
ar
X

iv
:1

80
7.

11
15

9v
3 

 [
m

at
h.

C
O

] 
 1

5 
Ja

n 
20

19

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 21:3, 2019, #1

Binding Number, Toughness and General

Matching Extendability in Graphs

Hongliang Lu1∗ Qinglin Yu2,3†

1 Department of Mathematics, Xi’an Jiaotong University, Xi’an, China
2 School of Science, Xi’an Polytechnic University, Xi’an, China
3 Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

received 31st July 2018, accepted 13th Dec. 2018.

A connected graph G with at least 2m+ 2n+ 2 vertices which contains a perfect matching is E(m,n)-extendable,

if for any two sets of disjoint independent edges M and N with |M | = m and |N | = n, there is a perfect matching

F in G such that M ⊆ F and N ∩ F = ∅. Similarly, a connected graph with at least n + 2k + 2 vertices is called

(n, k)-extendable if for any vertex set S of size n and any matching M of size k of G−S, G−S−V (M) contains a

perfect matching. Let ε be a small positive constant, b(G) and t(G) be the binding number and toughness of a graph

G. The two main theorems of this paper are: for every graph G with sufficiently large order, 1) if b(G) ≥ 4/3 + ε,

then G is E(m,n)-extendable and also (n, k)-extendable; 2) if t(G) ≥ 1 + ε and G has a high connectivity, then

G is E(m,n)-extendable and also (n, k)-extendable. It is worth to point out that the binding number and toughness

conditions for the existence of the general matching extension properties are almost same as that for the existence of

perfect matchings.
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1 Introduction

In this paper, we only consider simple connected graphs. Let G be a graph with vertex set V (G) and

edge set E(G). A matching is a set of independent edges and we often refer a matching with k edges

as a k-matching. For a matching M , we use V (M) to denote the set of the endvertices of the edges in

M and |M | to denote the number of edges in M . A matching is called a perfect matching if it covers

all vertices of graph G. For S ⊆ V (G), we write G[S] for the subgraph of G induced by S and G − S
for G[V (G)\S]. The number of odd components (i.e., components with odd order) and the number of

components of G are denoted by c0(G) and c(G), respectively. Let NG(S) denote the set of neighbors of

a set S in a graph G, and κ(G) denote the vertex connectivity of graph G.
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Let M be a matching of G. If there is a matching M ′ of G such that M ⊆ M ′, we say that M
can be extended to M ′ or M ′ is an extension of M . Suppose that G is a connected graph with perfect

matchings. If each k-matching can be extended to a perfect matching in G, then G is called k-extendable.

To avoid triviality, we require that |V (G)| ≥ 2k + 2 for k-extendable graphs. This family of graphs was

introduced and studied first by Plummer (1980). A graph G is called n-factor-critical if after deleting

any n vertices the remaining subgraph of G has a perfect matching, which was introduced in Yu (1993)

and was a generalization of the notions of the well-known factor-critical graphs and bicritical graphs (the

cases corresponding to n = 1 and 2, respectively). Note that every connected factor-critical graph is

2-edge-connected (see Yu (1993)).

Let G be a graph and let n, k be nonnegative integers such that |V (G)| ≥ n+2k+2 and |V (G)|−n ≡ 0
(mod 2). If deleting any n vertices from G the remaining subgraph of G contains a k-matching and

moreover, each k-matching in the subgraph can be extended to a perfect matching, then G is called

(n, k)-extendable (Liu and Yu (2001)). This term can be considered as a general framework to unify the

concepts of n-factor-criticality and k-extendability. In particular, (n, 0)-extendable graphs are exactly n-

factor-critical graphs and (0, k)-extendable graphs are the same as k-extendable graphs. A graph is called

E(m,n)-extendable if deleting edges of any n-matching, the resulted graph is m-extendable (Porteous

and Aldred (1996)). E(m, 0)-extendability is equivalent to m-extendability, and (n, k)-extendability and

E(m,n)-extendability are referred as general matching extensions, which are widely studied in graph

theory (see Plummer (1994, 1996, 2008)).

For a non-complete graph G, its toughness is defined by

t(G) = min
S⊂V (G)

|S|

c(G− S)

where S is taken over all cut-sets of G. The binding number b(G) is defined to be the minimum, taken

over all S ⊆ V (G) with S 6= ∅ and NG(S) 6= V (G), of the ratios
|NG(S)|

|S| .

Toughness and binding number have been effective graphic parameters for studying factors and match-

ing extensions in graphs. For instances, 1-tough graphs guarantee the existence of perfect matchings

(see Chvátal (1973)) and graphs with b(G) ≥ 4
3 contain perfect matchings (see Woodall (1973)). There

are sufficient conditions with respect to t(G) and b(G) in terms of m,n, k to ensure the existences of k-

extendability,E(m,n)-extendability and other matching extensions (see Chen (1995); Liu and Yu (1998);

Plummer (1988a, 2008)). Moreover, Robertshaw and Woodall (2002) proved a remarkable result that a

graph with b(G) slightly greater than 4
3 ensure k-extendability if the order of G is sufficiently large. Re-

cently, Plummer and Saito (2017) extended this result to E(m,n)-extendability. In this paper, we continue

the study in this direction and prove that the essential bounds of t(G) and b(G) (i.e., 1 and 4
3 ) which guar-

antee the existence of a perfect matching can also ensure the existence of all general matching extensions

mentioned earlier.

Tutte (1947) gave a characterization for a graph to have a perfect matching.

Theorem 1.1 (Tutte (1947)) Let G be a graph with even order. Then G contains a perfect matching if

and only if for any S ⊆ V (G)
c0(G− S) ≤ |S|.

The following result is an extension of Tutte’s theorem and also a lean version of a comprehensive

structure theorem for matchings, due to Gallai (1964) and Edmonds (1965). See Lovász and Plummer

(1986) for a detailed statement and discussion of this theorem.
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Theorem 1.2 (see Lovász and Plummer (1986)) Let G be a graph with even order. Then G contains no

perfect matchings if and only if there exists a set S ⊂ V (G) such that

fc(G− S) ≥ |S|+ 2,

where fc(G− S) denotes the number of factor-critical components of G− S.

The proofs of the main theorems require the following two results as lemmas.

Theorem 1.3 (Liu and Yu (2001)) If G is an (n, k)-extendable graph and n ≥ 1, k ≥ 2, then G is also

(n+ 2, k − 2)-extendable.

Theorem 1.4 (Plummer (1988b)) If a graph G is connected and k-extendable graph (k ≥ 1), then G−e
is (k − 1)-extendable for any edge e of G.

2 Binding Number and Matching Extendability

Chen (1995) proved that a graphG of even order at least 2m+2 is m-extendable if b(G) > max{m, (7m+
13)/12}. Robertshaw and Woodall (2002) proved a stronger result (in most cases). We state their result

in a simpler but slightly weaker form below.

Theorem 2.1 (Robertshaw and Woodall (2002)) For any positive real number ε and nonnegative inte-

ger m, there exists an integer N = N(ε,m) such that every graph G of even order greater than N and

b(G) > 4/3 + ε is m-extendable.

In this section, we extend the above result using a different proof technique.

Theorem 2.2 Let k, g be two positive integers such that g ≥ 3 and let g0 = 2⌊ g

2⌋ + 1. For any positive

real number ε < 1
g0

, there exists N = N(ε, k, g0) such that for every graph G with order at least N and

girth g, if b(G) > g0+1
g0

+ ε, then G is k-extendable.

Proof: Suppose that the result does not hold. Then there exists a graph G with order at least N and

b(G) > g0+1
g0

+ ε such that G is not k-extendable. By the definition of k-extendable graphs, there exists

a k-matching M such that G − V (M) contains no perfect matchings. From Theorem 1.2, there exists

S ⊂ V (G) − V (M) such that

fc(G− V (M)− S) = s+ q,

where q ≥ 2 is even by parity and s := |S|. Let C1, . . . , Cs+q denote these factor-critical components

of G − S − V (M) such that |C1| ≤ · · · ≤ |Cs+q|. Without loss of generality, we assume |C1| = . . . =
|Cl| = 1. Note that |Ci| ≥ 3 implies g(Ci) ≥ g as Ci is 2-edge-connected. Thus we have |Ci| ≥ g0 for

l + 1 ≤ i ≤ s + q. Write U = ∪s+q
i=2V (Ci) and W = V (G) − U − S − V (M). Note that V (C1) ⊆ W

and s+ q ≥ 2. So we have U 6= ∅ and W 6= ∅. One may see that N(U) ∩W = ∅ and N(W ) ∩ U = ∅.

Hence N(U) 6= V (G) and N(W ) 6= V (G). Denote r = max{2, l+ 1}. Thus we have

b(G) ≤ min{
|N(U)|

|U |
,
|N(W )|

|W |
}

≤ min{
2k + s+

∑s+q

i=r |Ci|

r − 2 +
∑s+q

i=r |Ci|
,

|G| −
∑s+q

i=2 |Ci|

|G| − 2k − s−
∑s+q

i=2 |Ci|
}

= min{f, h}
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where f =
2k+s+

∑s+q

i=r
|Ci|

r−2+
∑s+q

i=r |Ci|
and h =

|G|−
∑s+q

i=2
|Ci|

|G|−2k−s−
∑s+q

i=2
|Ci|

.

Claim 1. 2k + s > r − 2.

This claim is implied by the following inequality:

1 <
g0 + 1

g0
+ ε < b(G) ≤ f =

2k + s+
∑s+q

i=r |Ci|

r − 2 +
∑s+q

i=r |Ci|
,

Claim 2.
∑s+q

i=r |Ci| < g0(2k + s).

Suppose that
∑s+q

i=r |Ci| ≥ g0(2k + s). By Claim 1, we have

b(G) ≤ f ≤
2k + s+ g0(2k + s)

r − 2 + g0(2k + s)

≤
2k + s+ g0(2k + s)

g0(2k + s)

=
g0 + 1

g0
,

a contradiction.

Claim 3. s < max{2(g0 − 1)k, 2k
g0ε

}.

Suppose that s ≥ max{2(g0 − 1)k, 2k
g0ε

}. Since s ≥ 2(g0 − 1)k, we infer that

s(g0 + 1) + 2k

g0s
≤

g0
g0 − 1

. (1)

If

g0 + 1

g0
+ ε <

(g0 + 1)s+ 2k

g0s
, (2)

then s < 2k
g0ε

, a contradiction. So it is enough for us to show (2). Consider q < r − 1. Then we infer that

g0 + 1

g0
+ ε < f ≤

2k + s+ g0(s+ q − r + 1)

r − 2 + g0(s+ q − r + 1)
(by Claim 1 and

∑s+q

i=r |Ci| ≥ g0(s+ q − r + 1))

=
s(g0 + 1) + 2k + g0(q − r + 1)

g0s+ g0(q − r + 1) + r − 2

<
s(g0 + 1) + 2k + g0(q − r + 1)

g0s+ g0(q − r + 1) + r − 1− q

=
s(g0 + 1) + 2k − g0(r − 1− q)

g0s− (g0 − 1)(r − 1− q)

≤
(g0 + 1)s+ 2k

g0s
. (by (1) and g0s+ g0(q − r + 1) > q − r + 1)
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Next, we consider q ≥ r − 1, then

g0 + 1

g0
+ ε < f ≤

2k + s+ g0(s+ q − r + 1)

r − 2 + g0(s+ q − r + 1)
(by Claim 1 and

∑s+q

i=r |Ci| ≥ g0(s+ q − r + 1))

≤
2k + s+ g0(s+ q′ − r + 1)

r − 2 + g0(s+ q′ − r + 1)
(for any q′ satisfying q ≥ q′ ≥ r − 1)

=
s(g0 + 1) + 2k

g0s+ r − 2

≤
(g0 + 1)s+ 2k

g0s
.

This completes the proof of Claim 3.

Claim 4. l < max{2g0k + 1, 2k
g0ε

+ 1}.

Suppose that l ≥ max{2g0k + 1, 2k
g0ε

+ 1}. From Claim 3, we have

s < max{2(g0 − 1)k,
2k

g0ε
}. (3)

From (3), we see l ≥ s+ 1 and thus

g0 + 1

g0
+ ε < f =

2k + s+
∑s+q

i=r |Ci|

r − 2 +
∑s+q

i=r |Ci|

=
2k + s+

∑s+q

i=r |Ci|

l− 1 +
∑s+q

i=r |Ci|

≤
2k + s

l− 1
(by Claim 1)

≤
2k + l − 1

l − 1

≤
g0 + 1

g0
, (since l ≥ 2g0k + 1)

a contradiction.

From Claim 2, we have

s+q∑

i=r

|Ci| < g0(2k + s). (4)
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Thus

g0 + 1

g0
+ ε < h =

|G| −
∑s+q

i=2 |Ci|

|G| − 2k − s−
∑s+q

i=2 |Ci|

=
|G| − (r − 2)−

∑s+q

i=r |Ci|

|G| − 2k − s− (r − 2)−
∑s+q

i=r |Ci|

≤
|G| − (r − 2)− g0(2k + s)

|G| − 2k − s− (r − 2)− g0(2k + s)
(by (4))

≤
|G| − l − g0(2k + s)

|G| − 2k − s− l − g0(2k + s)
(since r = max{2, l+ 1} ≤ l + 2)

=
|G| − 2kg0 − g0s− l

|G| − 2k − 2kg0 − (g0 + 1)s− l
,

i.e.,

g0 + 1

g1
+ ε <

|G| − 2kg0 − g0s− l

|G| − 2k − 2kg0 − (g0 + 1)s− l
. (5)

Claims 2 and 3 imply that s, l are bounded, therefore

lim
|G|→∞

|G| − 2kg0 − g0s− l

|G| − 2k − 2kg0 − (g0 + 1)s− l
= 1.

For a large N , (5) leads to a contradiction when |G| > N . This completes the proof. ✷

Clearly, Theorem 2.2 is a generalization of Theorem 2.1. For connected graphs G, the girth g of G is

at least three. Setting g0 = 3, we obtain the following results regarding the general matching extensions

(i.e., stronger properties).

Corollary 2.3 Let n, k be two positive integers. For any ε < 1/3, there exists N = N(ε, n, k) such that

if b(G) > 4
3 + ε and the order of G is at least N , then G is (n, k)-extendable.

Proof: Since b(G) > 4
3 + ε, by Theorem 2.1, for a sufficiently large |G|, G is (k + 2n)-extendable or

(0, k + 2n)-extendable. By Theorem 1.3, G is (n, k)-extendable. ✷

With similar discussion as in Corollary 2.3, we can deduce E(m,n)-extendability with the same con-

ditions, which is a result proved in Plummer and Saito (2017) but here we gave a much shorter proof.

Corollary 2.4 Let m,n be two positive integers. For any ε < 1
3 , there exists N = N(ε,m, n) such that

for every graph G with order at least N , if b(G) > 4
3 + ε, then G is E(m,n)-extendable.

Proof: Since b(G) > 4
3 + ε, by Theorem 2.1, for a sufficiently large |G|, G is (m + n)-extendable. Let

M = {e1, e2, . . . , en} be any n-matching. By Theorem 1.4, G1 = G − e1 is (m + n − 1)-extendable.

Applying Theorem 1.4 recursively, we conclude that Gn = G−{e1, e2, . . . , en} is m-extendable, that is,

G is E(m,n)-extendable. ✷

Remark: Clearly, Corollaries 2.3 and 2.4 can be easily stated in terms of the more general condition

b(G) > g0+1
g0

+ ε. However, without the parameter g, the results look more neatly.
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3 Toughness and Matching Extendability

It is not hard to construct examples with any given large toughness, but do not have (n, k)-extendability

or E(m,n)-extendability. Therefore toughness alone is insufficient to guarantee the general matching

extension properties. However, with an additional condition in terms of connectivity, it only requires

slightly large than 1-toughness to deduce the desired matching extendability.

Theorem 3.1 Let n be a positive integer, ε be a small positive constant and G be a graph with t(G) ≥

1 + ε and |V (G)| ≡ n (mod 2). If κ(G) > (n−2)(1+ε)
ε

, then G is n-factor-critical.

Proof: Suppose that G is not n-factor-critical. By the definition of n-factor-critical, there exists a subset

S of order n such that G−S contains no perfect matchings. By Theorem 1.1, there exists T ⊆ V (G)−S
such that

q = c0(G− S − T ) ≥ |T |+ 2.

Note that q ≥ 2. So

1 + ε ≤ t(G) ≤
|S|+ |T |

|T |+ 2

≤
κ

κ− n+ 2
, (since κ ≤ n+ |T |)

which implies

κ ≤
(n− 2)(1 + ε)

ε
,

a contradiction. This completes the proof. ✷

Remark: The connectivity condition in the theorem is sharp. Let n, t be two positive integers and ε be

a small constant such that n + t < (n−2)(1+ε)
ε

. Let G1 = Kn+t, G2 = (t + 1)K1, and G3 = Kr

(r is any positive integer). Define G = G1 + (G2 ∪ G3), that is, G is a graph obtained by connecting

each vertex in G1 to each vertex in G2 and G3. Let S = V (G1). Then S is a cut set of G and thus

κ ≤ n+ t ≤ (n−2)(1+ε)
ε

. It is easy to verify that

t(G) =
|S|

c(G− S)
=

n+ t

t+ 2
≥ 1 + ε.

However, for any set R of n vertices in S, G−R has no perfect matchings. So G is not n-factor-critical.

From Theorem 3.1, it is easy to see the following.

Corollary 3.2 Let n, k be two positive integers. Let ε be a positive constant and G be a graph with

t(G) ≥ 1 + ε. If κ(G) > (2k−2)(1+ε)
ε

, then G is k-extendable.

With the same arguments as in the proof of Corollary 2.4, Theorem 3.1 implies the following.

Corollary 3.3 Let m,n be two positive integers. Let ε be a positive constant and G be a graph with

t(G) ≥ 1 + ε. If κ(G) > (2m+2n−2)(1+ε)
ε

, then G is E(m,n)-extendable.
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