
1 23

Journal of Combinatorial
Optimization

ISSN 1382-6905

J Comb Optim
DOI 10.1007/s10878-019-00400-6

A polynomial algorithm determining cyclic
vertex connectivity of 4-regular graphs

Jun Liang, Dingjun Lou, Zongrong Qin
& Qinglin Yu

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Journal of Combinatorial Optimization
https://doi.org/10.1007/s10878-019-00400-6

A polynomial algorithm determining cyclic vertex
connectivity of 4-regular graphs

Jun Liang1,2 · Dingjun Lou2 · Zongrong Qin2 ·Qinglin Yu3

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
For a connected graph G, a set S of vertices is a cyclic vertex cutset if G − S is not
connected and at least two components of G − S contain a cycle respectively. The
cyclic vertex connectivity cκ(G) is the cardinality of a minimum cyclic vertex cutset.
In this paper, for a 4-regular graph G with v vertices, we give a polynomial time
algorithm to determine cκ(G) of complexity O(v15/2).

Keywords Cyclic vertex connectivity · 4-Regular graph · Maximum flow · Time
complexity

1 Introduction and terminology

All graphs considered in this paper are simple, undirected, finite and connected. We
use the notation and terminology of Bondy andMurty (1976). In particular, for a graph
G, v(G) denotes the number of vertices of G and g(G) denotes the girth of G, i.e., the
length of a shortest cycle of G. If there is no ambiguity, then we write v and g instead
of v(G) and g(G).

For a graphG, a set S of vertices (edges) inG is a cyclic vertex (edge) cutset ifG−S
is not connected and at least two components ofG−S contain a cycle respectively. The
cyclic vertex connectivity cκ(G) is the cardinality of a minimum cyclic vertex cutset
in G. We say that cκ(G) is ∞ if no cyclic vertex cutset exists. Note that cyclic vertex
cutset is different from cycle-separating vertex cut introduced byMcCuaig (1992) and
Nedela and Škoviera (1995).

B Dingjun Lou
issldj@mail.sysu.edu.cn

1 School of Software, South China Normal University, Foshan 528225, China

2 School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China

3 Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-019-00400-6&domain=pdf
http://orcid.org/0000-0003-0034-2601

Journal of Combinatorial Optimization

Let C be a cycle of G. An edge whose ends are both on C is called a chord of C if
the edge does not belong to the set of edges of C . A cycle is called an induced cycle
if the cycle does not contain any chord.

Let C be an induced cycle embedded on a plane. Suppose c = |V (C)|, C =
a0a1 · · · ac−1a0 and 0 ≤ i < j ≤ c − 1, then we use C+[ai , a j] (C−[ai , a j]) to
denote the set of vertices from ai to a j on C in the clockwise (counterclockwise)
direction of C . Furthermore, the symbols ′(′ and ′)′ are used instead of ′[′ and ′]′ if ai
and a j are not contained in the set C+[ai , a j] or C−[ai , a j]. We also use dC (ai , a j)

to denote the distance between vertices ai and a j on C . Obviously, we have that

dC (ai , a j) = dC (a j , ai). Besides, the symbol ai
−→
C a j (or, ai

←−
C a j) denotes the path

aiai+1 · · · a j (or, aiai−1 · · · a j) in the clockwise (or, counterclockwise) direction of

cycle C . For example, let C = a0a1a2a3a4a0, then a0
−→
C a3 (or, a0

←−
C a3) denotes the

path a0a1a2a3 (or, a0a4a3) on C .
Some important work on cyclic edge connectivity were done in Aldred et al. (1991),

Kutnar and Marušič (2008), Lou and Holton (1993) and McCuaig (1992), Nedela
and Škoviera (1995), Peroche (1983) and Tait (1880). Dvořák et al. (2004) showed
that the cyclic connectivity can replace the usual connectivity in applications where
the considered graphs have a bounded maximum degree, such as robustness of local
computer networks, parallel computer architectures and others. They presented an
O(v2 log2 v)-algorithm for cyclic edge connectivity of cubic graphs. Then Lou and
Liang (2014) and Lou and Wang (2005) gave algorithms determining the cyclic edge
connectivity of k-regular graphs, and the time complexity in Lou and Liang (2014) is
O(k9v6). There was little previous work on algorithm determining the cyclic vertex
connectivity. The results obtained by us were an O(v15/2)–algorithm for cyclic vertex
connectivity of cubic graphs in Liang et al. (2017) and an O(v15/2k7k9k

2
)—algorithm

for cyclic vertex connectivity of k-regular graphs in Liang and Lou (2018). In this
paper, we find a polynomial algorithm to determine the cyclic vertex connectivity of
4-regular graphs which is a key step for solving the cyclic vertex connectivity problem
of k-regular graphs.

The paper is divided into four sections. The first section contains basic definitions,
backgrounds, and known results. The second section contains an algorithm (Algo-
rithm 1) which determines the cyclic vertex connectivity of 4-regular graphs and its
time complexity analysis. The third section gives some conclusions used to prove the
correctness of Algorithm 1. The fourth section proves the correctness of Algorithm 1.

To conclude this section, we list several results which will be used in the proof of
the main result in the later section.

Lemma 1.1 (Liang et al. 2017, Theorem 2.3) Let G be a connected k-regular graph
with girth g and v vertices. If v ≥ 2g(k − 1), then cκ(G) ≤ (k − 2)g.

Lemma 1.2 (Liang et al. 2017, Lemma 3.2) For any k-regular graph G with girth g,
if v(G) < 2g(k − 1), then (1) if k = 3, then g ≤ 10; (2) if k = 4, then g ≤ 7; (3) if
k = 5 or 6, then g ≤ 6; (4) if 7 ≤ k ≤ 25, then g ≤ 5; (5) if k ≥ 26, then g ≤ 4.

Lemma 1.3 (Liang et al. 2017, Lemma 3.3) Let G be a k-regular graph with girth g ≥
7, suppose that C = a0a1 . . . ac−1a0 is an induced cycle in a connected component
of G, then |⋃c−1

i=0 N1(ai)| ≥ g(k − 2). (Nr (ai) see Definition 3.2)

123

Author's personal copy

Journal of Combinatorial Optimization

2 An algorithm for finding the cyclic vertex connectivity of 4-regular
graphs

In this section, we describe an algorithm for the cyclic vertex connectivity of 4-regular
graphs. The idea of the algorithm is that, we find all induced cycles of length at most
4 log3 2v+ x0 (x0 is a positive constant) in G, and apply the maximum flow-minimum
cut algorithm to get the minimum cutset between each pair of them, then a minimum
cyclic vertex cutset is the minimum cutset. In Algorithm 1, the symbol s denotes the
initial value of cyclic vertex connectivity cκ(G), and z is a temporary variable.

Algorithm 1
1. For each vertex u in G, use a breadth first search strategy to find a shortest cycle

containing u, thus we find the girth g of G; // O(v2)

2. If v(G) ≥ 6g, then s := 2g, else s := ∞; // O(1)
3. If g ≥ 19, then z = 4 log3(2v) + 7,

else z = 4 log3(2v) + 42;

4. For each edge e ∈ E(G), use a breadth first search strategy to find all induced
cycles C containing edge e such that |V (C)| ≤ z. Let Ce be the set of all such
cycles containing e and let F = ⋃

e∈E(G) Ce; // O(v3)

5. For any two different cycles C1 and C2 in F , we do // O(v6)

BEGIN

(5A) If V (C1) ∩ V (C2) = ∅ and there is no edge e = (v1, v2), where v1 ∈ V (C1)

and v2 ∈ V (C2), then we can construct a new graph G ′ by contracting C1 into
a vertex x , C2 into a vertex y, and deleting all parallel edges produced; // O(v)

(5B) We again constructed a new graph G1 from G ′, Fig. 1 and Fig. 2 show an
example of construction from G ′ to G1 (the construction of 4-regular graphs
is the same as it). // O(v2)

(a) Each vertex v in G ′ becomes two vertices v′ and v′′ in G1 and there is an
arc v′v′′ in G1 from the vertex v′ to v′′ with arc capacity of 1;

(b) For each edge of G ′, we have that: suppose there is an edge e = uv in G ′,
then there are two arcs e′ = u′′v′ and e′′ = v′′u′ in G1 corresponding to
it, and arc capacity of e′ and e′′ are both ∞.

(5C) Use the algorithm in Even (2011) (5.3 The Dinitz Algorithm)1 to find a mini-
mum edge cutset which separates x ′′ and y′ in G1 (vetex x in G ′ becomes x ′
and x ′′ inG1, and vertex y inG ′ becomes y′ and y′′ inG1). Then the minimum
edge cutset corresponds to a minimum vertex cutset Sxy in G ′ which separates
x and y. Note that Sxy is also the minimum cyclic vertex cutset separating C1
and C2 in G; // O(|E |v1/2) = O(v3/2)

(5D) s := min { s, |Sxy | }; // O(1)

END;
6. Then cκ(G) = s and is returned;

Next we analyze the time complexity of Algorithm 1. Since G is a 4-regular graph,
|E | = 2v, i.e., O(|E |) = O(v). In Step 1, finding the length of the shortest cycle

1 In Dinitz (2006), Yefim Dinitz tells the differences between his version and Even’s Version.

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 1 An example for original
graph

Fig. 2 An example of
constructed graph for Fig. 1

containing a vertex v takes O(|E |), so in total O(|E |v) = O(v2) for all vertices in
graph G. In Step 4 [see Lou and Wang (2005), Theorem 4], for each edge e ∈ E(G),
there are at most O(v2) induced cycles of length at most 4 log3(2v) + x0 (x0 is a
positive integer.) containing e. Hence, there are at most O(v2|E |) = O(v3) such
cycles in F for all edges in E(G). In Step 5, the FOR loop repeats O(v6) times and
Step 5C takes O(v1/2|E |) = O(v3/2) (Even and Tarjan 1975, Theorem 3). So Steps
5 including 5A, 5B, 5C and 5D totally take O(v6+3/2) = O(v15/2).

Hence Algorithm 1 is an O(v15/2) algorithm.

3 The preparation for proving the correctness of Algorithm 1

In this section, we present several lemmas and new terms which will help to prove the
correctness of Algorithm 1.

Let G be a 4-regular graph with a cyclic vertex cutset S, and D1 and D2 be two
components of G − S, which have the minimum cycles C1 and C2 respectively. Let
c = |V (C1)| be the length of cycle C1 and C1 = a0a1 · · · ac−1a0.

In the cyclic vertex cutset S, we define two types of vertices. For each vertex v

of the first type, v is adjacent to exactly two different vertices on cycle C1. For each
vertex u of the second type, u is adjacent to three different vertices on C1, and not
adjacent to other vertices of component D1. For example, in Fig. 3, the vertex v1 is
of the first type and v2 is of the second type. Furthermore, in all Figures of this paper,
the circles filled with black represent the vertices in S.

Notation 3.1 Let Sm be the set of all the vertices of first type, and Sn consists of all
the second type of vertices.

Let G
[
V (D1) ∪ S

]
be an induced subgraph by V (D1) and S, and Es be the set of

edges whose both ends are in S. Let Ds = G
[
V (D1) ∪ S

] − Es − E(C1), which is
also a subgraph of G. Note that Ds may be disconnected.

Notation 3.2 N0(ai) = {ai }, N1(ai) = {u | uai ∈ E(Ds)}, and Nr (ai) = {u | ∃u1 ∈
Nr−1(ai), u /∈ ⋃r−1

j=0 N j (ai), u1 /∈ S, uu1 ∈ E(Ds)}.

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 3 Two types of vertices in S

Fig. 4 An example for Nr (ai)

Notation Nr (ai) (0 ≤ r ≤ c/4 − 1) denotes the set of vertices, to which the
distance are r from ai in Ds , but not through vertices in V (C1) ∪ S. For exam-
ple, in Fig. 4, the solid vertices belong to cyclic vertex cutset S and N1(a0) =
{v0, v6}, N2(a0) = {v1, v2, v3}, N3(a0) = ∅, N1(am) = {v1, v4}, N2(am) =
∅, N1(an) = {v5, v6}, and N2(an) = ∅.

Note that if Nr1(ai) ∩ Nr2(a j) = ∅ (0 ≤ i < j ≤ c − 1, 0 < r1, r2 ≤ c/4 − 1),
then all vertices in Nr1(ai) ∩ Nr2(a j) are in cyclic vertex cutset S. Suppose v0 ∈
Nr1(ai) ∩ Nr2(a j) is not in S. Then v0 ∈ V (D1), and the cycles ai

−→
C1a j · · · v0 · · · ai

and a j
−→
C1ai · · · v0 · · · a j are in D1. Note that dC1(ai , a j) ≤ c/2. And the distance from

ai (or a j) to v0 in Ds is atmost c/4−1.Hence the length of cycle ai
−→
C1a j · · · v0 · · · ai or

a j
−→
C1ai · · · v0 · · · a j in D1 is at most c−2 = c/2+2(c/4−1), which is a contradiction

to the assumption that C1 is a minimum cycle of D1.
For any v0 ∈ Nr1(ai), v1 ∈ Nr2(ai) (r1 ≤ r2) and v0 = v1, if v2 ∈ Nr1+1(ai) ∩

S, r1 < r2, and v1v2, v2v0 ∈ E(G), then we put the edge v1v2 into an edge set ETi .
If r1 = r2, for v1v2, v0v2 ∈ E(G), we only put one of v1v2 and v0v2 into ETi .

Notation 3.3 T (ai) = G
[⋃c/4−1

r=0 Nr (ai)
] − Es − ETi (0 ≤ i ≤ c − 1).

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 5 A T -tree T (ai)

Obviously, T (ai) is a subgraph of G, and is a tree we call T -tree. We say that a
T -tree T (ai) is rooted at a vertex ai . For example, in Fig. 4, T (a0) is a tree rooted at
a vertex a0 with non-leaf v0 and leaves v1, v2, v3, and v6.

A full tree of depth d is a tree rooted at a vertex v′ with levels 0, 1, . . . , d such that
the vertex v′ has three children and each vertex at the levels from 1 to d − 1 also has
three children. We call it a trivial full tree when d = 0.

Definition 3.4 Suppose the depth of a T -tree T is d (d ≤ c/4 − 1). Then the T -tree
T contains x subtrees at the kth level if T has x vertices at the kth level (1 ≤ k ≤ d).

The depth of a subtree at the kth level of T is at most d − k. Moreover, the subtree
is rooted at a vertex v0 at the kth level of T such that the vertex v0 and each vertex at
the levels from 1 to d − k − 1 have the same children as the vertices in T . Note that if
there exists one subtree at the kth (1 ≤ k ≤ d) level of T not containing any vertex of
cyclic vertex cutset S and the vertices at the levels from 0 to d − k − 1 of the subtree
are not adjacent to the vertices of S, then the subtree is a full tree. Then the depth of
T must be c/4 − 1 and that of the subtree is c/4 − 1 − k. For example, in Fig. 5, a
T -tree T (ai) contains two subtrees at the 1st level, and six subtrees at the 2nd level,
and six subtrees at the 3rd level, and the subtree at the 2nd level rooted at v0 is a full
tree of depth c/4 − 3.

Lemma 3.1 Let G be a 4-regular graph with girth g ≥ 7. Suppose the cardinality of
cyclic vertex cutset |S| ≤ 2g − 1 and the ranges of length c of a minimum cycle C1 in
component D1 of G − S are g < c < 2(g − 4) and c ≥ 16. Then D1 contains at least
(3c/4−1 + 1)/2 vertices.

Proof Let c = |V (C1)| andC1 = a0a1 · · · ac−1a0. According to Lemma 1.3, we have
| ⋃c−1

i=0 N1(ai)| ≥ 2g. Let Vt denote the vertices set of some type belonging to S. Each
vertex in this set is adjacent to at least one vertex of C1 and to at least one vertex of
D1 − V (C1).

Case (1) Suppose that there is not any edge whose one end belongs to V (C1), the
other end belongs to Vt . Let x = | ⋃c−1

i=0 N1(ai)| − | ⋃c−1
i=0 N1(ai) ∩ S|. Then we have

123

Author's personal copy

Journal of Combinatorial Optimization

x vertices in
⋃c−1

i=0 N1(ai) not belonging to S and at least x subtrees at the 1st level of
all T -trees, implying that there are at least 3x subtrees at the 2nd level of all T -trees.
Note that the 3x subtrees at the 2nd level contain |S| − |⋃c−1

i=0 N1(ai) ∩ S| vertices in
the cyclic vertex cutset S. Since |⋃c−1

i=0 N1(ai)| ≥ 2g and |S| ≤ 2g − 1, we have

|S| −
∣
∣
∣
∣
∣

c−1⋃

i=0

N1(ai) ∩ S

∣
∣
∣
∣
∣
= |S| −

(

|
c−1⋃

i=0

N1(ai)| − x

)

≤ x − 1.

So the 3x subtrees at the 2nd level of all T -trees contain at most x − 1 vertices in S.
However, each vertex in S is contained in at most three subtrees since G is a 4-regular
graph. Hence at most 3(x − 1) subtrees at the 2nd level of all T -trees contain vertices
in S and at least 3x − 3(x − 1) = 3 subtrees at the 2nd level of all T -trees do not
contain any vertex in S, being full trees of depth c/4 − 3. Then we have

v(D1) ≥ 3 · (30 + 31 + · · · + 3c/4−3) + c ≥ (3c/4−1 + 1)/2.

Case (2) Suppose that there exists an edge whose one end belongs to V (C1), the other
end belongs to Vt .

Then a vertex v0 must exist such that v0 ∈ T (ai) ∩ T (a j) (i = j), v0 ∈ N1(ai)
and v0 /∈ N1(a j). Then the distance on C1 between ai and a j is at most c/2, and the
distance on T -tree T (a j) between the v0 and a j is at most c/4 − 1. So, the length

of cycle ai
−→
C1a j · · · v0ai or ai←−C1a j · · · v0ai is at most c/2 + (c/4 − 1) + 1 = 3c/4.

Hence, we have
3c/4 ≥ g. (3.1)

According to the inequality (3.1) and g < c < 2(g − 4), we have

4g/3 ≤ c < 2(g − 4). (3.2)

By Notation 3.1, Sm consists of the vertices in S being adjacent to exactly two
different vertices on cycle C1. Note that Sm = ∅. Suppose that v0 ∈ Sm and v0 ∈
N1(ai)∩N1(a j). Then we have a cycle of length at most c/2+2. Hence, c/2+2 ≥ g,
i.e., c ≥ 2(g − 2), a contradiction to the inequality (3.2). Furthermore, obviously we
have Sn = ∅.

Note that there is not any edge whose both ends belong to the vertex set⋃c−1
i=0 N1(ai). Suppose such an edge exists, then we have a cycle of length at most

c/2 + 3. Hence, c/2 + 3 ≥ g, i.e., c ≥ 2(g − 3), a contradiction to (3.2). Note that
a T -tree T (ai) contains 6 subtrees at the 2nd level if there is no vertex in N1(ai)
belonging to the cyclic vertex cutset S since c ≥ g + 1,

⋃c−1
i=0 N1(ai) ≥ 2g + 2 and

|S| ≤ 2g − 1.
Note that N2(ai) ∩ N2(a j) = ∅ for any ai , a j ∈ V (C1) (0 ≤ i < j ≤ c − 1).

Suppose v0 ∈ N2(ai) ∩ N2(a j), v1 ∈ N1(ai) and v2 ∈ N1(a j) (0 ≤ i < j ≤ c − 1),

then the length of two cycles ai
−→
C1a jv2v0v1ai and a j

−→
C1aiv1v0v2a j are greater than

or equal to g, thus we have c ≥ 2(g − 4), a contradiction. In addition, suppose that

123

Author's personal copy

Journal of Combinatorial Optimization

v3, v4 ∈ N1(ai), v5 ∈ N2(ai) and v3v5, v4v5 ∈ E(G), then we have a cycle of length
4, a contradiction.

Based on three paragraphs discussed above, we next prove that at least 25 subtrees
at the 3rd level of all T -trees do not contain any vertex of S and these subtrees are full
trees of depth c/4 − 4.

Suppose there are x1 (0 ≤ x1 ≤ |S|) vertices in
⋃c−1

i=0 N1(ai) belonging to S.
Since Sm = ∅ and Sn = ∅, 2c − x1 vertices in

⋃c−1
i=0 N1(ai) do not belong to S.

According to the discussion above, since there is not any edge whose both ends belong
to

⋃c−1
i=0 N1(ai) and N2(ai)∩N2(a j) = ∅ for any ai , a j ∈ V (C1) (0 ≤ i < j ≤ c−1),

then there are 3(2c− x1) vertices in
⋃c−1

i=0 N2(ai). Let P1 be a set of these 3(2c− x1)
vertices, i.e., |P1| = 3(2c− x1). Suppose there are x2 (0 ≤ x2 ≤ |S| − x1) vertices in⋃c−1

i=0 N2(ai) belonging to S. Let P2 be a set of 3(2c−x1)−x2 vertices in
⋃c−1

i=0 N2(ai)
not belonging to S, i.e., |P2| = 3(2c − x1) − x2.

Each vertex in
⋃c−1

i=0 N1(ai)∩S consisting of x1 vertices may be adjacent to at most
two vertices in P2. Each vertex in P1 − P2 consisting of x2 vertices may be adjacent to
at most two vertices in P2. Each vertex in S−⋃c−1

i=0 N1(ai)∩ S− (P1− P2) consisting
of |S| − x1 − x2 vertices may be adjacent to at most three vertices in P2 since G is a
4-regular graph.

From the paragraph above, we can see that there are at most 2x1 edges between
P2 and

⋃c−1
i=0 N1(ai) ∩ S, at most 2x2 edges between P2 and P1 − P2, and at most

3(|S| − x1 − x2) edges between P2 and S − ⋃c−1
i=0 N1(ai) ∩ S − (P1 − P2). However,

there are 3|P2| edges which are incident with the vertices in P2, except for those edges
between P2 and

⋃c−1
i=0 N1(ai) − S. Hence, there are at least 3|P2| − 2x1 − 2x2 −

3(|S| − x1 − x2) ≥ 25 [the detailed computation is given in (3.3)] edges which are
not incident with the vertices of S, implying that at least 25 subtrees at the 3rd level in⋃c−1

i=0 T (ai) do not contain any vertex of S. Then the 25 subtrees are full trees of depth
c/4− 4. Hence, we have v(D1) ≥ 25 · (30 + 31 +· · ·+ 3c/4−4)+ c ≥ (3c/4−1 + 1)/2
since c ≥ 16.

Since 0 ≤ x1 ≤ |S|, 0 ≤ x2 ≤ |S| − x1, 4g/3 ≤ c < 2(g − 4), |S| ≤ 2g − 1 and
g ≥ 7, we have

3|P2| − 2x1 − 2x2 − 3(|S| − x1 − x2)

≥ 3[3(2c − x1) − x2] − 2x1 − 2x2 − 3(|S| − x1 − x2)

= 18c − 3|S| − 2(x2 + 4x1)

≥ 2g + 11 ≥ 25.

(3.3)

��

Lemma 3.2 Let 3g − 8 ≤ c ≤ 3g − 2 and g ≥ 13. Suppose there exists a vertex
ai on C1 such that each vertex in N1(ai) belongs to Sm, then there is no vertex in
N1(ai−1) ∪ N1(ai+1) belonging to Sm.

Proof Recall that Sm consists of the vertices in S being adjacent to exactly two different
vertices on cycleC1, and dC1(ai , a j) denotes the distance between vertex ai and vertex
a j on cycle C1.

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 6 3g − 8 ≤ c ≤ 3g − 2

Fig. 7 c ≥ 3g − 8

We firstly prove that there is no vertex in N1(ai+1) belonging to Sm . As in Fig. 6,
suppose the vertex v0 ∈ N1(ai) ∩ N1(am) and vertex v1 ∈ N1(ai) ∩ N1(a j). Since

the lengths of three cycles ai
−→
C1a jv1ai , aiv1a j

−→
C1amv0ai and am

−→
C1aiv0am are greater

than or equal to g, we have that dC1(ai , a j) ≥ g − 2, dC1(ai , am) ≥ g − 2, and
dC1(am, a j) ≥ g−4.Obviously, the three inequalities take equal signwhen c = 3g−8.
Moreover, dC1(ai , a j) ≤ g + 4, dC1(ai , am) ≤ g + 4 and dC1(am, a j) ≤ g + 2 when
3g − 8 ≤ c ≤ 3g − 2.

Case (1) Suppose u1 ∈ C+
1 [ai , a j] and v2 ∈ N1(ai+1) ∩ N1(u1). If u1 ∈

C+
1 [ai+2, a j−6], then dC1(u1, a j) ≥ 6 and dC1(ai+1, u1) = dC1(ai , a j) −

dC1(ai , ai+1) − dC1(u1, a j) ≤ g + 4 − 7 = g − 3. Thus the length of cycle

ai+1
−→
C1u1v2ai+1 is less than or equal to g − 1, a contradiction; If u1 ∈ C+

1 [a j−5, a j],
then the length of cycle aiv1a j

←−
C1u1v2ai+1ai is at most 10 < g, a contradiction; If

u1 ∈ C+
1 [ai , ai+1], obviously we have a cycle of length less than g, a contradiction.

Case (2) Suppose u2 ∈ C+
1 (a j , am) and v3 ∈ N1(ai+1) ∩ N1(u2). We have

dC1(a j , u2) ≤ (g + 2)/2 or dC1(u2, am) ≤ (g + 2)/2 since dC1(am, a j) ≤ g + 2.
However, dC1(a j , u2) ≥ g − 5 and dC1(u2, am) ≥ g − 5 since the lengths of cycles

aiai+1v3u2
−→
C1amv0ai and aiv1a j

−→
C1u2v3ai+1ai are greater than or equal to g. Hence,

we have that (g+2)/2 ≥ g−5, i.e., g ≤ 12, which is a contradiction to the assumption
that g ≥ 13.

123

Author's personal copy

Journal of Combinatorial Optimization

Case (3) Suppose u3 ∈ C+
1 [am, ai) and v4 ∈ N1(ai+1)∩ N1(u3). Then dC1(u3, ai) ≥

g − 3 since the length of cycle u3
−→
C1aiai+1v4u3 is greater than or equal to g. Then

we have dC1(am, u3) = dC1(am, ai) − dC1(u3, ai) ≤ 7 since dC1(ai , am) ≤ g + 4.

The length of cycle am
−→
C1u3v4ai+1aiv0am is less than or equal to 12, which is a

contradiction to the assumption that g ≥ 13.
We know that there is no vertex in N1(ai+1) belonging to Sm from the above

discussion. The discussion of N1(ai−1) is similar to that of N1(ai+1). Then there is
no vertex in N1(ai−1) belonging to Sm . Hence the lemma is proved. ��
Lemma 3.3 Let g ≥ 13. If 2(g − 2) ≤ c ≤ 3g − 2, then |Sm | ≤ c/2.

Proof Case (1) Suppose that 2(g − 2) ≤ c ≤ 3g − 9.
Then we have that the cardinality of each N1(ai)(0 ≤ i ≤ c − 1) is two since

G is a 4-regular graph. Suppose there exists a vertex ai such that the two vertices in
N1(ai) both belong to Sm . As in Fig. 7, assuming that a vertex v0 ∈ N1(ai) ∩ N1(a j)

and a vertex v1 ∈ N1(ai) ∩ N1(am) (i < j < m). Then the lengths of three cycles
ai

−→
C1a jv0ai , ai

←−
C1amv1ai and aiv0a j

−→
C1amv1ai are greater than or equal to g. So we

have that dC1(ai , a j) ≥ g − 2, dC1(ai , am) ≥ g − 2 and dC1(a j , am) ≥ g − 4. Hence,
we have c ≥ 2(g − 2) + g − 4 ≥ 3g − 8, which is a contradiction to the assumption
that 2(g − 2) ≤ c ≤ 3g − 9.

So for any vertex ai on C1, at most one vertex in N1(ai) belongs to Sm . Since the
cycle C1 has c vertices, at most c edges are between V (C1) and Sm . Since each vertex
in Sm is adjacent to two vertices on C1, we can infer that |Sm | ≤ c/2.

Case (2) Suppose that 3g − 8 ≤ c ≤ 3g − 2. Then the discussion is similar to that
of 2(g − 2) ≤ c ≤ 3g − 9 if Sm = ∅. If Sm = ∅, then according to Lemma 3.2, we
have that if there exists a vertex ai on C1 such that each vertex in N1(ai) belongs to
Sm (0 ≤ i ≤ c − 1), then there is no vertex in N1(ai−1) ∪ N1(ai+1) belonging to Sm ,
implying that at most c edges are between V (C1) and Sm . Since Sm consists of the
vertices in S being adjacent to exactly two different vertices on C1, we can infer that
|Sm | ≤ c/2. ��
Lemma 3.4 Let g ≥ 13. If 2(g − 2) ≤ c ≤ 3g − 2, then |Sn| ≤ 2.

Proof ByNotation 3.1, Sn consists of the vertices in S being adjacent to three different
vertices on cycle C1.

Case (1) Suppose that 2(g − 2) ≤ c < 3g − 6. Obviously, we have that |Sn| = 0.
Suppose that |Sn| = 0. As in Fig. 8a, if the vertex v0 is adjacent to the vertices u1, u3
and u6 on cycle C1, then we have that dC1(u1, u3) ≥ g − 2, dC1(u3, u6) ≥ g − 2 and

dC1(u6, u1) ≥ g − 2 since the lengths of three cycles v0u1
−→
C1u3v0, v0u3

−→
C1u6v0, and

v0u6
−→
C1u1v0 are greater than or equal to g. Hence, c = dC1(u1, u3) + dC1(u3, u6) +

dC1(u6, u1) ≥ 3g−6, which is a contradiction to the assumption that 2(g−2) ≤ c <

3g − 6.

Case (2) Suppose that 3g − 6 ≤ c ≤ 3g − 2.
Let the vertices v0, v1 ∈ Sn . Suppose the vertex v0 is adjacent to the vertices u1, u3

and u6 on the cycle C1, and v1 is adjacent to the vertices u2, u4 and u5 on C1. Suppose

123

Author's personal copy

Journal of Combinatorial Optimization

u2 ∈ C+
1 (u1, u3) and u4 ∈ C+

1 (u3, u6), then u5 ∈ C+
1 (u6, u1). Otherwise, if u5 ∈

C+
1 (u4, u6) as in Fig. 8a, then the lengths of three cycles u2

−→
C1u4v1u2, v1u4

−→
C1u5v1

and u6
−→
C1u1v0u6 are greater than or equal to g, thus we have that dC1(u2, u4) ≥

g − 2, dC1(u4, u5) ≥ g − 2 and dC1(u6, u1) ≥ g − 2. Since c ≤ 3g − 2, then
dC1(u1, u2) + dC1(u5, u6) = c − dC1(u2, u4) − dC1(u4, u5) − dC1(u6, u1) ≤ 4. So

we have a cycle u1
−→
C1u2v1u5

−→
C1u6v0u1 of length less than or equal to 8, which is a

contradiction to the assumption that g ≥ 13. Hence, the structure shown in Fig. 8a
does not exist. Similarly, we have u5 /∈ C+

1 (u1, u3).
Suppose u2 = u1. Obviously, we have u4 = u3, u4 = u6, u5 = u3 and u5 = u6.

Otherwise, it induces a cycle of length at most 4, a contradiction. Furthermore, if
u4 ∈ C+

1 (u3, u6), then the discussion will be similar to that of the above paragraph,
hence we have u5 ∈ C+

1 (u6, u1).
Hence, suppose the vertices v0, v1 ∈ Sn , v0 is adjacent to the vertices u1, u3 and

u6 on cycle C1, and v1 is adjacent to the vertices u2, u4 and u5 on cycle C1. Then any
two of the vertices u2, u4 and u5 cannot belong to a vertex set at the same time, where
the vertex set is C+

1 (u1, u3), C
+
1 (u3, u6), or C

+
1 (u6, u1). By the same reason, any

two of the vertices u1, u3 and u6 cannot belong to the same vertex set of C+
1 (u2, u4),

C+
1 (u4, u5), or C

+
1 (u5, u2).

Suppose that there are three vertices belonging to Sn , then the structure is shown
as Fig. 8b according to the discussion above (intuitively, we suppose any two of these
three vertices are not adjacent to the same vertex on C1, the discussion is basically
the same). In Fig. 8b, the three vertices v0, v1 and v2 are contained in Sn . Besides, the
vertex v0 is adjacent to the vertices u1, u4 and u7 on cycle C1, v1 is adjacent to the
vertices u2, u5 and u8 on C1, and v2 is adjacent to the vertices u3, u6 and u9 on C1.
Note that the vertices u1, u2, u3, u4, u5, u6, u7, u8 and u9 are arranged on cycle C1
in the clockwise direction.

Suppose that c = 3g − 6, dC1(u1, u2) = x and dC1(u2, u3) = y. Then
dC1(u1, u4) = g−2, dC1(u4, u7) = g−2 and dC1(u7, u1) = g−2 since the lengths of

three cycles v0u1
−→
C1u4v0, v0u4

−→
C1u7v0, and v0u7

−→
C1u1v0 are greater than or equal to g.

Similarly, we have that dC1(u2, u5) = g−2, dC1(u5, u8) = g−2, dC1(u8, u2) = g−2,
dC1(u3, u6) = g − 2, dC1(u6, u9) = g − 2 and dC1(u9, u3) = g − 2. Hence
dC1(u3, u4) = dC1(u1, u4) − dC1(u1, u2) − dC1(u2, u3) = g − 2 − x − y. Simi-
larly, we have that dC1(u4, u5) = x , dC1(u5, u6) = y, dC1(u6, u7) = g − 2 − x − y,
dC1(u7, u8) = x , dC1(u8, u9) = y, dC1(u9, u1) = g − 2 − x − y. Then the length

2x + 4 of cycle v0u1
−→
C1u2v1u8

←−
C1u7v0 is greater than or equal to g, i.e., 2x + 4 ≥ g.

Similarly, we have that 2y + 4 ≥ g and 2(g− 2− x − y)+ 4 ≥ g since the lengths of
two cycles v1u2

−→
C1u3v2u9

←−
C1u8v1 and v2u3

−→
C1u4v0u1

←−
C1u9v2 are greater than or equal

to g.
Let 0 ≤ t1 + t2 + t3 ≤ 4 (t1, t2, t3 ≥ 0). When 3g − 6 ≤ c ≤ 3g − 2, we have that

⎧
⎨

⎩

2x + 4 + t1 ≥ g,
2y + 4 + t2 ≥ g,
2(g − 2 − x − y) + 4 + t3 ≥ g.

(3.4)

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 8 Two structures that do not exist for c ≤ 3g − 2 and g ≥ 13

We have following inequality from (3.4),

(g − 4 − t1)/2 + (g − 4 − t2)/2 + (g − 4 − t3)/2 ≤ g − 2. (3.5)

Hence, we have that 3(g−4)/2 ≤ (t1+t2+t3)/2+g−2. Since 0 ≤ t1+t2+t3 ≤ 4, so
3(g − 4)/2 ≤ g, i.e., g ≤ 12, which is a contradiction to the assumption that g ≥ 13.
Therefore there are not three vertices belonging to Sn and |Sn| ≤ 2. ��
Lemma 3.5 Let G be a 4-regular graph with girth g ≥ 19. Suppose the cardinality of
cyclic vertex cutset |S| ≤ 2g − 1 and the range of length c of a minimum cycle C1
in a component D1 of G − S is 2(g − 4) ≤ c ≤ 3g − 2. Then D1 contains at least
(3c/4−1 + 1)/2 vertices.

Proof Observation 1We shall prove that there is no vertex v0 ∈ N1(ai) such that the
vertex v0 is adjacent to the vertices v1 ∈ N1(a j), v2 ∈ N1(am) and v3 ∈ N1(an) (0 ≤
i ≤ j ≤ m ≤ n ≤ c − 1).

Suppose that the equality i = j holds, then obviously there is no vertex v0 ∈ N1(ai)
such that the vertex v0 is adjacent to the vertex v1 ∈ N1(a j). Otherwise, it yields a
cycle v0v1aiv0 of length 3, a contradiction.

Suppose that the equality j = m holds, then obviously there is no vertex v0 ∈
N1(ai) such that the vertex v0 is adjacent to the vertices v1 ∈ N1(a j), v2 ∈ N1(am)

and v3 ∈ N1(an). Otherwise, it yields a cycle v0v1a jv2v0 of length 4, a contradiction.
If j = n or m = n, then the discussion is similar to that of j = m.

Suppose that for any i, j,m, n (0 ≤ i < j < m < n ≤ c−1), there exists a vertex
v0 in N1(ai) such that the vertex v0 is adjacent to the vertices v1 ∈ N1(a j), v2 ∈
N1(am) and v3 ∈ N1(an). As in Fig. 9a, then the lengths of four cycles v0ai

−→
C1a jv1v0,

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 9 Three structures that do not exist for c ≤ 3g − 2 and g ≥ 19

v0ai
←−
C1anv3v0, v0v1a j

−→
C1amv2v0 and v0v2am

−→
C1anv3v0 are greater than or equal to g.

So dC1(ai , a j) ≥ g−3, dC1(a j , am) ≥ g−4, dC1(am, an) ≥ g−4 and dC1(an, ai) ≥
g − 3. Hence, we have

c = dC1(ai , a j) + dC1(a j , am) + dC1(am, an) + dC1(an, ai) ≥ 4g − 14. (3.6)

However, since c ≤ 3g − 2, we have that 4g − 14 ≤ 3g − 2, i.e., g ≤ 12, which
is a contradiction to the assumption that g ≥ 19. Hence, for any ai , a j , am, an ∈
V (C1) (0 ≤ i ≤ j ≤ m ≤ n ≤ c − 1), there is no vertex v0 ∈ N1(ai) such that the
vertex v0 is adjacent to the vertices v1 ∈ N1(a j), v2 ∈ N1(am) and v3 ∈ N1(an).

Observation 2 Assume that there are vertex ai ∈ V (C1) and vertex v1 ∈ N1(ai) such
that aiv1 ∈ E(G). We shall prove that the vertex v1 cannot be adjacent to a vertex v2 ∈
N2(ai) ∩ N2(an), a vertex v3 ∈ N2(ai) ∩ N2(a j) and a vertex v4 ∈ N2(ai) ∩ N2(am)

at the same time (i = j,m and n).
Suppose that there are a vertex ai ∈ V (C1) and a vertex v1 ∈ N1(ai) such that

aiv1 ∈ E(G), and the vertex v1 is adjacent to a vertex v2 ∈ N2(ai) ∩ N2(an), a
vertex v3 ∈ N2(ai) ∩ N2(a j) and a vertex v4 ∈ N2(ai) ∩ N2(am) at the same time
(i = j,m and n).

When j = m, or m = n, or j = n holds, clearly it yields a cycle of length at most
6, a contradiction.

Next assume j < m < n holds. As in Fig. 9b, assume that vertices v1 ∈ N1(ai),
v5 ∈ N1(a j),v6 ∈ N1(am),v7 ∈ N1(an),v2 ∈ N2(ai)∩N2(an),v3 ∈ N2(ai)∩N2(a j),
and v4 ∈ N2(ai) ∩ N2(am). Moreover, the edges v1v3, v3v5, v1v2, v2v7, v1v4 and
v4v6 are in E(G). Then the lengths of four cycles aiv1v3v5a j

←−
C1ai , aiv1v2v7an

−→
C1ai ,

v1v3v5a j
−→
C1amv6v4v1 and v1v4v6am

−→
C1anv7v2v1 are greater than or equal to g. Then

we have dC1(ai , a j) ≥ g − 4, dC1(a j , am) ≥ g − 6, dC1(am, an) ≥ g − 6 and
dC1(an, ai) ≥ g − 4. So,

c = dC1(ai , a j) + dC1(a j , am) + dC1(am, an) + dC1(an, ai) ≥ 4g − 20. (3.7)

Hence, we have 4g − 20 ≤ 3g − 2, i.e., g ≤ 18, a contradiction.

123

Author's personal copy

Journal of Combinatorial Optimization

Fig. 10 2(g − 2) ≤ c ≤ 3g − 2
and g ≥ 19

Observation 3 Assume that there exists vertex ai ∈ V (C1) and vertex v1 ∈ N1(ai)
such that aiv1 ∈ E(G). In this case, the analysis is similar to Observation 2. Then
we can get the result that the vertex v1 cannot be adjacent to a vertex v2 ∈ N2(ai) ∩(⋃2

r=0 Nr (an)
)
, a vertex v3 ∈ N2(ai) ∩ (⋃2

r=0 Nr (a j)
)
and a vertex v4 ∈ N2(ai) ∩

(⋃2
r=0 Nr (am)

)
at the same time (i = j,m and n). The reason is that the lower bound

of c in the discussion of Observation 3 is larger than the lower bound 4g − 20 in the
inequality (3.7) of Observation 2. Hence, we have 4g − 20 ≤ 3g − 2, i.e., g ≤ 18, a
contradiction.

Observation 4 We shall prove that the component D1 contains at least 9 subtrees at
the 2nd level and the 3rd level of all T -trees, which are full trees of depth at least
c/4 − 4.

Note that Sm = ∅ and Sn = ∅when 2(g−4) ≤ c < 2(g−2). Suppose that Sm = ∅
and a vertex v0 ∈ Sm . Let v0 ∈ N1(ai) ∩ N1(a j). Then we have a cycle of length at
most c/2+2. Hence, c/2+2 ≥ g, i.e., c ≥ 2(g−2), a contradiction to the inequality
2(g − 4) ≤ c < 2(g − 2). Similarly, we have Sn = ∅.

We assume that |Sm | = c/2 − x (x ≥ 0) since |Sm | ≤ c/2 according to Lemma
3.3 and the discussion above. Let z = |Sn|. Then 0 ≤ z ≤ 2 according to Lemma 3.4
and the discussion above. Note that the vertices in Sm and Sn belong to

⋃c−1
i=0 N1(ai)

and cyclic vertex cutset S. Suppose that there are y
(
0 ≤ y ≤ |S| − (c/2 − x) − z

)

vertices in
⋃c−1

i=0 N1(ai) − Sm − Sn belonging to S. Let P1 =
(⋃c−1

i=0 N1(ai)
)

− S.

Then we have that |P1| = 2c − 2(c/2 − x) − y − 3z.
Note that at least |P1|vertices in⋃c−1

i=0 N1(ai)donot belong to S. Since c ≥ 2(g−4),
g ≥ 19, x ≥ 0, 0 ≤ z ≤ 2 and |S| ≤ 2g − 1, we have that |P1| − [|S| − (c/2 − x) −
y− z] > 0, and hence |P1| > 0. As Fig. 10, suppose a vertex v0 ∈ P1. Then the vertex

v0 is adjacent to at most two vertices in
(⋃c−1

i=0 N1(ai)
)

∩ S and at least one vertex

v1 /∈ ⋃c−1
i=0

(
N1(ai) ∪ N0(ai)

)
according to Observation 1. Then the vertex v1 either

belongs to S, or is adjacent to at most three vertices other than v0 since G is 4-regular
graph.

123

Author's personal copy

Journal of Combinatorial Optimization

Suppose that N2(ai) ∩ N2(a j) = ∅ (0 ≤ i, j ≤ c − 1). Since each vertex in P1

is adjacent to at most two vertices in
(⋃c−1

i=0 N1(ai)
)

∩ S and at least one vertex

not in
⋃c−1

i=0

(
N1(ai) ∪ N0(ai)

)
according to Observation 1, at least |P1| vertices not

belonging to
⋃c−1

i=0

(
N1(ai) ∪ N0(ai)

)
are adjacent to those vertices in P1.

Suppose that N2(ai) ∩ N2(a j) = ∅ (0 ≤ i, j ≤ c − 1). If u1, u2 ∈ N1(ai), u3 ∈
N2(ai) and u1u3, u2u3 ∈ E(G), then we have a cycle of length 4, a contradiction.
Combining Observation 2 and Observation 3, we see that for each vertex v′ in P1, at
least one vertex belonging to

⋃c−1
i=0 N2(ai) is adjacent to v′, but the vertex does not

belong to Nr1(ai) ∩ Nr2(a j) for any 0 ≤ r1 ≤ 2, 0 ≤ r2 ≤ 2, i and j .
From the two paragraphs above, we see that for each vertex v′ in P1, there is at

least one vertex being adjacent to v′ such that the vertex belongs to
⋃c−1

i=0 N2(ai), but
not to Nr1(ai) ∩ Nr2(a j) for any 0 ≤ r1 ≤ 2, 0 ≤ r2 ≤ 2, i and j . So in total there
are at least |P1| = 2c − 2(c/2− x) − y − 3z vertices being adjacent to those vertices
in P1 and these vertices belong to

⋃c−1
i=0 N2(ai), but not to Nr1(ai) ∩ Nr2(a j) for any

0 ≤ r1 ≤ 2, 0 ≤ r2 ≤ 2, i and j . Let P2 be a set of these |P1| vertices mentioned

above, i.e., |P2| = |P1|. Suppose t
(
0 ≤ t ≤ |S| − (c/2 − x) − y − z

)
vertices in

P2 belong to cyclic vertex cutset S. Then Let P3 be a set of |P2| − t vertices in P2
not belonging to S. Note that |P3| = |P2| − t = 2c − 2(c/2 − x) − y − 3z − t and
t = |P2| − |P3|.

Each vertex in Sm consisting of c/2 − x vertices may be adjacent to at most one
vertex in P1 ∪ P3. Each vertex in

(⋃c−1
i=0 N1(ai)

) ∩ S − Sm − Sn consisting of y
vertices may be adjacent to at most two vertices in P1 ∪ P3. Each vertex in P2 − P3
consisting of t vertices in S may be adjacent to at most three vertices in P1 ∪ P3. Each

vertex in S − Sm − Sn −
((⋃c−1

i=0 N1(ai)
) ∩ S − Sm − Sn

)
− (P2 − P3) consisting

of |S| − (c/2 − x) − y − z − t vertices may be adjacent to at most three vertices in
P1 ∪ P3 since G is a 4-regular graph.

From the paragraph above, we can see that there are at most c/2− x edges between
P1∪ P3 and Sm , at most 2y edges between P1∪ P3 and

(⋃c−1
i=0 N1(ai)

)∩ S− Sm − Sn ,
at most 3t edges between P1∪P3 and P2−P3, and at most 3(|S|−(c/2−x)−y−z−t)

edges between P1∪P3 and S−Sm−Sn−
((⋃c−1

i=0 N1(ai)
)∩S−Sm−Sn

)
−(P2−P3).

However, there are 2|P1| + 3|P3| edges which are incident with vertices in P1 ∪ P3,
except for those edges between P1 and V (C1), and those edges between P1 and P3.
Hence, there are at least 2|P1|+3|P3|− (c/2− x)−2y−3t−3[|S|− (c/2− x)− y−
z−t] ≥ 8c+4x−14g+7−8z [the detailed computation is given in (3.8)] edges which
are not incident with the vertices of S, implying that at least 8c + 4x − 14g + 7− 8z
subtrees at the 2nd level and the 3rd level in

⋃c−1
i=0 T (ai) do not contain any vertex of

S. Then the 8c + 4x − 14g + 7 − 8z subtrees are full trees of depth at least c/4 − 4.
Since 0 ≤ y ≤ |S|−(c/2−x)−z and 0 ≤ t ≤ |S|−(c/2−x)− y−z, we have that

0 ≤ 4y+3t ≤ 4[|S|−(c/2−x)−z]. Since |S| ≤ 2g−1, |P1| = 2c−2(c/2−x)−y−3z
and |P3| = 2c − 2(c/2 − x) − y − 3z − t , we have

123

Author's personal copy

Journal of Combinatorial Optimization

2|P1| + 3|P3| − (c/2 − x) − 2y − 3t − 3[|S| − (c/2 − x) − y − z − t]
≥ 10c − 8(c/2 − x) − 3(2g − 1) − (4y + 3t) − 12z

≥ 8c + 4x − 14g + 7 − 8z.

(3.8)

If 2(g − 4) ≤ c < 2(g − 2), then |Sm | = 0 and |Sn| = 0, i.e., x = c/2 and z = 0.
If 2(g− 2) ≤ c ≤ 3g− 7, then z = |Sn| = 0 and x ≥ 0. If 3g− 6 ≤ c ≤ 3g− 2, then
z = |Sn| ≤ 2 according to Lemma 3.4 and x ≥ 0. Hence, we verify that the inequality
8c + 4x − 14g + 7 − 8z ≥ 9 holds when 2(g − 4) ≤ c ≤ 3g − 2.

Therefore at least 9 subtrees at the 2nd level and the 3rd level are full trees of depth
at least c/4 − 4 and contained in D1, and v(D1) ≥ 9 · (30 + 31 + · · · + 3c/4−4) + c.
Since 2(g − 4) ≤ c ≤ 3g − 2 and g ≥ 19, we have c ≥ 30. Hence, we have
v(D1) ≥ 9 · (30 + 31 + · · · + 3c/4−4) + c ≥ (3c/4−1 + 1)/2. ��

Lemma 3.6 Let G be a 4-regular graph with girth g ≥ 19. Suppose the cardinality of
cyclic vertex cutset |S| ≤ 2g − 1. Then a component D1 containing a cycle in G − S
contains at least (3c/4−1 + 1)/2 vertices.

Proof Since g ≥ 19, according to Lemma 1.3, | ⋃c−1
i=0 N1(ai)| ≥ 2g. As |S| ≤ 2g−1

and | ⋃c−1
i=0 N1(ai)| ≥ 2g, there is at least one vertex ai (0 ≤ i ≤ c − 1) on cycle C1

such that there exists a vertex v0 ∈ N1(ai) not belonging to the cyclic vertex cutset S.
Note that if the component D1 contains one subtree at the 1st level of all T -trees and

the subtree is a full tree of depth c/4−2, then v(D1) ≥ (30+31+· · ·+3c/4−2)+c ≥
(3c/4−1 + 1)/2. In the following, we discuss it in three cases according to the range
of c.

Case (1) c = g.
Note that Nr1(ai) ∩ Nr2(a j) = ∅ (0 ≤ i < j ≤ c − 1, 0 < r1, r2 ≤ c/4 − 1).

Otherwise, it yields a cycle of length at most c/2 + 2(c/4 − 1) = c − 2 < g, a
contradiction. So there is not any common vertex between each pair of all T -trees,
i.e., T (ai) ∩ T (a j) = ∅ (0 ≤ i < j ≤ c − 1). Furthermore, there is not any common
vertex between each pair of all subtrees at the kth level of all T -trees (0 ≤ k ≤ c/4−1).
Since N1(ai) ∩ N1(a j) = ∅ for any i and j , 0 ≤ i < j ≤ c − 1, we have 2c = 2g
subtrees at the 1st level of all T -trees. Since |S| ≤ 2g − 1 and each vertex in S is
contained in at most one subtree, at least one subtree at the 1st level of all T -trees does
not contain any vertex belonging to S and is a full tree of depth c/4 − 2.

Case (2) c ≥ 3g − 1.
Then there are 2c ≥ 6g − 2 subtrees at the 1st level of all T -trees. However, each

vertex belonging to S is contained in at most three subtrees since G is a 4-regular
graph. Then at most 3|S| ≤ 6g− 3 subtrees at the 1st level contain vertices belonging
to S. Hence, at least one subtree at the 1st level of all T -trees does not contain any
vertex belonging to S and the subtree is a full tree of depth c/4 − 2.

Case (3) g < c ≤ 3g − 2.
Since g ≥ 19, we have c > g ≥ 19. Then according to Lemmas 3.1 and 3.5, we

have that v(D1) ≥ (3c/4−1 + 1)/2. ��

123

Author's personal copy

Journal of Combinatorial Optimization

4 The proof of the correctness of Algorithm 1

In this section, the correctness of Algorithm 1 will be proved.
Let G be a 4-regular graph with the cyclic vertex cutset S, and D1 and D2 be

two components of G − S, which have minimum cycles C1 and C2, respectively.
Let c = |V (C1)|. We shall prove that the number of vertices of component D1 is
at least (3c/4−x ′

0))/2 (where x ′
0 is a positive constant). Then we have (3c/4−x ′

0))/2 ≤
|V (D1)| ≤ v(G), i.e., c ≤ 4 log3 2v + 4x ′

0. Similarly, we have |V (C2)| ≤ 4 log3 2v +
4x ′

0. Hence, we show the correctness of Algorithm 1 since the two inequalities c ≤
4 log3 2v + 4x ′

0 and |V (C2)| ≤ 4 log3 2v + 4x ′
0 hold.

Theorem 4.1 For a 4-regular graph G, Algorithm 1 can determine the cyclic vertex
connectivity cκ(G).

Proof Suppose that the cyclic vertex connectivity ck(G) is not∞. Then the vertices of
a component D1 inG−Smaybe adjacent to the vertices of S, but not to those of another
component D2 in G − S. And the vertices of D2 may be adjacent to vertices of S, but
not to those of D1. Let g = 3. Then ck(G) ≥ (2g + 2g)/4 ≥ 3 since G is 4-regular.
Thus we have v(G) ≥ |V (D1)| + ck(G) + |V (D2)| ≥ g + 3+ g ≥ 9. Obviously, the
inequality v(G) ≥ 9 also holds when g ≥ 4. Let z denote the upper bound of lengths
of all induced cycles to be considered. If g ≥ 19, then z = 4 log3(2v) + 7; if g ≤ 18,
then z = 4 log3(2v) + 42. We shall discuss Algorithm 1 in two cases according to the
range of v.

Case 1 v ≥ 6g.
According to Lemma 1.1, then we have cκ(G) ≤ 2g, i.e., |S| ≤ 2g. Suppose
cκ(G) = 2g. Then Algorithm 1 definitely can get the result since the value of
cκ(G) has been initialized to 2g in Step 2.
Now suppose that cκ(G) ≤ 2g − 1, i.e., |S| ≤ 2g − 1.

Case (1.1) g ≥ 19.
According to Lemma 3.6, the component D1 contains at least (3c/4−1 + 1)/2
vertices. Hence, we have that v(G) ≥ |V (D1)| ≥ (3c/4−1 + 1)/2, i.e., c ≤
4[log3(2v −1)+1] ≤ 4 log3(2v)+7. Algorithm 1 can get correct result since
it finds all induced cycles of length less than or equal to 4 log3(2v) + 7.
Case (1.2) g ≤ 18.
In Algorithm 1, we find all induced cycles of length less than or equal to
4 log3(2v) + 42 and get the minimum cutset between each pair of them. Since
v ≥ 9, we have that 4 log3(2v) + 42 ≥ 52.5. So we have found all induced
cycles of length less than or equal to 52. Only the upper limit of the length c of
those cycles for c ≥ 53 need be considered. Suppose that c ≥ 53. The method
of proof is the same asCase (2) inLemma3.6. Then there are 2c ≥ 106 subtrees
at the 1st level of all T -trees. Since each vertex belonging to S is contained in
at most three subtrees, at most 3|S| ≤ 6g − 3 ≤ 105 subtrees at the 1st level
contain vertices belonging to S. Then at least one subtree at the 1st level of all
T -trees does not contain any vertex belonging to S and the subtree is a full tree
of depth c/4 − 2. Hence, we have that v(G) ≥ |V (D1)| ≥ (3c/4−1 + 1)/2,
i.e., c ≤ 4[log3(2v − 1) + 1] ≤ 4 log3(2v) + 42.

123

Author's personal copy

Journal of Combinatorial Optimization

Similarly, if cκ(G) ≤ 2g−1, then the length of the shortest cycle in component
D2 is at most 4 log3(2v) + 7 when g ≥ 19, and at most 4 log3(2v) + 42 when
g ≤ 18.

Case 2 v < 6g.
According to Lemma 1.2, we have that g ≤ 7 since G is a 4-regular graph. In
Algorithm 1, we find all induced cycles of length less than or equal to 4 log3(2v)+
42 and get the minimum cutset between each pair of them.

Suppose that cκ(G) = ∞. Then the value of cκ(G) has been initialized to ∞ in
Step 2 and Algorithm 1 can determine it. Suppose that cκ(G) ≤ 2g − 1. Then the
discussion is the same as that of cκ(G) ≤ 2g− 1 in Case 1, and the analytical method
and the result is also the same. Hence, if g ≤ 18, then c ≤ 4 log3(2v)+42. Algorithm
1 can get correct result by finding all induced cycles of length less than or equal to
4 log3(2v) + 42.

Suppose that cκ(G) ≥ 2g. Then we shall prove that the induced cycles of length
greater than 4 log3(2v) + 42 cannot exist in component D1. Since cκ(G) ≥ 2g, we
have that v ≥ |V (D1)|+cκ(G)+|V (D2)| ≥ g+2g+g = 4g and 4 log3(2v)+42 ≥
4 log3(8g)+42.Thenwecanprove that the cycles of length greater than 4 log3(8g)+42
cannot exist in component D1. Suppose this type of cycle exists in D1. Then we have

v ≥ |V (D1)| + cκ(G) + |V (D2)| > 4 log3(8g) + 42 + 2g + g. (4.1)

Since g ≤ 7, the following inequality holds:

4 log3(8g) + 42 + 2g + g ≥ 6g. (4.2)

Then we have v > 6g by (4.1) and (4.2), which contradicts the assumption that
v < 6g.

The discussion for D2 is the same as D1. Hence, the upper bound z is large enough
to determine the value of cκ(G).

Therefore, if we find all induced cycles of length at most z in G and cκ(G) = ∞,
then Algorithm 1 can find a minimum cyclic vertex cutset and determine the cyclic
vertex connectivity. If cκ(G) = ∞, then Algorithm 1 also can distinguish it. ��
Acknowledgements This work was supported by The Ph.D .Start-up Fund of Natural Science Foundation
of Guangdong Province (Grant No. 2018A030310516), The Creative Talents Project Fund of Guangdong
Province Department of Education (Natural Science) (Grant No. 2017KQNCX053), the Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-05317).

References

AldredREL,HoltonDA, JacksonB (1991)Uniformcyclic edge connectivity in cubic graphs.Combinatorica
11:81–96

Bondy JA, Murty USR (1976) Graph theory with applications. MacMillan Press, London
DinitzY (2006)Dinitz’ algorithm: the original version andEven’s version. In: Theoretical computer science.

Springer, Berlin, pp 218–240

123

Author's personal copy

Journal of Combinatorial Optimization

Dvořák Z, Kára J, Král’ D, Pangrác O (2004) An algorithm for cyclic edge connectivity of cubic graphs.
In: SWAT 2004, LNCS 3111, 236–247

Even S (2011) Graph algorithms. Cambridge University Press, Cambridge
Even S, Tarjan RE (1975) Network flow and testing graph connectivity. SIAM J Comput 4:507–518
Kutnar K,Marušič D (2008) On cyclic edge-connectivity of fullerenes. Discrete ApplMath 156:1661–1669
Liang J, Lou D (2018) A polynomial algorithm determining cyclic vertex connectivity of k-regular graphs

with fixed k. J Comb Optim 1–11. https://doi.org/10.1007/s10878-018-0332-4
Liang J, Lou D, Zhang Z (2017) A polynomial time algorithm for cyclic vertex connectivity of cubic graphs.

Int J Comput Math 94:1501–1514
Lou D, Holton DA (1993) Lower bound of cyclic edge connectivity for n-extendability of regular graphs.

Discrete Math 112:139–150
Lou D, Liang K (2014) An improved algorithm for cyclic edge connectivity of regular graphs. Ars Comb

115:315–333
Lou D, Wang W (2005) An efficient algorithm for cyclic edge connectivity of regular graphs. Ars Comb

77:311–318
McCuaigWD (1992) Edge reductions in cyclically k-connected cubic graphs. J Comb Theory Ser B 56:16–

44
Nedela R, Škoviera M (1995) Atoms of cyclic connectivity in cubic graphs. Math Slovaca 45:481–499
Peroche B (1983) On several sorts of connectivity. Discrete Math 46:267–277
Tait PG (1880) Remarks on the coloring of maps. Proc R Soc Edinb 10:501–503

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

Author's personal copy

https://doi.org/10.1007/s10878-018-0332-4

	 A polynomial algorithm determining cyclic vertex connectivity of 4-regular graphs
	Abstract
	1 Introduction and terminology
	2 An algorithm for finding the cyclic vertex connectivity of 4-regular graphs
	3 The preparation for proving the correctness of Algorithm 1
	4 The proof of the correctness of Algorithm 1
	Acknowledgements
	References

