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Abstract LetG be a graph and n, k and d be non-negative integers such that |V (G)| �
n+2k+d+2 and |V (G)|−n−d ≡ 0 (mod 2). A graph is called an (n, k, d)-graph
if deleting any n vertices from G the remaining subgraph of G contains k-matchings
and each k-matching in the subgraph can be extended to a defect-d matching.We study
the relationships between (n, k, d)-graphs and various closure operations, which are
usually considered in the theory of hamiltonian graphs. In particular, we obtain some
necessary and sufficient conditions for the existence of (n, k, d)-graphs in terms of
these closures.

Keywords k-matching · Matching extension · (n, k, d)-graph · Closure

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). A matching is a set of
independent edges. For a matching M , we use V (M) to denote the vertices incident to
the edges of M and |M | to denote the number of edges in M . Let d be a non-negative
integer. A matching is called a defect-d matching if it covers exactly |V (G)| − d
vertices of G. A defect-0 matching is commonly known as a perfect matching.

For S ⊆ V (G), we write G[S] for the subgraph of G induced by S and G − S for
G[V (G)\S]. The number of odd components (i.e., components with odd order) of G
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is denoted by co(G). Let EG(S, T ) denote the edges of graph G with one end in S
and another end in T and eG(S, T ) = |EG(S, T )|, where S, T ⊆ V (G). For a vertex
v ∈ V (G), NG(v) denotes the neighbourhood of v in G. For X ⊆ V (G), we write
NG(X) = ∪x∈X NG(x). For x, y ∈ V (G) and xy /∈ E(G), letG+xy denote the graph
obtained fromG by adding an edge xy. Given twographs F and H , let F∨H be a graph
obtained from F ∪ H by adding all the edges joining a vertex of F to a vertex of H .

Let M be a matching of G. If there is a matching M ′ such that M ⊆ M ′, we say
that M can be extended to M ′ or M ′ is an extension of M . A matching with the largest
cardinality is called a maximum matching of G. We denote the matching number, the
size of a maximum matching, by µ(G). Suppose that G is a connected graph with
perfect matchings. If each k-matching (i.e., a matching with k edges) can be extended
to a perfectmatching inG, thenG is called k-extendable. To avoid triviality, we require
that |V (G)| � 2k + 2 for k-extendable graphs. This family of graphs was introduced
by Plummer [7]. A graph G is called n-factor-critical if after deleting any n vertices
the remaining subgraph of G has a perfect matching. This concept was introduced by
Favaron [4] and Yu [12], independently, which is a generalization of the notions of
the well-known factor-critical graphs and bicritical graphs, the cases of n = 1 and 2,
respectively. For a given graph H , if a graphG has no induced subgraph isomorphic to
H , thenG is called H -free. The star K1,3 is often referred as a claw, and so a K1,3-free
graph G is often called claw-free.

Let G be a connected graph and let n, k and d be non-negative integers such that
|V (G)| � n+2k+d+2 and |V (G)|−n−d ≡ 0 (mod 2). If deleting any n vertices
from G the remaining subgraph of G contains k-matchings and moreover, each k-
matching in the subgraph can be extended to a defect-d matching, then G is called an
(n, k, d)-graph. This term was introduced by Liu and Yu [6] as a general framework
to unify the concepts of defect-d matchings, n-factor-criticality and k-extendability.
In particular, (n, 0, 0)-graphs are exactly n-factor-critical graphs and (0, k, 0)-graphs
are the same as k-extendable graphs.

Bondy and Chvátal [3] defined the r -closure cr (G) as the graph obtained from G
by recursively joining pairs of nonadjacent vertices the degree sum of which is at
least r until no such pair remains. The r -closure cr (G) has a strong connection with
hamiltonian cycles, as shown in the next theorem.

Theorem 1.1 (Bondy and Chvátal, [3]) Let G be a graph of order n � 3. Let x and
y be a pair of distinct nonadjacent vertices of G with dG(x)+ dG(y) � n. Then G is
hamiltonian if and only if G + xy is hamiltonian.

Following this notion, a number of other types of closures have been introduced. A
vertex x of a graphG is said to be locally r -connected if NG(x) induces an r -connected
graph in G. A locally r -connected vertex x is said to be r -eligible if NG(x) induces a
non-complete graph. For a locally r -connected vertex x of a graph G, we consider the
operation of joining every pair of nonadjacent vertices in NG(x) by an edge so that
NG(x) induces a complete subgraph in the resulting graph. This operation is called
the local completion of G at a locally r -connected vertex x . We consider a sequence
of local completions G = G0,G1, . . . ,Gm = H , where Gi+1 is obtained from Gi

by a local completion at a locally r -connected vertex for each i, 0 � i � m − 1. If H
does not have an r -eligible locally r -connected vertex, then H is called an r -closure
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of G and denoted by clr (G). Ryjác̆ek [10] introduced closure cl1(G) and proved that
a claw-free graph G is hamiltonian if and only if cl1(G) is hamiltonian. Bollobás et al.
generalized it to clr (G) in [2] and proved that clr (G) is uniquely determined for each
r and G is hamiltonian-connected if and only if cl3(G) is hamiltonian-connected.

Plummer and Saito [9] gave necessary and sufficient conditions for a graph to be
n-factor-critical in terms of these closures. They also investigated the relationships
between the various closures and matching extension.

In this paper, we further study the relationships between various closures and
(n, k, d)-graphs. In the next section, we give necessary and sufficient conditions for
(n, k, d)-graphs in terms of Bondy-Chvátal-type closure. In Sect. 3, we study a closure
based on neighborhood unions. And in Sect. 2, we study Ryjác̆ek’s closure and present
two sufficient conditions for claw-free (n, k, d)-graphs.

The proofs of the main theorems require the following results.

Theorem 1.2 (Berge [1])Let G be a graph and d an integer such that 0 � d � |V (G)|
and |V (G)| ≡ d (mod 2). Then G has no defect-d matchings if and only if there exists
a vertex subset S ⊆ V (G) such that

co(G − S) � |S| + d + 2.

In [6], Liu and Yu obtained the following necessary and sufficient conditions for
(n, k, d)-graphs.

Theorem 1.3 (Liu and Yu [6]) A graph G is an (n, k, d)-graph if and only if the
following conditions hold:

(a) for any S ⊆ V (G) such that |S| � n,

co(G − S) � |S| − n + d,

(b) for any S ⊆ V (G) such that |S| � n + 2k and G[S] contains a k-matching,

co(G − S) � |S| − n − 2k + d.

Sumner [11] considered perfect matchings in claw-free graphs.

Theorem 1.4 (Sumner [11]) A connected claw-free graph of even order has a perfect
matching.

From the above result, it is easy to see the next one.

Corollary 1.5 A connected claw-free graph of odd order has a defect-1 matching.

2 Bondy-Chvátal-Type Closure

Theorem 2.1 Let G be a graph of order p, and x, y a pair of distinct nonadjacent
vertices of G with dG(x) + dG(y) � p + n − d − 1. Then G is an (n, 0, d)-graph if
and only if G + xy is an (n, 0, d)-graph.
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Proof By the definition of (n, k, d)-graphs, the necessity is obvious. So we prove the
sufficiency. Suppose that G + xy is an (n, 0, d)-graph but G is not an (n, 0, d)-graph.
By Theorem 1.3 and parity, there exists a vertex subset S of G with |S| � n such that

co(G − S) � |S| − n + d + 2.

Since G + xy is an (n, 0, d)-graph, x and y must belong to different odd components
of G − S, say Ci and C j . However, every odd component of G − S contains at least
one vertex, so

dG(x) + dG(y) � (|Ci | − 1) + (|C j | − 1) + 2|S|
� p − |S| − (|S| − n + d) − 2 + 2|S|
� p + n − d − 2,

a contradiction. �	
Theorem 2.2 Let n, k, d be nonnegative integers. Let G be a graph of order p, and x,
y a pair of distinct nonadjacent vertices of G with dG(x)+dG(y) � p+n+2k−d−1.
If G + xy is an (n, k, d)-graph, then G is an (n, k, d)-graph.

Proof Suppose that G is not an (n, k, d)-graph. By the definition of (n, k, d)-graphs,
there exists a vertex subset S ofG with |S| = n and a k-matching M ofG−S such that
G− S−V (M) contains no matchings of deficiency d. So by Theorem 1.2, there exists
a subset W ⊆ V (G − S − V (M)) such that co(G − S − V (M) − W ) � w + d + 2,
where |W | = w. Let q = co(G − S − V (M) − W ) and C1, . . . ,Cq denote those
odd components of G − S − V (M) − W . Without loss of generality, we assume that
|C1| � · · · � |Cq |. We choose two vertices u, v ∈ V (G)− S − V (M)− W such that
u, v belong to different odd components, say Ci and C j . Since p � |Cq−1| + |Cq | +
(q − 2) + n + 2k + w and q � w + d + 2, we have

dG(u) + dG(v) � (|Ci | − 1) + (|C j | − 1) + 2n + 4k + 2w

� (|Cq−1| − 1) + (|Cq | − 1) + 2n + 4k + 2w

� p − (w + d) − 2 + n + 2k + w

� p + n + 2k − d − 2.

Hence x, y cannot belong to two different odd components of G − S − V (M) − W .
So co((G + xy)− S − V (M)− W ) � w + d + 2 and by Theorem 1.3, G + xy is not
an (n, k, d)-graph, a contradiction. This completes the proof. �	
Remark Theorem 2.2 is best possible in the following sense. For nonnegative integers
n, k, l and d. Let G = Kn+2k+l ∨ (l + d + 2)K1. By Theorem 1.3, G is not an
(n, k, d)-graph, but G + xy is an (n, k, d)-graph for any xy /∈ E(G). Furthermore,
dG(x) + dG(y) = p + n + 2k − d − 2 for all xy /∈ E(G).

The converse of Theorem 2.2 does not hold if k > 0. (If k = 0, then the converse
holds byTheorem2.1.) LetG = (n+k+1)K1∨(K2m+k∪(d+1)K2m+2k+1), wherem
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is a sufficiently large integer. Then p = |V (G)| = 2(d+2)m+2(d+2)k+n+d+2 ≡
n + d (mod 2). Let M be a matching of G with |M | = k and S be a subset of
V (G − V (M)) with |S| = n. Then G − S − V (M) = bK1 ∨ (

Ka ∪ (∪d+1
i=1 Kci )

)
for

suitable integers a, b and ci (1 � i � d +1), where b > 1. Therefore, G− S−V (M)

has a matching of deficiency d, and hence G is an (n, k, d)-graph. Let u and v be two
distinct vertices in (n+k+1)K1. Then u and v are not adjacent, and dG(u)+dG(v) =
2(2m+k+(d+1)(2m+2k+1)) = 2p−2(n+k+1) > p+n+2k−d−1. Let S′ be
a subset of V ((n+k+1)K1−u−v)with |S′| = n and M ′ be a k-matching of G+uv
which consists of uv and k − 1 independent edges joining (n+ k + 1)K1 − S′ − u− v

and K2m+k . Since (G + uv) − S′ − V (M ′) contains (d + 2) odd components, by
Theorem 1.3, G + uv is not an (n, k, d)-graph.

If we enhance the condition in Theorem 2.2 by requesting that the same degree
condition holds for all pairs of x, y with uv /∈ E(G), then the converse of Theorem
2.2 is true. In fact, we can prove the following stronger result. Note that an (n, k, d)-
graph G implies that G + xy is also an (n, k, d)-graph for any pair of vertices x, y.

Theorem 2.3 Let n, k, d be nonnegative integers and G be a graph of order p. If
dG(x)+ dG(y) � p + n + 2k − d − 1 for any pair of non-adjacent vertices x and y,
then G is an (n, k, d)-graph.

Proof Suppose that the conclusion does not hold. Then there exists a vertex subset
R ⊆ V (G) of order n and a k-matching M of G − R such that G − R − V (M) has no
defect-d matchings. By Theorem 1.2, there exists a vertex subset S of G − R−V (M)

such that

q = co(G − R − V (M) − S) � |S| + d + 2. (1)

LetC1, . . . ,Cq be all odd components of G− R−V (M)− S such that |C1| ≤ |C2| ≤
· · · ≤ |Cq | and let u ∈ C1, v ∈ C2. Since p � |C1| + |C2| + n+ 2k + |S| + (|S| + d),
we have

dG(u) + dG(v) � (|C1| − 1) + (|C2| − 1) + 2(n + 2k + |S|)
� p + n + 2k − d − 2,

a contradiction. This completes the proof. �	
By Theorem 2.1, we have the following corollary.

Corollary 2.4 (Plummer and Saito [9])Let n be a nonnegative integer, G be a graph of
order p, and x, y be a pair of distinct nonadjacent vertices of G with dG(x)+dG(y) �
p + n − 1. Then G + xy is n-factor-critical if and only if G is n-factor-critical.

Theorem 2.2 implies the following result.

Corollary 2.5 (Plummer and Saito [9])Let k be a nonnegative integer, G be a graph of
order p, and x, y be a pair of distinct nonadjacent vertices of G with dG(x)+dG(y) �
p + 2k − 1. If G + xy is k-extendable, then G is k-extendable.
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Theorem 2.3 is an extension of the following two theorems.

Theorem 2.6 (Plummer [8]) Let k be a nonnegative integer and G a graph of order
p. If dG(x) + dG(y) � p + 2k − 1 for any two nonadjacent vertices x, y, then G is
k-extendable.

Theorem 2.7 (Favaron [4]) Let n be a nonnegative integer and G a graph of order
p. If dG(x) + dG(y) � p + n − 1 for any two nonadjacent vertices of G, then G is
n-factor-critical.

3 Neighborhood Unions

Theorem 3.1 Let n, k, d be three nonnegative integers such that n � d. Let G be an
m-connected graph of order p, and x, y be a pair of distinct nonadjacent vertices of G
with |NG(x)∪ NG(y)| � p+ n+ 2k −m − d − 1. Then G + xy is an (n, k, d)-graph
if and only if G is an (n, k, d)-graph.

Proof We firstly prove the necessity. Assume G + xy is an (n, k, d)-graph, but G
is not an (n, k, d)-graph. By the definition of (n, k, d)-graphs, there exists a subset
R ⊆ V (G) of order n and a k-matching M in G − R such that G − R − V (M) has no
defect-d matchings. By Theorem 1.2, there exists a subset S ⊆ V (G − R − V (M))

such that

q = co(G − R − V (M) − S) � |S| + d + 2.

Denote the odd components by C1, . . . ,Cq such that |C1| � · · · � |Cq |. By the
hypothesis that G + xy is an (n, k, d)-graph, x and y belong to different odd compo-
nentsCi andC j ofG−R−V (M)−S. SinceG ism-connected, |R∪V (M)∪S| � m.
Moreover,

|NG(x) ∪ NG(y)| � |Ci | + |C j | − 2 + |R ∪ V (M) ∪ S|.
On the other hand, since each of the other q−2 odd components ofG−(R∪V (M)∪S)
contains at least one vertex, we have

|NG(x) ∪ NG(y)| � p + n + 2k − m − d − 1

� |Ci | + |C j | + |R ∪ V (M) ∪ S| + (q − 2) + n + 2k − m − d − 1

� |Ci | + |C j | + |R ∪ V (M) ∪ S| + (|S| + d) + n + 2k − m − d − 1

= |Ci | + |C j | + |R ∪ V (M) ∪ S| + |S| + n + 2k − m − 1.

So we have |S| + n + 2k � m − 1, a contradiction to |R ∪ V (M) ∪ S| ≥ m.
Now we prove the sufficiency. Assume that G is an (n, k, d)-graph but G + xy is

not an (n, k, d)-graph. By Theorem 1.2, there exists a subset R ⊆ V (G) of order at
least n and a k-matching M in (G + xy) − R such that

q = co((G + xy) − R − V (M)) � |R| − n + d + 2. (2)
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Let H = G[R ∪ V (M)]. By the hypothesis that G + xy is not an (n, k, d)-graph, it
implies xy ∈ M ; otherwise, by (2) and Theorem 1.3, then G is not an (n, k, d)-graph.
Furthermore, we have µ(H) = k − 1 and µ(H + xy) = k. By Theorem 1.2, there
exists a subset S ⊆ V (H) such that

co(H − S) = |H | − 2µ(H) + |S|.

Since µ(H + xy) > µ(H) = k − 1, x and y belong to different odd components of
H − S, say C ′

i and C
′
j . Let M

′ be a maximummatching of H + xy. We have xy ∈ M ′.
Moreover, M ′ covers every vertex of (V (C ′

i ) ∪ V (C ′
j ) ∪ S) − x − y. Hence

|NH (x) ∪ NH (y)| � |C ′
i | + |C ′

j | − 2 + |S| � 2(k − 1).

Therefore,

|NG(x) ∪ NG(y)| � 2(k − 1) + |V (G − R − V (M))|.

Recall that |NG(x) ∪ NG(y)| � p + n + 2k − m − d − 1. So we have

|R ∪ V (M)| � m − n + d − 1 � m − 1,

a contradiction to the connectivity of G. �	
Remark Theorem 3.1 is best possible in the following sense. Let k, n, m and d be
nonnegative integers such that m � n + 2k. Let G = Km ∨ (m − n − 2k + d + 2)K1.
By Theorem 1.3, G is not an (n, k, d)-graph, but G + xy is an (n, k, d)-graph for any
xy /∈ E(G). Furthermore, |NG(x) ∪ NG(y)| = p + n + 2k − m − d − 2 for any
nonadjacent vertices x, y.

4 Ryjác̆ek’s Closure

For claw-free graphs, we firstly prove the following result.

Theorem 4.1 Let n+ 2k � d and p ≡ n+ d (mod 2). If G is a connected claw-free
graph of order p, then G is an (n + 2k, 0, d)-graph.

Proof We only consider odd p and the proof is similar for even p. Since p ≡ n + d
(mod 2), we have n �≡ d (mod 2) and so n+2k < d. SinceG is a connected claw-free
graph, by Corollary 1.5, G contains a matching of deficiency one. So for any subset
S ⊆ V (G), G − S contains a matching of deficiency at most |S| + 1. As n + 2k < d,
G is an (n + 2k, 0, d)-graph. �	

By Theorems 1.3 and 4.1, the following result is immediate.

Corollary 4.2 Let n+2k � d and p ≡ n+d (mod 2). If G is a connected claw-free
graph of order p, then G is an (n, k, d)-graph.
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For Ryjác̆ek closure, Plummer and Saito proved the following result.

Theorem 4.3 (Plummer and Saito, [9]) Let G be a claw-free graph and x a locally
n-connected vertex. Let G ′ be the graph obtained from G by local completion at x in
G. Then G is n-factor-critical if and only if G ′ is n-factor-critical.

As a generalization of the above theorem,weprove the following result for (n, k, d)-
graphs.

Theorem 4.4 Let n+2k > d andG be a 2-connected claw-free graph. If cln+2k−d (G)

is an (n, k, d)-graph, then G is an (n, k, d)-graph.

In fact, we prove the following theorem, which clearly implies Theorem 4.4.

Theorem 4.5 Let n + 2k > d. Let G be a 2-connected claw-free graph and x a
locally (n + 2k − d)-connected vertex. Let G ′ be the graph obtained from G by local
completion at x in G. If G ′ is an (n, k, d)-graph, then G is also an (n, k, d)-graph.

Proof Assume G ′ is an (n, k, d)-graph but G is not an (n, k, d)-graph. Then there
exists a subset S ⊆ V (G) with |S| = n and a k-matching M of G − S such that
G − S − V (M) contains no matchings of deficiency d. Since G is claw-free, clearly
G− S−V (M) is also claw-free. So by Theorem 1.4 and Corollary 1.5,G− S−V (M)

contains at least d+2 odd components. LetC1, . . . ,Cq denote all the odd components
of G − S − V (M), where q � d + 2.

If x /∈ S ∪ V (M), then x belongs to a component, say C1, of G − S − V (M). Then
NG(x) ⊆ V (C1)∪ S∪V (M) and hence G ′ − S−V (M) has the same number of odd
components as G − S − V (M), a contradiction to that G ′ is an (n, k, d)-graph.

So we assume x ∈ S ∪ V (M). Furthermore, there exists two odd components of
G−S−V (M), sayC1 andC2, such that NG(x)∩V (C1) �= ∅ and NG(x)∩V (C2) �= ∅.
Let x1 ∈ NG(x)∩V (C1) and x2 ∈ NG(x)∩V (C2). Then x1 and x2 are separated in the
graph induced by NG(x)− S − V (M). We shrink each Ci into a vertex ui and denote
T = {ui | 1 � i � q}. Now we construct a (simple) bipartite graph H with vertex set
V (H) = T∪S∪V (M) and edge set E(H) = {vui |v ∈ (S∪V (M))∩NG(Ci ) and ui ∈
T }. Since G is a 2-connected claw-free graph, eH (v, T ) � 2 for all v ∈ S ∪ V (M),
eH (u, S ∪ V (M)) � 2 for all u ∈ T and eH (x, T − u1 − u2) = 0. So we have

eH (T, S ∪ V (M)) � 2(n + 2k). (3)

Note that G[NG(x)] is (n + 2k − d)-connected, by Menger’s Theorem, there exists
at least n + 2k − d disjoint paths of G[NG(x)] from x1 to x2. So we have eH (ui , S ∪
V (M) − x) � n + 2k − d for i = 1, 2. Now we obtain

eH (T, S ∪ V (M)) �
2∑

i=1

eH (ui , S ∪ V (M)) + eH (T − {u1, u2}, (S ∪ V (M)) − x)

� 2(n + 2k − d + 1) + 2d

= 2(n + 2k) + 2,

a contradiction to (3). This completes the proof. �	
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By Theorems 1.3 and 4.5, it is easy to see the following.

Corollary 4.6 Let G be a 2-connected claw-free graph and x a locally n-connected
vertex. Let G ′ be the graph obtained from G by local completion at x in G. Then G ′
is an (n, 0, d)-graph if and only if G is an (n, 0, d)-graph.

By similar arguments, when d = 0, we can remove the 2-connectivity condition of
G in Theorem 4.5 to obtain the following result.

Theorem 4.7 Let G be a claw-free graph and x a locally (n + 2k)-connected vertex.
Let G ′ be the graph obtained from G by local completion at x in G. If G ′ is an
(n, k, 0)-graph, then G is also an (n, k, 0)-graph.

Remark The converse of Theorem 4.7 does not hold for n + 2k > 0. We only give an
example for even n since it can be discussed similarly for odd n. Let m be a sufficient
large odd integer. Let H1 and H2 be two copies of K(n+1)m . Let F = K2k−1 and
V (F) = {u1, . . . , u2k−1}. We write V (Hq) = {xqi j | 1 � i � n + 1 and 1 � j � m}
for q = 1, 2. Let S = {vi | 1 � i � n + 1}. Now we construct a graph G with vertex
set V (G) = S ∪ V (F) ∪ V (H1) ∪ V (H2) and edge set E(G) = E(H1) ∪ E(H2) ∪
E(K2k−1)∪E1∪E2, where E1 = {vi xqi j | 1 � q � 2, 1 � i � n+1 and 1 � j � m}}
and E2 = {ux | u ∈ V (F) and x ∈ V (H1) ∪ V (H2)}. Then G is claw-free and G is
also an (n, k, 0)-graph. Note that G[NG(x111)] is (n + 2k)-connected. However, if we
apply local completion at x111, the resulting graph G ′ is not an (n, k, 0)-graph, since
G ′[S∪V (F)] contains a k-matching butG ′−S−V (F) contains two odd components.

We believe that the 2-connectivity condition in Theorem 4.5 is unnecessary. How-
ever, we cannot find a way to avoid it in the proof. So we leave it here as a problem
for the interested readers to consider.

Problem 4.8 Does Theorem 4.5 still hold without 2-connectivity condition for G?
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