. Relation between eigenvectors and balancedness

A cycle is balanced if it contains an even number of negative edges. A signed network can be partitioned into two
clusters without any conflicts (i.e., network is balanced) if and only if all its simple cycles are balanced [9,10]. Next, we
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analyze the relation between eigenvectors and balancedness of simple cycles in signed networks. Since Aui = λiui, the
value of jth entry of ui is determined by the values of its neighbors

uij =
1
λi

∑
vk∈N(vj)

Ajkuik, (3)

where N(vj) denotes the neighbors of the node vj. The above equation demonstrates that each value uij equals a weighted
sum of those values uik over all its neighbors vk with the weight Ajk/λi. Therefore, for the edge (vj, vk), the contribution of
uik to uij is uikAjk/λi. For a balanced network G, all simple cycles in G are balanced and uij is positively (negatively) related
to uik if and only if the nodes vj, vk belong to the same (different) cluster, the sign on (vj, vk) is positive. Hence,{

uijuik > 0, if cj = ck;
uijuik < 0, if cj ̸= ck.

(4)

An analysis similar to Eq. (4) can be found in [31]. For unbalanced networks, (4) may not hold. However, intuitively we
can use the value of Ajkuikuij as a measurement to balancedness of an edge (vj, vk): the larger (smaller) Ajkuikuij is, the more
balanced (unbalanced) of the edge (vj, vk) becomes. Thus, the objective function of cluster detection in signed networks
can be modified to

Bs =

∑
(j,k)∈E

uijAjkuik. (5)

Under normalization (uT
i ui = 1), the quantity (5) has the upper bound λ1 and the maximum can be attained at u1, that

is, max
∑

(j,k)∈E uijAjkuik =
∑

(j,k)∈E u1jAjku1k. Consequently, the leading eigenvector u1 can be used as an index to measure
balance of signed networks. Therefore, we utilize the leading eigenvector u1 to partition signed networks into two clusters,

{
vi ∈ Cluster1, if u1i > 0;
vi ∈ Cluster2, if u1i < 0.

(6)

3.2. Optimization

Recursively, a network (or a subnetwork) is partitioned into two clusters to improve the objective based on the
information from the leading eigenvector u1 discussed in the previous section. For the normalized u1 (i.e., |u1| = 1),
its entries has the bound −1 < u1i < 1 (i = 1, 2, . . . , n). If we take 1 as the nucleus of one cluster, then −1 is the nucleus
of another cluster. This means that the larger the value |u1i| is, the closer the node vi is to the center of the cluster.
However, due to unbalance, some nodes with tiny entry values in u1 (i.e., u1i ≈ 0) may end up in a wrong cluster. To
improve the accuracy of partition, we adjust the temporary established clusters. Considering the objective function, we
define fitness for each node vi,

fi =

∑
vj∈N(vi)

AijΘcicj . (7)

We assess the change of the objective H after moving a node vi from its current assigned cluster to another cluster.
From (7), clearly ∆fi = ∆H (where ∆ denotes the net change). Thus, we can improve H if ∆fi is positive. Therefore, we
define the fitness fi;k of node vi in relation to a temporary cluster TCk (i.e., when it belongs to TCk) as

fi;k =

∑
vj∈N(vi)

AijΘcicj . (8)

The above equation offers an effective way to improve the partitioned nodes. That is, we relocate the node vi to a perpetual
cluster PCk if and only if

max
r

fi;r = fi;k. (9)

3.3. Algorithm

Based on the ideas developed in the previous two sections, we design an algorithm to partition signed networks as
follows. For the convenience of description, we use temporary cluster (TC) to denote clusters that require to be partitioned
further, and perpetual clusters (PC) to denote clusters that require no further partition.

In the algorithm, complexity of the initialization is O(1). The Step 1 consists four parts: complexity of the Step 1.1 is
O(n2); according to the Power Iteration method, complexity of the Step 1.2 is O(n2); complexity of the Step 1.3 is O(n);
complexity of the Step 1.4 is O(1). Combining with the number of clusters, k, thus the total complexity of the Step 1 is
k[O(n2) + O(n2) + O(n) + O(1)] ≈ O(kn2). Complexity of the Step 2 is O(nkd), where d is the average degree. Therefor, the
complexity of the spectral algorithm is O(n2k) (See Table 1).
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Table 1
Spectral algorithm (SA) based leading eigenvector.
Input: Adjacent weighted matrix A.
Output: PC1, PC2, . . . , PCk
Initialization: Set TC1 = {v1, v2, . . . , vn}.
Step 1. The initial partition, forming temporary clusters.

For each temporary cluster TCi , do following:
Step 1.1. Extract subnetwork Ai corresponding to TCi;
Step 1.2. Compute the leading eigenvector u1 of Ai;
Step 1.3. Partition TCi into two temporary clusters TCi1 and TCi2 according to Eq. (6).
Step 1.4 If TCi1 = TCi and TCi2 = ∅, then TCi cannot be further partitioned.
Until there is no temporary cluster can be partitioned further more.

Step 2. Optimization phase, fine-tuning partition based on fitness of nodes.
Step 2.1 For each node vi , computing its fitness fi;k as it belongs to TCk by Eq. (8).
Step 2.2 Relocating vi according to Eq. (9) if necessary.
Step 2.3 Until all the nodes no longer need to be relocated stop Step 2.

Fig. 2. The network S1, the solid lines are positive edges and the dotted lines are negative.

3.4. A benchmark

To compare with the existing algorithms, in this section, we use a synthetic network, denoted by S1 and shown in
Fig. 2 which was used widely to test the validity of partition algorithms [17,20,21,26].

At first stage, we calculate the eigenvalues of the network and the subnetworks formed by clusters. The eigenvectors
of the leading eigenvalue uS1 of network S1 is shown in Table 2). S1 is partitioned into two temporary clusters TC1 =

{v8, v9, v17, v18, v26, v27} and TC2 = V − TC1 according Eq. (6).
For simplicity, we also denote the subnetworks by same notations as the clusters in this section. We continue

to compute the leading eigenvalue uTC1 and uTC2 of the subnetworks TC1 and TC2 respectively, shown lines uTC1 and
uTC2 in Table 2. All the values of uTC1 are greater than 0, so TC1 do not partitioned by Eq. (6). And TC2 is need to
partition into two temporary clusters TC21 and TC22 by Eq. (6). We go on computing the eigenvectors of the leading
eigenvalues of subnetworks TC21 and TC22, shown as Table 2. All the values in the two lines uTC21 and uTC22 are positive.
Then output temporary clusters TC1 = {v8, v9, v17, v18, v26, v27}, TC21 = {v1, v2, v3, v10, v11, v12, v19, v20, v21, v28} and
TC22 = {v4, v5, v6, v7, v13, v14, v15, v16, v22, v23, v24, v25} by Eq. (6).

The second stage fine-tuning is to optimal objective Eq. (1). The fitness of all nodes respect to the temporary clusters
are shown in Table 3. It is found that there is no any node need to be repartitioned according to Eq. (9). Therefore, output
the perpetual clusters: PC1 = TC1, PC2 = TC21 and PC3 = TC22. The result coincides the previous research [17,20,21,26].

4. Experiments

Experiments of cases studies on both real networks and synthetic networks verify the effectiveness, and experimental
comparison with five other algorithms proves the superiority of the method in this issue.

4.1. Data

Two classes data set are used to test performance of the spectral algorithm. One is real data set and the other is
synthetic data set.

The real data are 9 real networks: Benchmark S1 [17], 4 real signed social networks and 4 subgraphs from Epinions.
4 real signed networks includes U.S. supreme court justices network (SCJ) [32], Slovene parliamentary party network
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Table 2
The leading eigenvectors of S1 and the subnetworks induced by clusters.
Node v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
uS1

−0.0924 −0.0678 −0.0379 −0.0407 −0.1504 −0.2432 −0.2625 0.5193 0.2923 −0.1179
uTC1 – – – – – – – 0.4082 0.4082 –
uTC2 0.3363 0.3028 0.2755 −0.1828 −0.0809 −0.0399 −0.0290 – – 0.2730
uTC21 0.3769 0.2489 0.2489 – – – – – – 0.3769
uTC22 – – – −0.2887 −0.2887 −0.2887 −0.2887 – – –

Node v11 v12 v13 v14 v15 v16 v17 v18 v19 v20
uS1

−0.0379 −0.0678 −0.0031 −0.0362 −0.0031 −0.0433 0.1222 0.2923 −0.1179 −0.3282
uTC1 – – – – – – 00.4082 0.4082 – –
uTC2 0.2755 0.3028 −0.2219 −0.1617 −0.2219 −0.1470 – – 0.2730 0.1557
uTC21 0.2489 0.2489 – – – – – – 0.3769 0.2489
uTC22 – – −0.2887 −0.2887 −0.2887 −0.2887 – – – –

Node v21 v22 v23 v24 v25 v26 v27 v28
uS1

−0.3282 −0.2432 −0.1504 −0.0407 −0.0433 0.1222 0.1328 −0.0856
uTC1 – – – – – 0.4082 0.4082 –
uTC2 0.1557 −0.0399 −0.0809 −0.1828 −0.1470 – – 0.3204
uTC21 0.2489 – – – – – – 0.4497
uTC22 – −0.2887 −0.2887 −0.2887 −0.2887 – – –

The lines of uS1 , uTCi , uTCij are eigenvectors respect to leading eigenvalues of networks S1, TCi , TCij
‘‘–" in the table shows the node is not included respect to the subnetwork.

Table 3
The fitness of S1.
Nodes v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14
fi;1 −1 −1 0 0 −1 −1 −1 2 2 0 0 −1 0 −1
fi;21 3 2 2 −1 0 0 0 −2 −1 3 2 2 −1 0
fi;22 0 −1 −1 2 2 2 2 −3 −1 0 −1 −1 2 2

Nodes v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28
fi;1 0 −1 2 2 0 −2 −2 −1 −1 0 −1 2 2 0
fi;21 −1 0 0 −1 3 2 2 0 0 −1 0 0 −3 3
fi;22 2 2 −1 −1 0 0 0 2 2 2 2 −1 −1 0

Table 4
The statistical properties of real social networks.

S1 SCJ SPP GGS SM Net.123 Net.1667 Net.2411 Net.55568

n 28 9 10 16 18 3360 18 1039 166
# of edges 37 36 45 58 78 88769 22 30154 1024
% of negative edges 45.9% 47% 60% 50% 47.4% 21.4% 27.3% 14.8% 6.6%

Table 5
The synthetic networks with different p and s, where n = 450.
p, s p = 0.3, s = |E|/20 p = 0.4, s = |E|/20 p = 0.4, s = |E|/10 p = 0.2, s = |E|/20

+/−edges 11338/19193 15197/25403 15703/24915 7430/12560
Conflict edges 1526 2030 4062 1000

(SPP) [33], GahukuGama subtribes network (GGS) [34], and Sampson monastery network (SM) [35]. The other 4 real
networks are subgraphs from Epinions. Epinions is a large-scale signed network which is collected by the website
https://snap.stanford.edu/data/signnets. It consists of 131,828 nodes and 841,372 edges of which the ratio of positive edges
is 86.0%. In order to obtain tested data directly, we extract the 4 connected subnetworks by the following method: Select
a node together with its first and second order neighbors as the node set of the subnetwork, and the edge set includes
the edges and their signs. The scalars of the 4 extracted subnetworks are shown in Table 4, where Net.x denotes the
subnetwork composed of node x and its two-ordered neighbors. By Table 4, Net.123 and Net.2411 have much larger node
size and edge size than Net.1667 and Net.55568. Net.123 and Net.2411 are looked as the dense networks and Net.1667
and Net.55568 are the sparse.

The synthetic networks are a set of unbalanced synthetic signed networks generated by the following three steps: At
first step, a balanced network with given n nodes and given number of clusters is generated. For example, let the nodes
n = 450 and clusters number three, sizes of the three clusters be 100, 150 and 200 respectively. At second step, random
generate edges with probability p, and set the positive sign on intra-cluster edges and negative sign on inter-cluster edges.
And at third step, random pick up s edges in the network and reverse their signs. Such signed networks are unbalanced
with s conflicts. The parameters p and s of the synthetic unbalanced signed networks are in Table 5.

https://snap.stanford.edu/data/signnets
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Table 6
The leading eigenvalue and the fitness of SCJ network.
Nodes 1Stevens 2Ginsburg 3Souter 4Breyer 5Kennedy 6Alito 7Roberts 8Scalia 9Thomas

uSCJ 0.3857 0.3453 0.2714 0.3162 −0.1417 −0.3037 −0.3241 −0.4073 −0.4185
fi;1 67 87 73 79 11 −37 −35 −81 −95
fi;2 −99 −59 −33 −46 70 103 110 97 88

Table 7
The leading eigenvalues of SM network.
Node 1John Bosco 2Gregory 3Basil 4Peter 5Bonaventur 6Berthold 7Mark 8Victor 9Ambrose
uSM 0.1538 0.3034 0.2869 −0.4584 −0.1519 −0.3070 0.1990 −0.3952 −0.2139
uTC2 −0.0160 0.4875 −0.3565 – – – 0.2340 – –

Node 10Romuald 11Louis 12Winfrid 13Amand 14Hugh 15Boniface 16Albert 17Elias 18Simplicius
uSM

−0.1420 −0.2380 0.0707 0.0139 0.1475 0.0924 0.1239 0.2301 0.2291
uTC2 – – 0.2514 −0.3978 0.1217 0.4518 0.2945 −0.1436 −0.1800

‘‘–" in the table shows it is not included respect to the eigenvalue.

Table 8
The fitness of SM network.
Node 1John Bosco 2Gregory 3Basil 4Peter 5Bonaventur 6Berthold 7Mark 8Victor 9Ambrose
fi;21 4 11 −5 −13 0 −3 7 −6 2
fi;22 3 −2 9 −7 2 −8 −2 −7 −6
fi;1 −4 −10 −13 14 8 8 −6 11 7

Node 10Romuald 11Louis 12Winfrid 13Amand 14Hugh 15Boniface 16Albert 17Elias 18Simplicius
fi;21 0 −2 6 −6 3 9 6 −2 1
fi;22 −1 −3 2 5 2 −5 −3 5 8
fi;1 5 7 2 2 −4 −1 −3 −8 −7

4.2. Case study: real social networks

To test performance of the spectral algorithm, we apply it to real social networks, such as SCJ, SPP, GGS, SM. We give
the detailed process of applying the spectral algorithm to SCJ and SM only. The computations for partitioning SPP and
GGS are very similar.

First, we compute the leading eigenvector uSCJ of the SCJ network, shown in Table 6. In the initial step, SCJ is partitioned
into two temporary clusters, TC1 = {1Stevens, 2Ginsburg, 3Souter, 4Breyer} and TC2 = {5Kennedy, 6Alito, 7Roberts, 8Scalia,
9Thomas}. Checking the fitness Table (Table 6), there is not any node to be repartitioned in the optimization segment.
Then, TC1 and TC2 are perpetual clusters, i.e., TC1 = PC1 and TC2 = PC2. However, both f5;1 and f5;2 are larger than zero,
and f5;1 = 11 < f5;2 = 70 indicates that the positive weights between v5 and TC1 is unbalanced and conflictive. The result
is the same as the previous researches [6,14,17,20,21,25–29,32].

The original SM network is directed, so we convert it into an undirected version as suggested in [36]: If AijAji = 0
and Aij + Aji ̸= 0, then Aij = Aji = Aij + Aji; If AijAji < 0, then Aij = Aji = Aij + Aji; If AijAji > 0 and Aij + Aji > 0, then
Aij = Aji = max{Aij, Aji}; If AijAji > 0 and Aij + Aji < 0, then Aij = Aji = min{Aij, Aji}.

For the SM network, its leading eigenvector uSM is shown in Table 7. So the network is partitioned into two temporary
clusters TC1 = {4Peter, 5Bonaventur, 6Berthold, 8Victor, 9Ambrose, 10Romuald, 11Louis} and TC2 = {1JohnBosco, 2Gregory,
3Basil, 7Mark, 12Winfrid, 13Amand, 14Hugh, 15Boniface, 16Albert, 17Elias, 18Simplicius}. For the subnetwork corresponding
to TC2, its leading eigenvector uTC2 is shown in Table 7. So TC2 is partitioned into two clusters TC21 = {2Gregory, 7Mark,
12Winfrid, 14Hugh, 15Boniface, 16Albert}, TC22 = {1JohnBosco, 3Basil, 13Amand, 17Elias, 18Simplicius}. The eigenvectors
respect to the leading eigenvalues of TC1 and TC21 and TC22 are all positive.

In the optimizing segment, the fitness matrix is computed (Table 8), from which the node 1JohnBosco is relocated
to TC21 since fi;21 > fi;22 > fi;1, where fi;21, fi;22, fi;1 correspond to TC21, TC22, TC1, respectively. Hence TC1, TC21, TC22
are all stable and become perpetual clusters. Thus, we obtain the ground truth partition consistent with the previous
research [17,35,37].

With spectral algorithm, we omit the details and give the clusters of networks SPP and GGS respectively. Two clusters
in SPP are PC1 = {1SKD, 3SDSS, 6ZS, 8SLS, 9SPS-SNS}, PC2 = {2ZLSD, 4LDS, 5ZS-ESS, 7DS, 10SNS }, and three clusters
in GGS are PC1 = {1GAVEN, 2KOTUN, 15NAGAD, 16GAMA}, PC2 = {3OVE, 4ALIKA, 6GAHUK, 7MASIL, 8UKUDZ, 11GEHAM,
12ASARO}, PC3 = {5NAGAM, 9NOTOH, 10KOHIK, 13UHETO, 14SEUVE} respectively. The results are consistent with the
previous researches [6,14,17,20,21,25–29,32].

The results of clusters in the four real social networks are exactly the same as those of the previous studies, which
indicate the effectiveness of the spectral algorithm.
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4.3. Case study: Synthetic networks

We use an unbalanced network with parameters p = 0.3 and s = |E|/20 as an example to illustrate performance
of the spectral algorithm. The example network (denoted by S2) contains 11338 positive edges and 19193 negative
edges, of which there are 1526 conflict edges. Applying the spectral algorithm, initially all the nodes are in one cluster,
the leading eigenvector u1 of the initial network is computed and shown in red in Fig. 3(a). Based on the algorithm,
S2 is partitioned into two clusters TC1 = {v1, v2, . . . , v250} and TC2 = {v251, v252, . . . , v450}. In the next iteration, the
subnetwork corresponding to TC1 is considered and its leading eigenvector u′

1 is computed and shown in blue in Fig. 3(a).
So the subnetwork is partitioned into two clusters TC11 = {v1, v2, . . . , v100} and TC12 = {v101, v102, . . . , v250}. For the
three temporary clusters TC11, TC12 and TC2, we compute its fitness values which are displayed in blue, black and red in
Fig. 3(b). According to Eq. (9), there is no further fine-tuning required. Thus, the experiment result is identical with the
design. In addition, from the experimental process, the initial partition results are already very correct, which indicates
the robustness of the spectral algorithm. In Fig. 3(a), the entries of the leading eigenvector u1 of S2 are in red, in which
the first 250 values are negative and the rest is positive. According to the algorithm, S2 is divided into two clusters TC1
and TC2 in this iteration; the entries of the leading eigenvector u′

1 of the subnetwork corresponding to TC1 are in blue, in
which the first 100 values are positive and the rest is negative. In Fig. 3(b), the blue line f (:; 1) denotes the fitness values
of the nodes belong to TC11; the black line f (:; 2) denotes the fitness values of the nodes belong to TC12; the red line f (:; 3)
denotes the fitness values of the nodes belong to TC2.

The other three networks have similar characters with S2, shown in Figs. 3(c) to 3(h). In Fig. 3, we noticed that nodes
are grouped correctly as in their future clusters by the leading eigenvalue in the first iteration, which hints empirically
that u1 encodes the cluster structures of networks. However, the gap between eigenvectors and zeros are reduced as the
ratio of the conflicts increasing. This implies that the cluster structures are ambiguous in general, and the small clusters
are more likely to vanish.

Next we construct another unbalanced network (denoted by S3) with clusters of the same size. The network has
400 nodes, and the four clusters have nodes v1, v2, . . . , v100, nodes v101, v102, . . . , v200, nodes v201, v102, . . . , v300 and
nodes v301, v102, . . . , v400, respectively. With the given 400 nodes, we generate a random network with the parameters
p = 0.2 and s = |E|/10, and S3 contains 4713 positive edges and 11300 negative edges, of which there are 1601
conflict edges. Comparing with S2, the ratio of the positive edges decreases from 37.14% to 29.43%. It is clear that for
signed networks, lesser the positive edges, more detrimental to the cluster structure. Moreover, the proportion of the
conflict edges increases from 5% to 10%, and thus leads to a greater difficulty of partitioning. Initially, all the nodes
are in one cluster, the leading eigenvector u1 of the initial network is computed and shown in blue in Fig. 4. Based
on the algorithm, S3 is partitioned into two clusters TC1 = {v1, v2, . . . , v14, v16, . . . , v79, v81, . . . , v100, v301, . . . , v400}

and TC2 = {v15, v80, v101, v102, . . . , v300}. In the next iteration, the two subnetworks corresponding to TC1 and TC2 are
considered and their leading eigenvectors u(1)

1 and u(2)
1 are computed and shown in red and black in Fig. 4. According to

the algorithm, the two subnetworks are partitioned into four clusters, TC11 = {v1, v2, . . . , v14, v16, . . . , v79, v81, . . . , v100},
TC12 = {v301, v302, . . . , v400}, TC21 = {v15, v80, v101, v102, . . . , v200} and TC22 = {v201, v202, . . . , v300}. For the four
temporary clusters, only TC21 can be further partitioned to improve the objective function, its corresponding leading
eigenvector u(3) is computed and shown in green in Fig. 4. So TC21 can be partitioned into two clusters TC211 =

{v101, v102, . . . , v200} and TC212 = {v15, v80}.
For the five temporary clusters, Fig. 5 indicates that nearly all the nodes are partitioned correctly by the initial partition

except the nodes in TC212. For these nodes of TC212, their fitness associated to TC212 are lower than the ones associated to
other clusters, therefore the nodes of TC212 = {v15, v80} were reallocated to TC11. Thus, all clusters are identified.

4.4. Compare experiments

For further test the superiors and effectiveness of the spectral algorithm (SA), we compare it with the existing
algorithms, SCA [12], FEC [17], SBDSLPA [14], DEC [20] and NEA [38]. The following is the description of these algorithms.
(i) SCA is a spectral clustering algorithm based on signed Laplacian matrix [12]. The top-k eigenvectors of the signed
Laplacian matrix associated with the signed network are calculated, then k-means algorithm is used to partition all nodes.
The similarity between SCA and SA is that both of them are based on spectral features, and the difference is that SCA
is based on signed Laplace matrix while SA is based on adjacency matrix. (ii) FEC is a two-stage algorithm that detect
clusters in signed networks. The first stage is to find cluster by random walks. And the second stage is to extract clusters by
approximate signed cut. (iii) SBDSLPA is a signed network label propagation algorithm with structural balance degree [14],
where the structural balance degree is represented by the number of balanced triangles of a node incident with. (iv) DEC
is a dynamic clustering algorithm for signed networks [20]. At each time step, the phase of each node is closer to the
average of its positive neighbors’ phases. When reach to convergence state the nodes have consistent phase belong to a
cluster and the nodes with inconsistent phases belong to different clusters. (v) NEA is to partition signed networks by
evolutionary equation [38].
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Fig. 3. Four pairs of graphs demonstrate algorithm process for unbalanced networks with different p and s.

4.4.1. On real social networks
We first make the comparison experiments on the 9 real social signed networks, shown in Table 4, SCJ, SPP, GGS, SM,

S1 and 4 other subnetworks, Net.123, Net.2411, Net.1667 and Net.55568. The results of the experiments are shown in
Table 9, where Hm and Ha are the maximum and average of the objective value of Eqs. (2).

For the results obtained by six algorithms on 9 networks, 15 of the 18 scalars of SA is superior to or equivalent to five
other algorithms. Moreover, in all experimental data, Hm equals to Ha for the 9 networks which show that SA possess
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Fig. 4. The entries of the leading eigenvector u1 of S3 are plotted in blue; the leading eigenvectors u(1)
1 and u(2)

1 corresponding to TC1 and TC2 are
in red and black; the leading eigenvector u(3)

1 of the subnetwork corresponding to TC21 is in green.

Fig. 5. The blue line f (:; 1) denotes the fitness values of the nodes belong to TC12; the red line f (:; 2) denotes the fitness values of the nodes belong
to TC22; the black line f (:; 3) denotes the fitness values of the nodes belong to TC211; the yellow line f (:; 4) denotes the fitness values of the nodes
belong to Cluster11; the green line f (:; 5) denotes the fitness values of the nodes belong to TC212 .

Table 9
Comparison results on real social signed networks.

SCJ SPP GGS SM S1 Net.123 Net.1667 Net.2411 Net.55568
Hm/Ha Hm/Ha Hm/Ha Hm/Ha Hm/Ha Hm/Ha Hm/Ha Hm/Ha Hm/Ha

SCA 624/624 6408/6408 54/54 100/100 41/41 63673/63673 20/20 24778/24778 946/946
FEC 490/346 6408/6408 54/52 116/72 41/35 50813/36680 10/10 20950/20664 138/131
SBDSLPA 624/624 6408/6408 54/52 128/128 39/31 68529/68487 14/14 24948/24938 860/854
DEC 484/484 6408/6408 54/54 118/110 49/49 51381/51329 18/16 21252/20406 888/888
NEA 624/624 6408/6408 54/54 128/121 49/43 68469/68447 20/18 25008/25004 946/860
SA 624/624 6408/6408 54/54 128/128 49/49 68511/68511 20/20 24990/24990 946/946

Each experiment has been repeated 20 times independently.

the higher robustness than other algorithms. Only three scalars of SA that are inferior to SBDSLPA or NEA algorithms.
In the experimental results of Net.123, the optimal value of SBDSLPA is superior to SA, while the average result of SA is
superior to SBDSLPA. In the experiments on the Net.2411, the two scalars of SA are slightly inferior to NEA. To detect the
deep reason of the failure of SA, we discuss the size of clusters on Net.123 and Net.2411, where the clusters of the two
networks are obtained by SA, NEA and SBDSLPA. The distribution of the cluster size of these two networks are shown in
Table 10.

There are large diversity of the size of clusters and the total number of clusters obtained by the three algorithms. The
number of clusters association with SA are much smaller than the other two algorithms. The cluster sizes association with
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Table 10
The distribution of clusters in Net.123 and Net.2411.
Net.123

SBDSLPA Cluster size 1 2 3 4 6 8 9 10 11 12 15 37 65 2537
Cluster’ number 462 33 13 3 6 3 2 2 1 1 1 1 1 1 Tnb = 530

NEA Cluster size 1 2 3 4 5 6 7 8 10 11 25 135 153 2409
Cluster’ number 448 33 14 2 4 1 1 1 2 1 1 1 1 1 Tnb = 511

SA Cluster size 1 2 3 4 6 8 9 10 33 38 108 159 468 2550
Cluster’ number 0 0 0 1 0 0 0 0 1 1 1 1 1 1 Tnb = 7

Net.2411

SBDSLPA Cluster size 1 2 3 4 5 7 9 12 830
Cluster’ number 125 9 5 4 1 1 1 1 1 Tnb = 148

NEA Cluster size 1 2 3 4 6 8 14 16 841
Cluster’ number 129 9 1 1 1 1 1 1 1 Tnb = 145

SA Cluster size 1 2 3 4 7 12 14 174 858
Cluster’ number 0 0 0 0 1 0 0 1 1 Tnb = 3

Tnb represents the total number of clusters respect to the algorithm.

Table 11
Comparison results on synthetic signed networks.
s p=0.2 p=0.1 p=0.05

0 5% 10% 20% 0 5% 10% 20% 0 5% 10% 20%

SCA 19899 17852 15310 11259 9668 8257 7286 4770 4478 3973 3065 1955
FEC 20121 12735 10515 4243 10192 5621 4162 1702 5122 2613 4085 420
DEC 16801 −5372 −4718 −3419 8501 −2495 −2368 −1572 3783 −1357 −1249 −861
SBDSLPA 20121 18040 15968 12177 10192 9045 7956 5829 3435 2357 2178 1755
NEA 20121 18040 15968 12177 10192 9045 8080 5862 5114 4171 3233 1259
SA 20121 18040 15968 12177 10192 9045 8080 6020 5122 4661 4025 2953

SA are uniformly distributed while the other two methods are not. 87% and 88% of the clusters in Net.123 are single-node
clusters association with SBDSLPA and NEA respectively. And, these data in Table 11 are 84% and 89% respectively. By the
definition of cluster, those clusters obtained by SBDSLPA and NEA in Net.123 and Net.2411 are not truly clusters, which
prove that SBDSLPA and NEA lost the efficiency and reasonable. Overall the above analysis of the six algorithms on the 9
networks, we find SA has superior efficiency and scientific.

4.4.2. On synthetic networks
We compare experimental results on the synthetic networks in Table 11. The generated networks contain three

clusters, with sizes 100,150 and 200, respectively. The generated parameters are p = 0.2 ∼ 0.05 and s = 0 ∼ |E|/5. The
results of Table 11 show that SA is superior to or equivalent to five other algorithms. It demonstrates that SA performs
best among the six methods.

Comparing the experimental results of SA with FEC, SA takes account of both positive and negative edges information,
rather than the transition probability method in FEC. In the optimization stage of SA, fitness of all nodes are checked
which confirms the lowest errors. It is displayed by the difference results of FEC and SA when s ̸= 0, FEC is far less than
SA.

Comparing the experimental results of SA with SBDSLPA and NEA: SA fully considers the balancedness of the whole
network rather than the triad balancedness. Hence, when the network is relatively dense, the partition results of SBDSLPA,
NEA and SA are basically consistent, such as the experimental data in Table 11 as p = 0.2 and 0.1. However, when the
network is relatively sparse, as the degree of unbalance increases, SA has an advantage over SBDSLPA and NEA, such as
the experimental data as p = 0.05 in Table 11. In this case SA had stronger anti-noise (unbalancedness) capability than
SBDSLPA and NEA.

Comparing the experimental results of SA with DEC, when measuring the structure balancedness of the network, SA
is based on spectral features which can be seen as a global feature, while DEC is take the similarity of pair of nodes as
measurement, which is a local feature. Moreover, SA does not involve any parameters in the calculation, while DEC relies
on two uncertain parameters and random initialization during the calculation, which results in extremely low objective
values.

Compared the results of SA with SCA, they are two global optimization algorithms based on the characteristics of
adjacency matrix spectrum. Yet, SA not only outperforms SCA in accuracy, it runs without any prior knowledge, such as
the number of clusters. All in all, SA algorithm is proved superior wherever on real data set and synthetic networks.
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5. Discussion and conclusion

In this paper, we investigate relationships between balancedness of signed networks and its eigenvectors, and propose
a spectral algorithm to partition signed networks to achieve maximum balancedness. For signed networks, the leading
eigenvector corresponding to the largest eigenvalue reflects the maximum balancedness to a certain extent when
networks are partitioned into two clusters. So we take advantage of this feature, and partition signed networks into
two clusters to improve the objective value according to the leading eigenvector. Based on the weak balance theory, we
repeatedly partition a subnetwork corresponding to a cluster to increase the objective value until it cannot be improved
anymore. In addition, to optimize clusters, we also take a fine-tuning which relocate nodes based on their fitness. Fitness
of a node can be seen as a sub-objective of Eq. (1) which shares a common goal as the original objective H . So the spectral
algorithm involves two procedures of temporary partition and optimization. In the partition stage, each node is limited to
choose one of two clusters, and thus reduces the chance of errors. To test the performance of the spectral algorithm, we
apply the algorithm to real social networks and synthetic networks. The experimental results indicate that the spectral
algorithm possesses high effectiveness, robustness and validity.

Comparing with the existing algorithms SCA, FEC, DEC, SBDSLPA and NEA, the spectral algorithm has the optimum
effect both on real social and synthetic signed networks. The advantages of SA can be summarized as the following:
(i)Both positive and negative edge information are considered by SA algorithm, rather than separated them. (ii) In the
clustering process, SA does not involve any variable parameters, which makes its robustness very high. (iii) SA algorithm
measures the balanceness of networks in global way which consistent the property of cluster and decreases the errors.

The spectral algorithm works well rely on completely by the adjacent matrix no any other prior knowledge or
constraints. However, for better application in large-scale networks, the complexity of the spectral algorithm still needs
to be improved. The lower efficiency is partly due to the fact that only two clusters are established in each iterative
partition. For the future work, we will explore the possibility of obtaining a partition by doing matrix decomposition only
once rather than repeatedly computing the leading eigenvectors. Apart from the leading one, other eigenvectors could
also have exclusive relationships with cluster structures when there are more than two clusters in the network.
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