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Abstract In this paper cyclic connectivity is studied in relation to certain matching
properties in regular graphs. Results giving sufficient conditions in terms of cyclic
connectivity for regular graphs to be factor-critical, to be 3-factor-critical, to have the
restricted matching properties E (m, n) and to have defect-d matchings are obtained.
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1 Introduction

All graphs considered in this paper will be simple.

A set of edges E in a graph G is called a cyclic edge-cut if G — E contains at
least two components each of which contains a cycle. The size of any smallest cyclic
edge-cut is called the cyclic edge-connectivity of G and is denoted by cA(G).
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Cyclic connectivity has its early roots in the study of graph coloring. For example,
Birkhoff [6] proved already in 1913 that in order to prove the Four Color Conjecture, it
suffices to prove it for those plane graphs which are cubic and cyclically-5-connected.

Péroche [17] showed that if |V (G)| > 6, then cA(G) < 3|V (G)|— 3 and the bound
is sharp. In [12] a polynomial algorithm for computing cA(G) for regular graphs is
given, although, to the best of our knowledge, the complexity of computing cyclic
connectivity for graphs in general remains unknown.

More recently, this graph parameter has also been studied in connection with certain
matching properties in graphs. A graph is said to be k-factor-critical if the deletion
of every set of k vertices results in a graph with a perfect matching. For the values
k = 1 and k = 2, these properties are more commonly called factor-criticality and
bicriticality, respectively. These two classes of graphs are important building blocks in
a canonical theory of decomposition for graphs in terms of their maximum matchings.
For more on this, as well as a general reference on matching theory in graphs, the
reader is referred to [13].

A graph G with at least 2n + 2 vertices is said to be n-extendable if every matching
of size n can be extended to (i.e., is a subset of) a perfect matching in G. This concept
was formally introduced in [23] and has since given rise to many research papers. Two
surveys on n-extendable graphs are [20] and [21].

In [16] (see also [22]) it was shown that r-regular non-bipartite graphs of even
order with cyclic connectivity at least » 4+ 1 must be bicritical, while r-regular bipar-
tite graphs with cyclic connectivity at least (n — 1)r + 1 must be n-extendable. Cyclic
connectivity and extendability for planar graphs has also been investigated with the
earliest result in this direction [8] stating that every 3-connected 3-regular planar graph
with cyclic connectivity at least 5 is 2-extendable.

In the present paper, we generalize some of these results in several different direc-
tions. In addition, we will investigate cyclic connectivity in relation to the “restricted”
matching properties E (m, n) which have been introduced more recently. Let G be a
connected graph with at least 2(m +n + 1) vertices which contains a perfect matching.
Then G is said to have property E(m, n) (or simply, “G is E(m, n)”) if, for each pair
of disjoint matchings M, N € E(G) with [M| = m and |N| = n, there is a perfect
matching F in G such that M € F and F N N = ¢ (thus the property E(m, 0) is
exactly the same as the property of being m-extendable). The property E (m, n) was
first introduced in [24] and has since been further investigated in [1] and in the series
of papers [2]-[5].

We use 0(G) to denote the number of odd components of G, and E (S, T), the set of
the edges between vertex sets S and 7. Denote by V(S) the set of edges with exactly
one endvertex in the set S. We call a graph G an [r — 1, r]-graph, if every vertex is of
degree r or r — 1. Finally, we denote the minimum degree of graph G by §(G).

2 Preliminary Results

Lemma 2.1 Let G be a graph and S, a subset of V(G). If G[S] contains no cycles,
then |V(S)| = (6(G) — 2)|S] + 2.
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Proof Since by hypothesis G[S] contains no cycles, it must be a forest and hence
[E(G[SD] = |S| — 1. Consequently, [V(S)| = 8(G)IS| — 2(IS| — 1) = (8(G) —
2)|S| + 2. O

Corollary 2.2 Let G be a graph with 6(G) = § > 2 and S, a non-null proper subset
of V(G). Let o = min{|S|, |V(G) — S|}. Then |V(S)| > min{(§ — 2)o + 2, cA(G)}.

Proof LetC = V(S).If G[S]and G[V (G) — S]both contain cycles then |C| > cA(G)
and the assertion holds. Thus we may assume that either G[S] or G[V (G) — S] con-
tains no cycles. Assume without loss of generality that G[S] contains no cycles. Then
by Lemma 2.1, [C| > (§ —2)|S|+2 > (6 —2)o + 2, where the last inequality follows
from the hypothesis that § > 2.

O

Corollary 2.3 Let G be a graph with §(G) > 2. Then A(G) = min{§, cA(G)}.

Proof Let C = V(S) be a non-empty edge-cut in G. By Corollary 2.2, we have
that |C| > min{§, cA(G)}. Thus A(G) > min{8, cA(G)}. But since A(G) < & and
M(G) < cA(G) by definition, the result follows. O

The following result is clear.
Lemma 2.4 Suppose S C V(G), |S| is odd and each vertex in S has degree r. Then

IV(S)| = r(mod 2).
O

3 Cyclic Connectivity, E (m, n) and k-Factor-Criticality

We begin with a result due to Plesnik [19].

Theorem 3.1 If G is an r-regular graph of even order and M(G) > r — 1, then G
contains a perfect matching that excludes any (r — 1) given edges.

Corollary 3.2 Suppose G is an r-regular graph of even order and cA(G) > r — 1.
Then G has a perfect matching which excludes any r — 1 given edges.

Proof Assume that cA(G) > r — 1. If r = 1, the assertion trivially holds, so suppose
r > 2. Then by Corollary 2.3, .(G) > r — 1 and the result then follows by Theorem
3.1. O

Our first result involving E (m, n) is also an easy consequence of Theorem 3.1.

Corollary 3.3 Suppose G is an r-regular graph of even order and ch(G) > r — 1.
Then G is 1-extendable [i.e., G is E(1,0)].

Remark 3.4 The condition cA(G) > r — 1 in Corollary 3.3 is sharp. For each r > 2,
Plesnik provided graphs which show this. In fact, these graphs do not even contain a
perfect matching.
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Fig. 1 4-regular, but not
1-extendable

Fig. 2 5-regular, but not
1-extendable

Theorem 3.5 ([18]). Suppose 0 < k < r — 2. Then there exists an r-regular graph G
of even order such that

_ | k+ 1, ifriseven and k is odd;
MG) = [k, otherwise

and such that G does not contain a perfect matching.

It is also possible to provide another class of graphs which do contain a perfect
matching, but also show the sharpness of the bound on cA(G) in Corollary 3.3.

For r even, let G’ = (X, Y) be the complete bipartite graph K, ,_; with X =
{x1,x2,...,xr}, and K be the graph obtained from K,,; by removing a matching
{uiuz, usuy, ..., ur_3u,_3}. Then join the edges x;u; fori = 1,2,...,r — 2, and
add edge x,_1x, to yield a graph G,. The graph G, is r-regular and cA(G,) = r — 2,
but G, is not 1-extendable. See an example for r = 4 (see Fig. 1).

For r odd, Let G’ = (X, Y) be the complete bipartite graph K, ,_; with X =
{x1,x2,...,xr}, let K be a graph obtained from K4, by removing the edges on the
path ujus - - - u, and an edge u,41u,42. Join u;11x; fori = 1,2,...,r —2 and add
edge x,_1x,. Then we get a graph G/.. Clearly, G/, is r-regular, and cA(G)) =r — 2,
but G/, is not 1-extendable. See an example for r = 5 (see Fig.2).

Corollary 3.6 Suppose G is an r-regular graph of even order and k is a non-negative
integer withk <r —1 < (|V(G)| —2)/2. Then if cA\(G) > r — 1, G is E(0, k).

Remark 3.7 The assumptionr —1 < (]V(G)| —2)/2 in Corollary 3.6 is a natural one
since property E (0, r — 1) is only defined forr — 1 < (|V(G)| — 2)/2.
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Remark 3.8 The reader is reminded that E(0, n) = E(0,n — 1) for n > 4. How-
ever, E£(0,3) = E(0,2) = E(0,1) = E(0,0) (see Theorems 4.4.1 and 4.4.2
in [14]).

Remark 3.9 The assumption that cA(G) > r—1 in Corollary 3.6 above is best possible
by Corollary 2.3 and Theorem 3.1 above.

In part (i) of the next theorem, since G is assumed to have odd order, then » > 2
and the result follows by Corollary 2.3 and Theorem 1 of [19]. Part (ii) is just Theorem
3.3 of [22] (note that the requirement that r > 3 is necessary for an r-regular graph to
be bicritical).

Theorem 3.10 Ler G be an r-regular graph. Then the following two properties hold.

(1) If G has odd order and cA(G) > r — 1, then G is factor-critical.
(ii) Ifr = 3, G has even order, is non-bipartite and cA(G) > r+1, then G is bicritical.

Now let us consider the property E (1, 1). It is known (cf. Theorem 4.2 in [23]) that
a 2-extendable graph is either bipartite or bicritical (clearly no graph can be both) and
also 2-extendability implies the property E (1, 1). On the other hand, it is well-known
that the properties of being bicritical and being £ (1, 1) are independent in that neither
implies the other. However, each of these two properties implies 1-extendability.

Theorem 3.11 If r > 3 and G is a connected r-regular graph of even order with
cA(G) = r + 1, then either (a) G is E(1, 1) or (b) G contains two edges e and f such
that every perfect matching of G which contains e also contains f and G — e — f is
a I-extendable bipartite graph.

Proof Suppose first that G is bipartite. Then G is E(1, 1) by Theorem 3.4 of [3].
So suppose that G is non-bipartite (then, by Theorem 3.10, G is bicritical and hence
1-extendable). Assume further that G is not E(1, 1). Thus there are two independent
edges e and f in E(G) such that every perfect matching in G containing e also contains
f.
Then by Tutte’s theorem there exists a vertex set S € V(G) containing the endver-
tices of e, such that o(G — f — S) > |S|. But then, since G is 1-extendable, it follows
that o(G — f — §) = |S| and the edge f connects two odd components of G — f — S.

Assume now that the odd components of G — f — S are Oq, O, ..., Oy, where
IV(01)] < |V(02)] <--- <|V(Oy)| and s = |S|. Since A(G) = r by Corollary 2.3,
we have that [V(01)| > r. But then since G is r-regular, it follows that |V(O;)| = r,
for 1 <i <s.Lets; = min{|V(0))|,|V(G) —V(0))|}, fori =1,...,s. By Cor-
ollary 2.2, we have then that » = |V(O;)| > min{(r — 2)s; + 2, cA(G)} and hence
s; =1forl <i <s.

Thus every O; is a singleton and it follows that G — f — § has no even components,
G[S]—eisindependent and G — e — f is a connected bipartite graph with bipartition
S, v(iG)—9).

Note then that the edge set E(G) — {e, f} is an edge-cut in G (separating e from
1.

It remains to show that G — e — f is 1-extendable. Suppose, to the contrary, that
G — e — f is not l-extendable. So there must exist an edge g in G — ¢ — f such
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that no perfect matching in G — e — f contains g. Then arguing as above, with the
edge pair {e, g} replacing the pair {e, f}, we have, in particular, that E(G) — {e, g} is
also an edge-cut in G. But it is well-known (cf. [26]) that the symmetric difference of
edge-cuts is again an edge-cut and in this case this symmetric difference is precisely
{f, g}. So A(G) < 2. But G is 3-edge-connected by Corollary 2.3, since r > 3. This
contradiction completes the proof. O

Remark 3.12 A 1-extendable non-bipartite graph G is said to be near bipartite if it
contains edges e and f such that G —e — f is bipartite and 1-extendable. These graphs
have arisen in the study of Pfaffian graphs (Cf. [7], [9], [15]).

We next proceed toward a result linking cyclic connectivity and 3-factor-criticality.

Theorem 3.13 Suppose r > 4. Let G be an r-regular graph of odd order. If cA(G) >
2r and G is not 3-factor-critical, then there is a set S € V(G) such that |V(G) — S| =
|S| — 1 and V(G) — S is independent.

Proof Suppose thatr > 4, cA(G) > 2r, but G is not 3-factor-critical. Then by Tutte’s
theorem, G contains a set S with |S| > 3 such that o(G — §) > |S| — 2. But by
hypothesis, G has odd order and hence

o(G—8)>|S|— 1. (1

Let S be a maximal set satisfying inequality (1). Then G — § has no even com-
ponents and each odd component is factor-critical. Let O be any odd component of
G — S that is not a singleton.

We claim that |E(O, S)| > 2r + 2. By Theorem 5.5.1 of [13] component O must
contain a cycle. If G — V (0O) also contains a cycle, then |E(O, S)| > cA(G) > 2r+1.
But then by Lemma 2.4, |[E(O, S)| > 2r +2. On the other hand, if G — V (O) does not
contain a cycle, since S contains at least three vertices and G has odd order, it follows
that |V (G) — V(0O)| is even. But then by Lemma 2.1, |[E(O, S)| > 4(r —2) +2 =
4r — 6 > 2r + 2, where the last inequality follows from the fact that » > 4. But in
both cases we have |E(O, S)| > 2r + 2 as claimed.

Now let ¢ denote the number of odd components of G — S that are not singletons.
Thenr-o(G—S8)+ (r+2)-t <|V(S)| <r|S|. Thus

o(G—=S8) <|S|—t—=2t/r. 2)

From inequalities (1) and (2) we deduce that ¢ = 0. Therefore, V(G) — § is inde-
pendent. But G has odd order, so from (1) and (2) we have that o(G — S) = |S] — 1.
But then V(G — S) is independent and consists of precisely |S| — 1 vertices.

At this point we describe some families of bipartite graphs which will be denoted
by Xk m.n. We say that a bipartite graph has an (a, b)-bipartition if it has a bipartition
(X,7Y) such that |X| = a and |Y| = b. We define the following classes X ., of
bipartite graphs for all positive integers k, m and n with 2k < m < n.If k = 1, then
>1,m,n 18 the collection of all trees with an (m, n)-bipartition. If k > 2, then a bipartite
graph G belongs to X , , if and only if there exists an (m, n)-bipartition (X, Y) of
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G with | X| = m and |Y| = n and a subset Z of X with |Z| = 2k — 1 such that the

subgraph of G induced by Y U Z is a complete bipartite graph (i.e., isomorphic to

Kok—1,») and each vertex in X \ Z has degree one in G. It is easy to see that each graph

in X . has (2k — 1)(n — 1) + m edges, but does not have k independent cycles.
We shall need the following result due to Wang.

Theorem 3.14 [25]. Let G = (Vy, Va; E) be a bipartite graph with2k < m = |Vi| <
|Va| = n, where k is a positive integer. Suppose that the number of edges of G is at
least 2k — 1)(n — 1) + m and G does not belong to Xy m n. Then G contains k
independent cycles.

We shall also need the next result due to Lou and Holton.

Theorem 3.15 ([11]). Suppose G is a connected r-regular graph with girth g, then
cA(G) < g(r —2).

Theorem 3.16 Supposer > 4 and that G is an r-regular graph of odd order. Suppose
further that

cA(G) > max{2r, 3(r —2),2(r —2)|V(G)|/r}.

Then G is 3-factor-critical.

Proof Note that since G is r-regular of odd order, r must be even. Suppose G is not 3-
factor-critical. Thus by Theorem 3.13, thereisaset S € V(G) suchthat |V (G)— S| =
|S] — 1 and V(G) — S is a set of independent vertices. Moreover, each vertex of
V(G) — S is adjacent to r members of S. Now form a bipartite subgraph H of G by
deleting all edges having both endvertices in S. This bipartite subgraph has bipartition
(S, V(G)—S)where |V(G)—S| =|S|—1.Let|S| =nand |V(G)-S|=m =n—1.
Finally, let r = 2k.
Case 1 Suppose m > r = 2k.

Then there are rm edges between S and V(G)—S.Butthenrm = 2k—1)(n—1)+m
and H does not belong to X ., for k > 2. So by Theorem 3.14, there are k = r/2
vertex-disjoint cycles in H. Hence

cA(G) =2(r = 2)IV(G)|/r,

a contradiction.

Case 2 So suppose m < r = 2k.

Clearly, |S| = r = 2k. Therefore, since H is simple, it is a complete bipartite
graph K, ,_1. Since m = o(G — S) > 2, it follows that [S| = m + 1 = 2k > 4,
and hence there are at least two independent edges in G[S]; i.e., there are at least
two vertex-disjoint triangles in G. But then by Theorem 3.15, cA(G) < 3(r — 2), a
contradiction and the proof is complete.

Note that the preceding result fails to hold when r = 2, for just let G be a pentagon.
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4 Cyclic Connectivity and Defect-d Matchings

We now turn our attention to defect-d matchings.
A matching is called a defect-d matching if it covers exactly |V (G)| — d vertices
of G. Clearly, a defect-0 matching is a perfect matching.

Theorem 4.1 ([10]). Let G be a graph and n, d non-negative integers such that n +
d+2 < |V(G)| and |V(G)] —n —d = 0 (mod 2). Then, for any n-vertex set
T C V(G), G — T has a defect-d matching if and only if

o(G—-S8)<|S|—n+d foranyS C V(G) with|S|>n.

We now use Theorem 4.1 to obtain the following result.

Theorem 4.2 Let G be a connected graphwith |V (G)|—n—d = 0 (mod 2). Ifr > 3
and G is an [r — 1, r]-graph with exactly k vertices of degreer — 1, cA(G) > r — 1
andr(d+2—n) > k+1, then for any n-vertex set T, G — T has a defect-d matching.

Proof Suppose not. By Theorem 4.1, there exists a set S € V(G) with |S| > n such
thato(G—S) > |S|—n-+d,andhence o(G—S) > |S|—n+d+2by parity. Let | S| = m
and the odd components of G — S be 01, Oz, ..., 0p, where p > m —n +d + 2.
Without loss of generality, assume |E(O1, S)| < |E(O2, S)| < --- < [E(O), S)I.

If |[E(O1, S)| <r — 2, then |O1] > 3, since the minimum degree of G is greater
than r — 2. Suppose that O is a tree. Then O must send at least 2(r — 2) edges to S
and hence 2r — 4 <r — 2 and r < 2, a contradiction.

Therefore, O; is not a tree and hence it contains a cycle. Similarly, the subgraph
G — O also contains acycle and so cA(G) < r —2. But this contradicts the assumption
that cA(G) > r — 1.

So we assume that |E(O1, S)| > r — 1. Suppose the first ¢ odd components of
G — S each have exactly » — 1 edges incident with S, and the others have at least r
edges incident with §. Then Oy, O3, ..., O, each contain a vertex of degree r — 1, for
otherwise, ZveO,- do,(v) =r|0ij|—(r—1) =r(|O;| — 1)+ 11is odd, a contradiction.
Thus g < k. Itis easy to see that there are at least (r — 1)g + r(p — ¢) edges joining
the odd components to S. However,

r—Dg+r(p—q)=rp—qgq>r(m—n+d+2)—k
rm+r(d+2—n)—k>rm-+1,

which contradicts the fact that |V (S)| < mr. This completes the proof. O

Remark 4.3 By settingn = 1 and d = k = 0 in the above result, we have an inde-
pendent proof of Theorem 3.10(i).
By setting n = 2, we also have the following result:

Corollary 4.4 Suppose r > 3. Let G be a connected [r — 1, r]-regular graph with
exactly k vertices of degree r — 1 and suppose |V(G)| —2 —d = 0 (mod 2). If
cAMG) = r —1and rd > k + 1, then for any two distinct vertices u,v € V(G),
G — {u, v} has a defect-d matching.
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5 Concluding Remarks

In this paper, we have investigated the restricted matching properties E (m, n), the
k-factor-criticality property and the existence of defect-d matchings in graphs under
certain cyclic connectivity conditions. By Lou and Holton’s construction in [11], large
cyclic connectivity does not guarantee 2-extendability. So the only possible values for
E (m, n) available for study in this regard are E(1, k) and E(0, k), for k > 0.
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