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Abstract
Let G be a 2-tough graph on at least five vertices and let e, e, be any two
edges of G. Katerinis and Wang [6] showed that there exists a 2-factor in
G including/excluding e; and e,. In this paper, we generalize their result by
considering the existence of an f-factor including/excluding e; and e», where
fiV(G) —(1,2).
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1 Introduction

All graphs considered are simple and finite. We refer the reader to [1] for termi-
nology and notations not defined here.

Let G be a graph. The degrec of a vertex v in G is denoted by deg;(v). For any
disjoint subsets X, ¥ € V(G), Eg(X, Y) denotes the set of edges with one end in X
and the other in Y. Seteg(X, ¥) = |Eg(X, Y)|.

For X C V(G), the neighbor set of X in G is defined to be the set of all vertices
adjacent to vertices in X; this set is denoted by Ng(X). The subgraph induced by
X, denoted by G| X], has vertex set X and edge set {uv € E(G) : u,v € X}.
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A cut or vertex cut of a connected graph G is a set of vertices whose removal
renders G disconnected. A k-vertex cut is a vertex cut with k elements. The con-
nectivity of G, x(G), is the minimum & for which G has a k-vertex cut. Similarly,
an edge cut and edge-connectivity of G (i.e., «'(G)) are defined.

For an integer-valued function f defined on a finite set X, we put

X0 =3 fo, f@=0.

xeX

Let f be an integer-valued function defined on the verlex set of a graph G.
Then G has an f-factor if there exists a spanning subgraph F of G such that
degy(v) = f(v) for every vertex v € V(G). In particular, if f(v) = kforall v € V(G),
the spanning subgraph F is called a k-factor.

If G is not complete, the toughness t(G) is defined as

s
1) = msm{c(G—S)}’

where the minimum is taken over all vertex cut § of G, and ¢(G — S) denotes the
number of components in G — S. For complete graph K, we set t(K,) = co. A
graph G is k-tough it «(G) = k.

Chvital introduced the concept of toughness in [3], and mainly studied the re-
lations between toughness and the existence of Hamiltonian cycles and k-factors.
He conjectured that every k-tough graph G (k € Z*) has a k-factor if k|V(G)| is
even. Enomoto, Jackson, Katerinis and Saito [4] confirmed Chvétal’s conjecture
and also proved that their result is sharp. Chen [2] showed a stronger result: for
any k-tough graph G and for every edge e of G, the graph G contains a k-factor F
containing e and another k-factor F, excluding e. Katerinis and Wang [6] obtained
the following result.

Theorem 1.1 (Katerinis and Wang, [6]). Let G be a 2-tough graph with at least
five vertices, and let e1, e; be a pair of arbitrarily given edges of G. Then

(a) there exists a 2-factor in G including e, e3;
(b) there exists a 2-factor in G excluding ey, e3;
(c) there exists a 2-factor in G including e; and excluding e;.

Katerinis (1990) also proved a result related o the existence of an f-factor in
2-tough graphs.

Theorem 1.2 (Katerinis, [5]). Let G be a 2-tough graphand f : V(G) — (1,2} be
a function such that f(V(G)) is even. Then G has an f-factor.

Motivated by above theorems, we consider 2-tough graphs and f-factors with
inclusion and/or exclusion properties.
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2 Preliminary Results

The following result shows the relation between toughness, connectivity and min-
imum degree.

Proposition 2.1 (Chvatal, [3]). For any non-complete graph G,

€52 59

A necessary and sufficient condition for a graph G to have an f-factor was
obtained by Tutte [7] in 1952.

Theorem 2.1 (Tutte’s f-factor Theorem). Let G be a graphand f : V(G) - Z*.
Then G has an f-factor if and only if

965, T2f)+ ) () - degg_s(0) < £(S) @.1)

xel

for all disjoint subsets S, T C V(G), where gg(S, T; f) denotes the number of
components C of G ~ (S U T) such that eg(V(C), T) + f(V(C)) is odd. (Hereafter,
we refer to these components as odd components.) Moreover,

96(S.Ti )+ ) (f() = degg5 () = f(S) = F(V(G) (mod D). (2.2)

xeT
The following lemmas play important roles in the proofs of the main theorems.

Lemma 2.1. Let G be a graph, e = ab be an edge of G and let G’ be the graph
obtained from G by inserting a new vertex « on the edge e.

For a given function f : V(G) — (1,2}, define a function J VG - 11,2
as follows:
2, if v =u,
flw), otherwise.

f®={
Then, for any pair of disjoint subsets S”, 7" C V(G),

96/ (S T5 3+ D (f(0=deggr 5 (9) = 4o(S. 5 )+ Y (F)—deggs ()42

XeTr xeT
(2.3)
where S =8 - (W}, T=T' - {u)and & = 0, 1. Morcover, il u ¢ S’, thene = | if
and only if

(I) e E(G|S|)and u e T": or

(I1) e € Eg(V(C"),S)and u € T’, where C" is an odd componentof G'—(S'UT”)
and V(C”’) induces an even component of G — (SUT) or
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(Ill) a € C{,b € Cjand u € T’, where C{,C; are two odd components of
G’ = (S"u T’ and V(C] U (%) induces an even componentof G- (S UT).

Proof. Since deg (u) = 2 = f'(u) and degg (x) = degg(x) for any vertex x €
V(G - (u), F(V(G)) = f(V(G)) (mod 2). It follows from (2.2) that to prove
(2.3), it is enough to prove & = 0, 1. Note that
ga (85T )+ ZT (f'(x) = degg 5 (x))

xeT’
gals" I )=+ ZJ; (f'(x) — degg (1) + e (8", T")

xeT’
ge (8", T"; f) + ZT (f(x) — degg(x) +ec (5", T").

XE

1l

I

In fact, the graph G’ can be viewed as a graph obtained from G by deleting the
edge ab and adding two adjacent edges ua, ub. Then

-1 <eq(S T)—es(S,T)<2.
There are four cases to consider.
Case V. eq(S',T') = eg(S,T) + 2. Then {ua,ub} € Eg(S’,T"). So
g6 (8", T's f) = qc(S,T; fland e = .
Ifu ¢ S’, then e € E(G[S]) (see Fig. 1).

the graph with triple (G, S,T) the graph with triple (G',§’,T")
Fig. 1: Location of e in G and that of a,b,uin (G',5,T") as in type (I)

Case?. eq(S’,T") = eg(S, T)+1. Then cxactly one of {ua, ub}isin Eg(S’,T’),
and hence one vertex of {a, b}, say b, is in a component of G’ - (S’uT). So
4o (S T f) = qaS. T: ) = 1 or ge(S", T3 f") = q6(S,T5 ) + 1, and then
e=0orl.
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Ifu ¢ ', & = 1 if and only if the component C’ containing b is an odd
componentof G' — (S’ U T”) (see Fig. 2). Note that in this case, V(C’) induces an
even componentof G - (S UT).

the graph with triple (G,S,T)  the graph with triple (G',§8',T")

Fig. 2: Location of e in G and thatof a, b, u in (G', S’, T') as in type (1I)

Case 3. eq(S',T") = eq(S,T). Thene = 0,1, as 0 < qa(5',T"; f) -
qo(S, T, f) < 2. Ifu ¢ §’', & = 1 if and only if a and b are in two distinct odd
components C{,C; of G' = (§” U T’) (see Fig. 3). Now V(C; U C}) induces an
even componentof G- (S UT).

S

the graph with triple (G, S, T) the graph with triple (G',S’, T")

Fig. 3: Location of e in G and that of a, b, u in (G, S’, T’) as in type (I1I)

Case 4. eq(S',T') = eg(S,T) ~ 1. Then the edge ab € Eg(S,T) and vertex
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u ¢ S"UT". Since u has only two neighbors a and b, vertex u induced a component
of G’ = (§"UT"). Moreover, vertex « induced an odd component of G’ — (S U T”).
Then go (S’,T'; f) = q6(S, T; f) + 1, and hence & = 0. m]

Lemma 2.2. Let G be a graph, e = ab be an edge of G and G' = G - (e}. Givena
function f : V(G) — {1, 2}, then, for any pair of disjoint subsets S, T € V(G),

96/, T3 )+ D, (F) — degg_s() = 4(S, Ts )+ Y (f(x) - degg_ (1)) + 2¢
xeT el ks
where £ = 0, 1. Moreover, £ = 1 if and only if
(IV) e € E(G[T]); or
(V) e € Eg(V(C"),T), where C’ is an odd component of G’ — (S UT) and V(C")

induces an even component of G — (S U T); or

(VI) e € Eg(V(CY), V(C3)), where C}, C; are two odd components of G'—(S UT)
and V(C| U C}) induces an even component of G-(SuUT)

Proof. Since G' = G - {e}, degg (a) = degg(a) — 1 and degg. (b) = degg(b) - 1.
Hence we have

96/(S, T Y+ ) (f(x) — degg_s(0) = 4o (S, T3 f) = . degg_s (x) + AT,

xeTl xeT

According to the locations of @, b and T, there are three cases to consider.

Case 1. a,b € T. Then gg(S.T;f) = qc(S,T;f) and } degs _s(x) =
xeT
2, degg_g(x) — 2. Thus,e = 1.
xel’
Case 2. Exactly one of {a,b),say a,isinT. If b € S, then ¥, degs _s(x) =

xel

Z degs_g(x) and gg(S,T,2) = qa(S,T;2);if b ¢ S UT, then Z‘, degg ¢(x) =
E deg;_¢(x) = land g (S,T; f) = gc(S,T; f)=~lorl. Tht,ns =0, 1. More-

over e=lifandonlyif go(S,T; f) = qc(S,T; f) + 1, i.e., b € V(C"), where C’
is an odd component of G’ - (§ U T'). Clearly, V(C’) induces an even component
of G=-(SUT).

Case 3. {a,b}NT = 0. Then 3] deg, _s(x) = 3 deg,_¢(x) and g6 (S, T f)—
qe(S,T; f) =0o0r2;thuse = O,JT.T o

Moreover, & = 1 if and only if e € Eg(V(C}), V(C})), where C},C; are two
odd components of G' = (§ U T), and V(C| U C3) induces an even component of
G-(SuUT. o
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Lemma 2.3. Let G be a graph, and £ a function from V/(G) to {1, 2} with f(V(G)) =
0 (mod 2). Suppose that there exists a pair of disjoint subsets S and T’ of V(G)
such that

G6(S,T; £+ ) (f(x) = degq_g () = £(S) = 2. (2.5)

xeT
Then

(a) if § is minimal with respect to (2.5), then for any vertex u € §, degg(u) >
fw)+2=>3;

(b) if T is minimal with respect to (2.5), then T is an independent set in G.
Moreover, for any vertex v € 7', f(v) = 2, and eg({v}, V(C)) # 0 implies that
C is an odd component of G — (S U T) with eg({v}, V() = 1.

Proof. Since f(V(G)) = 0 (mod 2), it follows from (2.2) that

G(S,T5 )+ D (f(0) = degg_s(x)) ~ £(S) =0 (mod 2).

xeT

(a) Since S is minimal with respect to (2.5), for any vertex u € S, we have

96(S — U, T; )+ ) (F() = degg_s_yy (X)) = F(S — ) <0.  (2.6)

xel

Combining (2.5) and (2.6), we have gg(S, T; f) = g6(S —{u}, T; f) + INg(u) N
T| — f(u) =2 2. Hence deg;(u) > degs_sury(u) + INg(u) N T| = g6(S, T f) -
96(S =}, T; /) + INc@) N T| 2 f(u) +2 2 3.

(b) Since T is minimal with respect to (2.5), for any vertex v € T, we have

96, T~k N+ ), (f¥)-degos() - f(S)<0. (27

xeT—[v}

Combining (2.5) and (2.7), we have ¢g(S,T; f) — q5(S,T - v} f) + (flv) -
degs_¢(»)) = 2. Thus

degg_s(v) < g6(S, T3 ) = q(S, T = {v); f) + f(v) = 2 (2.8)
< degG—(SUT) (U). (29)

Therefore, deg;_s(v) = degg_(sur(v), that is, [Ng(v) N T| = 0. Since v is an
arbitrary vertex in T, T is an independent set of G. Moreover, the inequalities in
(2.5), (2.7), (2.8) and (2.9) become equalities and thus degg_g(v) = degg_(sur(v)
implies that f(v) = 2and gg(S, T; f)—qc(S, T-{u}; /) = degg_sur(v). Therefore,
if v is adjacent to a component C, then C is an odd component of G — (S U T) and
INc(v) N V(C)] = 1. u



3 Main Results

Suppose G is a non-complete 2-tough graph and e; = aib), ez = a2b; are two
edges of G. The graph G, is obtained from G by either subdivision (i.e., inserting
a new vertex u; on the edge e)) or deletion of ¢;, and G is obtained from G; by
either subdivision (i.c., inserting a new vertex u, on the edge ez) or deletion of
e>. Consider a function f : V(G) — (1,2} with f(V(G)) = 0 (mod 2). If the
operation on ¢; is deletion, at least one of f(a;), f(b;) is equal to 1. Let S, b be
two functions defined on V(Gy), V(G5), respectively, with fi(v) = A@) = f(v)
for v € V(G), fi(uy) = 2 if the operation on e; is subdivision, f(x;) = 2 if the
operation on e; is subdivision for i = 1,2. Let &, & be two binary variables,
corresponding to ¢ in (2.3) or (2.4) when conducting operations on ¢; and ez,
respectively.

In this paper, we consider the existence of f-factor including/excluding the
edges e; and e;. In the proofs of the main theorems, there are several similar
arguments in the proofs and so we state the common technique as a lemma below.
For convenience, in the following lemma, when u; (i = 1, 2) is mentioned, it means
that the operation on e; is a subdivision.

Lemma 3.1. LetG, Gy, Ga, f, fi, f> be defined as above. Suppose that Gz contains
no f-factor. Then

(1) there exists disjoint subsets S,T € V(G), $1,T1 € V(G1), S2,T2 € V(G,)
withS =8, =5,,T =T - {u}, T =Ty — {ua} satisfying

2-2e +&) <qcS, T ) +r=2c(G—(SUT))+|S| - f(S), (3.10)

where r is the number of components of G — (S U T) which are joined to 7,
£y + & = 1 and T is independent with f(x) =2 forall x € T

(2) if ¢(G - (S U T)) = r and the inequality (3.10) becomes an equality, then
for any component C; of G — (S U T), C; containing a cut edge e implies
V(C)l = 2.

Proof. Since G, has no fo-factors, by Tulte’s f-Factor Theorem, there exists a
pair of disjoint subsets Sz, Tz of V(G2) such that

46, (S2. T ) + Y, (a(x) = degg, 5, (0) = D () 2 2. @10

x€l, x€Ss

Furthermore, assume that S; and 7> are minimal with respect to (3.11), respec-
tively.

By Lemma 2.3, T is independent and u; € S as dchz(u,-) =2, Léts =
S, =8, T1 =Ty —{uz}and T = T} — {u;). Forevery vericx x € T, as x € T,
f(x) = fo(x) = 2 by Lemma 2.3 again.
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Claim 1. T is an independent set in G.

Note that 7 is independent, so we only need to consider whether ¢; lies in
GI[T1 (i = 1,2). If the operation on e; is deletion, then there are at least one of
Sfla) and f(by), say f(a), to be 1. Thus fa(a) = f(a;) = 1. By Lemma 2.3,
a; ¢ T,. Then a; ¢ T and hence e; ¢ G|T]. Now, consider the case that at least
one operation, say on e, is a subdivision. Assume 7 is not independent in G, and
laz, b2} € T. As T is independent in G, up ¢ S» U T3 and so {uz} is an even
component of G; — (5§, U T3), a contradiction to the fact that a; is only adjacent to
odd components of G = (S2 U T2) (Lemma 2.3 (b)).

By Lemmas 2.1 and 2.2, we have

46,51, Ti; fi) + X (fi(x) - degg, s, (x))

xel)

ge ST ) + §T (f(x) — degg_g(x)) + 2&1;
46,(S2, Tas o) + 2, (fa(x) — degg, g, (X))

xeT:

46,81, Ty f) + 3 (filx) - degg, s, (X)) + 2e2.

xeTy

1]

Thus

46,(S2. i ) + ) | (h(x) - degg, 5, (x) (3.12)

xeT}

=q6(S. T )+ ) | (f(0) - degg_g (¥)) + 2(21 + &),

xel

By (3.11) and (3.12), we have

Go(S, T fy+ ) (f) —degg s () = D f()22-2e1 +&2).  (313)

xeT xe§

As G is 2-tough, by Theorem 1.2, G has an f-factor and so

g6 (S, T; f) + ), (f(x) = degg_s () = ), f(x) <0.

xel xe§

Hence 1 + &2 2 1,1.e., £ + & = | or 2, and at least one of £, &, equals to 1.
Let H = G-(SUT). Assume Cy,Ca, ..., C, are the components of H. Let V; =
fve VIH) : INg()NT|=1}and V; = [v € V(H) : [Ng(v) N T| = 2}. Suppose that
Cy,Cs,...,C; are the components containing a vertex in V;. Arbitrarily choose
x; € V(Cj) for which x; € Vi fori = 1,...,{,and set X = {x,x3,...,47}. Let
Y = Ng(T)nV(H) - X.
By the definitions of V| and V>, we have

Vil +21Val < eG(T, V(HD). (3.14)
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Thus [Vi| +|V2l < eg(T, V(H)) — [Val, and [¥Y] = INg(T)N V(H)| - |X| = |V}|+| V2| -
IX| < eg(T, V(H)) — V2| - |XI|.
Clearly,
Vol + X 2 1, (3.15)

where r is the number of components of G — (S U T) which are joined to T. So
Y] < eg(T, V(H)) — r, and then |S| + |Y| < |S| + eg(T, V(H)) - r.

By the choice of ¥, ¢(G - (S UY)) = |T| +¢(G~ (S UT)) —r. Assume
IST+1Y] <2c(G = (SUY)). Thenc(G - (S UY)) < 1, otherwise, S U Y is a vertex
cut of G, contradicting the fact that G is 2-tough. Indeed, c(G - (S U ¥)) = 1,
otherwise |S| + |¥| < 0, a contradiction. Since |S|+ |¥] < 2¢(G - (S U ¥)) = 2, s0
[S|+]Y] < I; moreover S| < 1 and |[T| £ c(G-(SUY)) = L. If[T| = |, say T = {x},
then degg_g(x) < |¥] + 1 < 2 by the definition of ¥. On the other hand, since G
is non-complete and 2-tough, 6(G) = 2((G) = 4. Then, deg;_¢(x) =3 as S| < 1,
a contradiction. Now we may assume 7 = . Since at least one of g; (i = 1,2) is
equal to 1, G is obtained by at least one operation on ¢; (i = 1,2) whose location
is of type IT or type IIT or type VI. Thus, (e, €2} is an edge cutin G — S. Since G
is 2-tough, it is 4-connected. So G — S is 3-connected and 3-edge-connected. But
now, (G — §) — {ey, e;} is disconnected, a contradiction.

So we may assume

IS|+1¥|22:(G-(SUY)) (3.16)
> 2T|+2e(G - (SUT)) - 2r. (3.17)

Then S |[+e(T, V(H))~r = [S|+|Y] 2 2T|+2c(G—-(SUT))~2r, i.e., e(T, V(H)) =
2AT| +2¢(G - (SUT)—r—IS|.

Therefore
2-2e1 +62) < g6(S, T3 )+ Y (f(x) — degg 5 (1) - £(S)
xel’
= q6(S.T; f) + f(T) = ), degg_s_r(3) = f(S)

xeT
=qe(S,T; f) +2|T| - eg(T, V(H)) - ()
<go(S, T ) +r=2c(G-(SUT))+|S|— f(S).

This completes the proof of assertion (1).

Next, suppose that (G — (S UT)) =rand 2 - 2(g; + &2) = g(S,T; f) +r —
2¢(G - (S UT))+|S| = f(S). Then all inequalities above (in the proof) become
equalities. Soc(G - (S UY)) = |T|+e(G-(SuUuT)—-r =|T|. By (3.17),
[S]+ Y] = 2¢(G - (S U Y)) = 2|T|. Moreover, the following assertions hold:

(a) forany v e V(H), [INg()nT| <2 (by (3.14));

(b) if C; (1 < j < ) contains a vertex in Vi, then C; contains no vertex in Vz; if
Cj contains a vertex in Vs, then |V2 N V(C))| = 1 (by (3.15)).
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Consider an arbitrary component C; of G — (S U T).

Claim 2. Either [Ng()NT| = 1 forany v € V(C)) or[V(C)| = 1,eq(V(C),T) =
2

Asc(G-(SUT) =r, es(V(CH,T) # 0; that is, C; contains al least one
verlex either in Vi or Va. If C; contains a verlex in Vs, then [V(C)] = 1 by
(a), (b) and the fact that ¢(G — (S U Y)) = |T|. Next assume that C; contains
a vertex in Vy. According to (a), for any v € V(C)), INg(v) N T] < 1. Let
Wiy = {v e VI(C)) : INgwyNnT| = 0}). If W, = 0, we are done. Otherwise,
since ¢(G— (S UY)) = |T|, W; is joined to x; € XN V(C)). Thus, G = (SUY U {x;))
contains at least ¢(G — (S UY)) + | components. As|S|+[Y| = 2¢(G—-(SUY)), we
have S|+ Y]+ [{x;}| = 2c(G - (SUY)) + 1 < 2¢(G - (S U Y U{x;})), contradicting
the 2-toughness of G.

We continue to prove assertion (2) by contradiction. Suppose C; contains an
edge e = ab such that C; — e is disconnected, but |V(C))| > 2. Then there exists
a vertex vp different from a, b. Without loss of generality, we may assume vy is
not adjacent to a, because e = ab is a cut edge of C;. Now |V(C))| = 2, and by
Claim 2, [Ng(v) N T| = 1 forany v € V(C;). Thus eg(a, T) = | and eg(vo, T) = 1.
Select x; = a. (This is possible because vertices of X are choosen arbitrarily at the
beginning.) Sincea € X,a ¢ Y. Then (G- ((SUY)—{vo})) = c(G-(SUY)) = |T|
foravg € E(G). As|S|+ Y] = 2c(G-(SUY)), 2c(G-({(SUY)—{w)) =
22(G-(SUY))=|SUY|> S UY)— {v}l, contradicting the 2-toughness of G.
This completes the proof. O

Now we are ready Lo state and prove our main theorems. The first result shows
the existence of f-factors including two cdges.

Theorem 3.1. Let G be a 2-tough graph on at least five vertices and let f be
a function with f : V(G) — (1,2} such that f(V(G)) = 0 (mod 2). If ¢, =
arby, e; = axb, are two edges of G with f(a,) =2 and f(b;)) =2 (i =1,2),then G
has an f-factor containing e; and es.

Proof. If G is a complete graph on at least five vertices, the assertion is (riv-
ial. Now, we may assume that G is non-complete. For convenience of applying
Lemma 2.1, we consider the operations on ey, e consecutively.

Let G, be the graph obtained from G by subdivision of e, (inserting a new
vertex i on the edge ¢;), and let G, be the graph obtained from G, by subdivision
of ez (inserting a new vertex 2 on the edge e2). Define two functions f : V(G,) —
(1,2}, o : V(Ga) = (1,2} as follows:

_ )2, ifv=u
i) = {f(v), ifve VG,
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and
2, if v = ug;

ik {fl(u), ifve VG,

Then G has an f-factor containing ¢ and e; if and only if G, contains an f>-factor.

Suppose that G, contains no f-factors. Then, by Lemma 3.1, there exist
S, TS V(G),S5;, T, CV(G)(i=12)salisfyingS =5, =85, T=T1-{w}, ) =
T5 — {uz} and

2-2e1+&2) <q6(S,T; N +r=-2c(G - (SUD))+ISI - f(S), (3.18)

where r is the number of components of G — (S U T') which are joined to 7,
g1 +& = 1 and T is an independent set of G with f(x) =2forall xe T.

Ife +& =1,i.e,citherg; = 1,62 =0org; = 0,6 = 1, then by Lemma
2.1, there exists exactly one edge ¢; (i = 1 or 2) whose location together with u; in
(G, 8, T)isof typel, orII, or IL. Since gg(S,T; f)+r—2c(G—-(SUT))+|S|-
f(§) < 0, the inequality in (3.18) becomes an equality, and then f(S) = |S], i.e.,
f(x) =1 forall x € §. Now {a;,az, b1, b2} NS = 0. So, the location cannot be of
type I or Il and it must be of type I1I. As gg(S, T; /) = ¢(G—(SUT)) = r, G-(SUT)
has no even components. But a location of type III requires an even component,
50 the operation on the edge which is located as in type III is conducted in step
two. That is, the locations of ap, by, up in (Go,S532, T2) are of type III. The first
step (i.e., subdivision of e;) produces an even component required in step two.
As aj, by ¢ S, we deduce that u; € Ty and e; € Eg(V(Coda), V(Ceven)), Where
Codd is an odd component of Gy — (S, U T;) and Ceye, is an even component of
G — (81 U T)). Moreover, Ceyey is the very component to which e, belongs. That
iS, € & E(Ceven)-

Since ) € Eg(V(Coaa), V(Ceven)), Cf = Codd U Ceven U {e1} corresponds to an
odd component of G — (S UT) and e; is a cut edge of Cj. As ey, ez € E(Cp), so
[V(CY)I > 2, a contradiction to Lemma 3.1 (2).

If &) + & = 2, then a;, b, u; in (G, S;, T;) (i = 1,2) are located as in type I, or
11, or III. Note that the operation on an edge e = ab (i.e., subdividinge = ab by a
vertex u) does not produce an even component in the new graph when vertices a,
b, u are located as in type I, or II, or III; and the original graph contains at least
one even component when a, b, u are located as in type Il or IIL.

(1) If both locations are of type I, then {a;,a2,6,62} € S. Since f(a) =
f(by) =2fori=1,2,s0we have

90(S, T; ) +7=2e(G = (S UT) +IS|= ) f(x) <=3,

xe§

a contradiction to (3.18).
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(2) If two locations are of types I and II (or types I and III), respectively,
then there exists exactly one edge e; (i = 1 or 2) lying in G[S] and thus |S| -
S(8) < -2. Assume e, € E(G[S]), then oG-S UT)) =c(G, - (S, UTy)) and
96(S, T3 f) = g,(S1,Ty; f1). Since the location of type II (or type III) requires
an even component in Gy — (S, U T}), we have g5(S, T; f) - (G- Uum) =
96,(81,T1; i) = ¢(Gy ~ (S U Ty)) < ~1. Therefore,

46, T ) +r=2e(G=(SUT) +IS|= ) fx) < -1 -2 = -3,

Xe§

a contradiction to (3.18).

The case of e; € E(G|S|) can be discussed similarly.

(3) If both locations are of type 1, then G — (S U T) has at least two even
components and {ay, a;, by, b} 'S # 0. Therefore,

qg(S,T;f)+r—-2c(Gu~(SUT))+jS!—Zf(x)s—2—l—_—-3,

xe§

a contradiction to (3.18).

(4) If two locations are of types Il and 111, respectively, then G — (S UT) has at
least two even components and {a|, as, b, b} NS # 0. We obtain a contradiction
similarly as in (3).

(5) If both locations are of type 111, note that each of the two operations re-
quires an even component as type I11 requires, so G — (S UT) contains at least two
even components and thus g(S, T; /) ~c(G-S ~T) < =2. If g6(S, T; f—c(G-
(SUT)) <=2orr<c(G-(SUT)), then

96(S, T /) +7=2e(G=(SUD) +IS|- ) f(x) < -3,

xe§

acontradiction to (3.18). Finally, we may assume g6(S, T, f)+2 = c(G-(SUT)) =
7. Again, the inequality (3.18) becomes an equality and f(x) = 1 for any x € S,
Suppose e € E(C). Since the locations of ay, by, ) in (Gy, S1, T)) are of type III,
ey = apby is a cut edge of C/, where C is an even component of G — (S U T) and
V(C{) induces two odd components in G| — (S; U T1). Since f(a)) = f(b)) = 2,
there exists a vertex v € V(Cy) distinct from ay and by, or IV(Cy)! = 3. But by
Lemma 3.1 (2), IV(C))| = 2, a contradiction. O

The next theorem shows the existence of f-factors excluding two edges under
the condition of 2-toughness.

Theorem 3.2. Let G be a 2-tough graph on at least five vertices, and f a function
with £ : V(G) — {1,2} and f(V(G)) = 0 (mod 2). If e = ajby,e = axb, are
two distinct edges of G with f(a;) = f(b) = | (i =L2)or fla)) = flaz) = 1,
J(bi) e (1,2} and f(by) # f(b2), then G contains an Sf-factor excluding e; and es.
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Proof. Similarly, we only need to consider the case that G is non-complete. For
convenience of applying Lemma 2.2, we consider the operations on ey, ez consec-
utively.

Let G; = G — {e,) and Gy = G — {e2}. Suppose that G, contains no f-factors.
Since f(a;)) = 1 (i = 1,2), then by Lemma 3.1, there exist S, T € V(G) and
S, TicV(G)(=1,2)suchthatS =85, =S52,T=T; =T, and

2-2e +62) <468, T5 /) +7 =2¢(G = (S U + 5| = f(S), (3.19)

where r denotes the number of components of G — (S U T) which are joined to T,
£, +& 2 1, and T is independent in G with f(x) = 2forall xeT.

There are two cases to consider according to the values of &; + ;. Note that
the operation on an edge e = ab (i.¢., deleting e) does not produce an even com-
ponent in the new graph when vertices a, b are located as in type IV,or V, or VI;
and the original graph contains at least one even component when a, b are located
as in type V or VL.

If &4+£; = 1, then2=2(e1+82) = q6(S, T; Hl+r—=2c(G—(SUT))+|S|-f(S) =0
and there exists exactly one edge e; (i = 1 or 2) whose location is of type V or
V1. Here no edge of e; is located as in type 1V for f(a1) = f(az) = 1. Since
468, T; f) = (G- (S uT)) =r,G - (S UT) contains no even components. But
type V or VI requires an even component. So the location of e; is of type V or
VI; and the first step (i.e., deletion of e;) produces an even component which the
operation on e requires. Itis not hard to see that cithere; € Eg(V(Coaa), V(Ceven))
ore; € EG(V(Ceyen), T), where Codq (resp. Ceven) is an odd (resp. even) component
of G, — (S, U T1). Moreover, Ceyen is the very component that operation on &;
requires, and hence a; € Ceyen-

If e; € EG(V(Codd), V(Ceven)), then Cy = Coad U Ceven U fey} is an odd com-
ponent of G — (S U T) and e, is a cut edge of Cp. If &1 € EG(V(Ceven), T), then
f(b1) =2 and Cj = Ceven is an odd component of G = (S UT). As f(bs) # f(b1),
b, € V(C;) and the location of e; must be of type V1. Hence e is a cut edge of Cy,.
In both cases, C;, contains a cut edge and [V(Cy)| = 3, a contradiction to Lemma
3.1(2).

Next consider the case & + &, = 2. If the location of e; = a;b; is of type
IV, then a;, b; € T and thus f(a;) = f(b) = 2, which is impossible. Thus the
locations of both ¢; and e, are of types V or VI. Furthermore, operation on the
edge which is located as in type V happens at most once, because f(b1) # fba).
Since both types V and VI require even components, the operations on e; and e
require even components. Then G — (S U T) has at least two even components.
Thus go(S, T, f) = (G- (S UT)) < =2.If g6(S, T f) - c(G-Suh)<-2or
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r<cG-(SuT)),then

96(S, T /) +r=2(G =S U +IS1- D" f(x) < -3,

xe§

a contradiction to (3.19). Suppose gG(S,T;f)+2 = (G ~S - T) = r. Similar
1o the discussion of case &) + &, = | above, the inequality (3.19) becomes an
equality. Without loss of generality, assume that the location of ey is of type VI
and f() = 1. Supposee) € E(C}), where (g is aneven component of G—(SUT).
So V(Cy) induces two odd components of G} — (S, U T;) and e; is a cut edge of
Cj. Since fa;) = f(b1) = 1, there is a vertex v € V(Cy) distinct from a; and by,
or [V(Cy)l = 3, a contradiction to Lemma 3.1 (2). ]

Remark 1. The condition that fla)) = 1(i =1,2) and at least one of f(by) and
J(b2) equal to 1 in Theorem 3.2 is best possible, as there exists a class of 2-tough
graphs in which after deletion of e; and e, the resulting graph does not have |-
factors, when at least one end of e; (i = 1,2) equal to 2. For example, in Fig.
4,let G = S UT U {x,y}, where T is an independent set, |S| = 2|T| with every
vertex s € § being adjacent to every vertex of V(G) — s and ax, by € E(G), and
let /(1) = 2forallt e T, f(s) = 1 forall s € S and f(x) = fly) = 1. Then
G contains no f-factors excluding edges ax, by. For another example, in Fig. 5,
G = S UT U (x,y}, where T is an independent set, |S| = 2|T] - 1 with every
vertex s € S being adjacent to all vertices of G — 5 and ax, ay, by € E(G), and
let f(s) = 1 for every vertex s € S, and for cvery vertex ¢ € T, S = 2, and
f(x) =1, f(y) = 2. Of course, G contains no f-factors excluding ax and by.

IS1=2IT|
fx)=1,f@) =1

Fig. 4: A graph has no {1, 2}-factors excluding edges ax, by

Our final result deals with the existence of f-factors including an edge and
excluding another edge.
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S| =2/T| -1
fy =1, fy) =2

Fig. 5: A graph has no (1, 2}-factors excluding edges ax, by

Theorem 3.3. Let G be a 2-tough graph on at least five vertices, and f a function
with £ : V(G) — {1,2} and f(V(G)) = 0 (mod 2). If e = a1by,¢ = azb, are two
edges of G with f(az) = f(b2) = 2 and at least one of (f(a), f(b1)} isequal to 1,
then G has an f-factor F excluding e, and including e;.

Proof. The assertion clearly holds for the case that G is a non-complete graph on
at least five vertices. From now on, we consider the case that G is non-complete.
For convenience of applying Lemmas 2.1 and 2.2, we consider the operations on
e) and ey consecutively.

Let G, be the graph obtained from G by deletion of e, and let G be the graph
obtained from G by subdivision of e; (inserting a new vertex u on the edge e2).
Define a function f : V(Ga) — (1,2} as follows:

ifv=up,

B
=V (), ifve VG = VG

Then G has an f-factor containing e, and excluding e, if and only if G, con-
tains an f>-factor.

Suppose that G, contains no f>-factors, then by Lemma 3.1, there exist S, T
VG)and S;,T; S V(G) (i=1,2)suchthat S =8, =52,T =T, =T - {u2} and

2-2(e +&)<qeS, T; f)+r=2c(G- (S V) +IS|~ f(S), 3.20)

where r denotes the number of components of G - (S U T') which are joined to T,
£ + & > 1 and T is independent in G with f(x) =2forallxeT.

If £, + & = |, then the inequality (3.20) becomes an equality, and cither the
location of e; is of one of types IV=VI or the location of e, is of one of types I
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- III. Moreover f(S) = [S], i.e., f(x) = 1 forall x € §. So {az,b2} NS = 0.
Since T is independent, {a;, b1} € T'; so this location is not of type L, II, IV. As
G6(S,T; f) =c(G-(SUT)) =r, G- (S UT) contains no even components. How-
ever the types V and VI require even components and both types can only occur in
the step one (deletion of e; from G), so the location must be type I1I and it occurs
in the step two. That is, the locations of az, by, 1 in (G», S,, T») are of type 11I; and
deletion of e; produces an even component that type Il requires. So we see that
either e; € EG(V(Coda), V(Ceven)) Or €1 € EG(T, V(Ceven)), Where Coyq is an odd
component of G; — (S U Ty), and Ceyen 18 an even component of Gy — (5, U 7).
Moreover, in both cases, Ceven is the very component operation on e, requires. In
other words, €3 € E(Ceyen).

Now Ceyen is an even component of G —(S;UT), and Ceye, — {€2} corresponds
to two odd components of Gz — (S2 U T2). Moreover, Cj = Cogg U Ceven U {e1}
(or Cj = Ceven) is an odd component of G — (S U T) and e; is a cut edge of Cj.
Since [Ng(az) N T| = 1 and u; € Tz, we have |Ng,(a3) N T2| = 2. As fla) = 2,
the odd component of G2 = (S2 U T%) that contains a» is not a singleton. Therefore
[V(C))I = 3. But by Lemma 3.1 (2), [V(C{)| = 2, a contradiction.

If &) + & = 2, then the location of ey is of type V or VI, and the location of ea
isof typel or Il or IlI. As 7' is independent, type IV never occur.

As argued above, the operation on an edge e = ab does not produce an even
component in the new graph when the location of a, b is of one of types [-VI; and
the original graph requires an even component when the locations of a, b are of
type IL, or I, or V, or VL.

(1) If the two locations are of types V and I respectively, then e; lies in G|S |
and thus |S| — f(§) < -2. Since deletion of ¢; requires an even component in
G-(SUT),qge(S,T; f)=c(G-(SUT)) < —1. Therefore

96(8,.T; [} +r-2e(G~ (S UT))+ S|~ f(§) <=1 -2 ==3,

a contradiction to (3.20).
(2) If the two locations are of types VI and I respectively, then {a,, b,} € S and
G - (S UT) contains at least one even component as type VI requires. Therefore,

qG(S,T;f)+r—2c-(G—(SUT))+|S|—Zf(x)5—1—2=—3,

xe§

a contradiction to (3.20).

(3) If the two locations are of types Il and V (or types Il and VI) respectively,
then |{az, b2} N S| = 1. Since both locations of types Il and V (or types II and VI)
require even components but produce none, we have

968, T ) +r=2e(G=(SUT)+IS|- D f) s -2~1=-3,

xeS
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a contradiction to (3.20).

(4) If the two locations are of types V and III (or types VI and III) respectively,
then G — (S U T) has at least two even components. Thus gg(S,T; f)— (G- (S U
™) <-21qge(S,T;/)—c(G-(SUT)) < =2o0rr<c(G—(S UT)), then

g(S, T ) +r=2c(G=-(SUT)) +|S|- Zf(x) £l

xe§

a contradiction to (3.20). Now we may assume (S, T; f)+2 = c(G-(SUT)) = r.
As discussed in the case &) + &2 = 1, the inequality (3.20) becomes an equality.
Suppose e; € E(Cy). Then e, is a cut edge of Cjj. Note that deletion of e; produces
no even component because the location of e; is of type V or type VI. It follows
from the location of ez being of type Il that Cy is an even component of G—-(S UT)
and V(C}) induces two odd components of Gz —(8,UT3). Since f(az) = f(b) = 2,
by parity argument, we see that there exists a vertex v € V(C]) distinct from a,
and b, or [V(C))| = 3. On the other hand, |V(C)| = 2 by Lemma 3.1 (2) and the
fact that e is a cut edge of Cj.

This completes the proof. O

Remark 2. The condition that at lcast one of f(a;) and f(b,) is cqual to 1 in
Theorem 3.3 is necessary. For instance, let G be a graph with vertex-set S UT U
{x,y}, where |S| = 2|T| — 2 and |T| = 4, and G[T] has only one edge ¢; = a;b,.
Moreover, every vertex of S is adjacent to all other vertices of G, each of {x, y}
has only one neighbor in T, and their neighbors are distinct (see Fig. 6). Select
an edge e; = asb, from G|S | and let f(v) = 2 forall v € T U {x, y, a2, by}, and
f(v)y = Lforall v € § — {ay, b2}. Then G contains no f-factors excluding e; and
including e.

Fig. 6: A graph has no {1, 2}-factors including e; and excluding e,
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