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Abstract
The intersection graph for bases of a matroid M = (E,B) is a
graph G/(M) with vertex set B and edge set {BB' : |[B N B| #
0, B, B’ € B}. In this paper, we prove that the intersection graph
G (M) for bases of a simple matroid M with rank (M) > 2 has at
least two edge-disjoint Hamilton cycles whenever |V (G'(M))| > 5.
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1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). A matroid
M = (E,B) is a finite set E together with a nonempty collection B of
subsets of E that satisfies the following condition: for any B, B’ € B with
|B| = |B’| and for any e € B\ B’, there exists ¢ € B’\ B such that
(B\ {e})u{e'} € B. Each member of B is called a base of M. An element
of E that is contained in every base is called a coloop, and an element of
E that is contained in no base is called a loop. A matroid without loops
and 2-circuits is called a simple matroid. The rank r of a matroid is the
number of elements in a base. We denote the uniform matroid of rank m
on an n-element set by Uy, .

The base graph of a matroid M = (E,B) is the graph G' = G'(M)
with vertex set V(G’) = B and edge set E(G') = {BB’' : B,B’ € B and
|B \ B’| = 1}, where the same notation is used for the vertices of G' and
the bases of M. The basic properties and characterizations of base graphs
of matroids can be found in [9].
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Next, we extend base graphs into a family of larger graphs by relaxing
the requirement for vertices adjacency as follows: The intersection graph for
bases of a matroid M = (E, B) is the graph, denoted by G (M), with vertex
set V(G!) = B and edge set E(G') = {BB': |BnB’'| #0, B, B’ € B(M)}.

For (M) = 1, the intersection of any two bases of M is empty and thus
we see that the intersection graph G!(M) with rank (M) = 1 is a collection
of |B| isolated vertices. Clearly, for 7(M) > 2, the intersection graph
G'(M)contains the base graph G'(M) as a connected spanning subgraph.
In particular, for r(M) = 2, the intersection graph G!(M) is exactly the
base graph G’ of M. The intersection graph G! for bases of matroid Us 4
is shown in Fig.1.

Fig 1

The problem of Hamilton cycles in base graphs of matroids have been
investigated by many researchers. Cummins [5] showed that the base graph
of a matroid with at least three vertices has a Hamilton cycle. Bondy [3]
showed not only that every base graph is Hamiltonian, but also that most
are pancyclic. Holzmann and Harary [6] showed that for every edge in the
base graph of a matroid there is a Hamilton cycle containing it and another
Hamilton cycle avoiding it.

The existence of disjoint Hamilton cycles in graphs in general is a very
challenging problem, only limited knowledge exists in the literature. Most
known results are involved with either large degree sum or large connec-
tivity as a sufficient condition (e.g., [7], [8]). Since the base graph G'(M)
contains Hamilton cycles and the intersection graph G'(M) contains the
base graph G’(M) as a connected spanning subgraph, it is natural to ex-
plore the problem of disjoint Hamilton cycles in the intersection graph G,
In this paper, we prove that there are at least two edge-disjoint Hamilton
cycles in the intersection graph G'(M) for bases of any simple matroid
M whenever [V(G')| > 5. Note that if a matroid M contains a coloop e,
then every base of M contains e. Thus the intersection graph G!(M) is
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a complete graph. Clearly in this case there are at least two edge-disjoint
Hamilton cycles in the intersection graph G' whenever |V(G7)| > 5.

For v € V(G),A C V(G),B C V(G) — A, we define N4(v;G) =
{z € A,vz € E(G)}, Na(B;G) = U ep Na(y; G), and Eg(A,B) = {zy €
E(G):ze€ A,y B}.

Terminology and notations not defined here can be found in [10].

2 Main result and its proofs

The main result of this paper is the following.

Theorem 2.1. Let M = (E,B) be a simple matroid with rank r(M) > 2
and G! be the intersection graph for bases of M. If |V(G')| > 5, then G!
has at least two edge-disjoint Hamilton cycles.

To prove this theorem, we start with a few well-known results.

Lemma 2.2. (see [2]) The complete graph Kn(n > 2k + 1) has k edge-
disjoint Hamilton cycles. K, (n > 2k) has k edge-disjoint Hamilton paths
having any given k pairs of vertices, which are mutually disjoint, as their
end vertices.

Lemma 2.3. ([6]) Let M = (E,B) be a matroid on E ande € E. If G',
G and G4 are the matroid base graphs of M, M\e and M/e, then V(G})
and V(GY) partition V(G").

Lemma 2.4. (Hall’s Theorem, see [4]) Let G be a bipartite graph with
bipartition (X,Y). Then G contains a matching that covers every vertexr
in X if and only if |Ny(S;G)| = |S| for all S C X.

Hereafter, we always assume that any matroid M has no coloops, (M) >
2 and |B| > 3. In order to proceed to the proof of Theorem 2.1, we need
several technical lemmas.

Lemma 2.5. (see [1]) Let G be a simple graph with two edge-disjoint
Hamilton cycles Cy and Cy. If |V(G)| > 5, then we can choose e; € Cy
and ey € Cy such that {ey, ex} is a matching of G.

For any e € E\ B, B U {e} contains a unique basic circuit, denoted

by C(e,B), and we use B, and B, to denote the bases containing e and
avoiding e, respectively.

Lemma 2.6. Let M = (E, B) be a simple matroid. If |[E| =n and r(M) =
r, then |B.| = 2(n—7) -1 and |Be| =n—r+1 foranye e E.
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Proof: For any e € E, since M does not has loops or coloops, there
exist bases B; and By such that e ¢ B; and e € B;. For any element
f e (E\Bi)\{e}, C(f,B1) € B;U{f} is a basic circuit of M with respect
to the base B;. So there exist two elements {g1,92} C C(f, B1) \ {f} such
that (B, U{f})\ {g:} € B(M) and e ¢ (B U{f})\ {9} (i = 1,2). So there
are at least 2|(E'\ B1)\{e}|+1=2n—r—1)+1=2(n —r) — 1 bases
avoiding e. Furthermore, for any element x € E'\ By, C(z, B2) C BaU{z}
is a basic circuit of M with respect to the base Bs. So there exists an
element y € C(z,Bs) \ {z,e} such that (B2 U {z}) \ {y} € B(M) and
e € (BaU{z})\ {y}. Hence there are at least |[E\ B2|+1 = n—r+1 bases
of M containing e. O

Lemma 2.7. Let M = (E,B) be a simple matroid on E and e be any
element of E. Let G', G| and G be the base graphs of matroids M, M\e
and M/e, respectively. If r(M) = 2 and |[E| =n 25 or r(M) > 3 and
|E] = n > 2r, then for any four distinct vertices By, Bz, Bz and By of
V(G1), there exist four distinct vertices By, By, B; and By of V(G4) such
that By B}, BaB), B3 B4 and ByBj are edges of G'.

Proof: By Lemma 2.6, we have that [V(G)| > 5 and |[V(G5)| > 4. Let
B; = {Bi, Bz, B3, B4} be any four vertices of G}. It is easy to see that (B;U
{e})\{e:} € B, is a base of M for any e; € C(e, B;)\{e} and B;B] € E(G’)
(i =1,2,3,4). It is obvious that |[Ng, (B;; G')| = |C(e,B;) \ {e}| 22 (: =
1,2,3,4). Let By = Ng;(B1;G’) € V(G3). We consider the bipartite graph
H = (B, B2) with vertex set V(H) = By UB; and E(H) = Eg/(B;; By).
Now we want to find four distinct vertices { B}, Bj, B;, Bj} C By such that
B, B, ByBj, B3B; and ByBj are edges of G'. It suffices to show that we
can find a matching N of H covering every vertex of B;. By Lemma 2.4,
we need only to check that for any subset S of By,

|Ns, (S H)| = |S]. (*)

When |S| = 1, we have [N, (S; H)| = [Na, (Bi; H)| = |Ney (Bis &) >
|C(e,Bi) \ {e}| > 2>1=|5] for each i € {1,2,3,4}. When |S| = 2, we
have [N, (S; H)| > |Ng,(B;; H)| = |[Ng, (Bi;G')| > 2 = |S| forany B; € S.
Next we show that () holds for |S| = 3 by contradiction. Suppose that
there exists a subset S of By with |S| = 3 such that |Ng,(S; H)| < |S| = 3.
On the other hand, |Ng,(S; H)| = [Ng, (Bi; G')| > 2 for any B; € S. Thus
we have | N, (S; H)| = 2. Without loss of generality, let S = {Bj, Bz, B3}
and Ng,(S;H) = {B1,B3} C By. Clearly, the subgraph of H induced
by S U Ng,(S; H) is the complete bipartite graph K3 5. This implies that
there exists {e;,e;} C Cle, B;)\ {e} (e: # €!) such that (ByU{e})\{e1} =
(B2 U {e}) \ {e2} = (B3 U {e}) \ {es} = Bj and (B U {e}) \ {e1} =
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(BaU{e}) \ {er} = (BsU {e}) \ {e5} = B; for i € {1,2,3,4}. It is easy
to see that this is a contradiction. So we have |Ng,(S; H)| > |S| for any
subset S of By when |S| = 3.

Finally, we show that |Ng,(B1; H)| = |B2| > |Bi| = 4. If there exists
B’ € B, such that dg (B’) = 3. Without loss of generality, let Ng, (B"; H) =
{B1, B3, B3} C B;. Then there exists e; € C(e, B;) \ {e} (i = 1,2,3) such
that (B U {e}) \ {ea} = (B2 U {e}) \ {e2} = (B3 U {e}) \ {es} = B".
It is obvious that for any e} € C(e, B;) \ {e,e;} (: = 1,2,3), we have
Bi = (ByU{e}) \{e1}, By = (B2U{e}) \ {5} and B; = (BzU{e}) \ {e5}.
Furthermore, it is easy to see that {Bf, Bj, B3, B’} are four distinct bases
of M. So {B!,B},B},B'} C By and |Ng,(B1;H)| = |Bs| =2 4 = |By].
If there exists B’ € B, such that dy(B’) = 4, then we can prove that
|Ng, (By; H)| = |B2] = 5 > |By| similarly. Next we assume that 0 <
dy(B') < 2 for any vertex B’ of Bs. Since

| B2

| 4
dy(B}) =) _du(B;) =8,
i=1

=1

we have |Ng,(By; H)| = |B2| > 4 = |By|. So we can find a matching NV of
H covering every vertex of B; and we complete the proof. O

Let e € E and let G¢ and G§ be subgraphs of G induced by B, and B,
respectively. By the definition of intersection graphs, we have the following
result.

Lemma 2.8. Let M = (E, B) be a matroid on E and G' be the intersection
graph for bases of M. For anye € E, G is the intersection graphs for bases
of M\e and G§=G' - V(G%).

It is easy to see that G5 is a complete graph induced by the vertices
containing e and |V(G$5)| = |Be|. If 7(M) > 2, then the intersection graph
G' has the base graph G’ of M as a connected spanning subgraph. By
Lemmas 2.7 and 2.8, we have the following lemma immediately.

Lemma 2.9. Let M = (E,B) be a simple matroid and e € E. Let G' be
the intersection graph for bases of M. If r(M) =2 and |E| =n > 5 or
r(M) > 3 and |E| = n > 2r, then for any four distinct vertices By, Ba, B
and By of V(G$), there exist four distinct vertices By, By, Bj and B} of
V(GS) such that By B}, BoBj, B3BY and ByB) are edges of G,

Lemma 2.10. Let M = (E, B) be a simple matroid on E. If |[E|=n >4
and r(M) = 2, then the intersection graph G! for bases of M has at least
two edge-disjoint Hamilton cycles.
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Proof: It is easy to see that M is isomorphic to Uy ,(n > 4). So we show
that the intersection graph G’(Us,,) (n > 4) has two edge-disjoint Hamil-
ton cycles. We prove this by induction on n. If n = 4, then M is isomorphic
toUsq. Set E = {1,2,3,4}. Then B(Us4) = {(12), (13), (14), (23), (24), (34)}.
We label the vertices of Gf by the bases of Uj 4.

Clearly, (12)(13)(23)(24)(34)(14)(12) and (12)(23)(34)(13)(14)(24)(12)
are two edge disjoint Hamilton cycles of G (see Fig.1).

Suppose that the result holds for |E| < n — 1. Next we prove that
the result holds for |E| =n > 5. Set E = {1,2,--- ,n}. For n € E, the
induction hypothesis assures the existence of two edge-disjoint Hamilton
cycles C; and C; in G} because G7 is isomorphic to G¥ (Uz ,\n).

By Lemma 2.5 and |V(G})| = C2_, > C? > 6, we can choose e; =
B1B; € E(C;) and e; = B3Bs € E(C3) such that {e1,es} is a match-
ing of G!. By Lemma 2.9, we can find four distinct vertices B}, Bj, B}
and Bj in G such that By Bj, ByBj, B3Bj and ByB) are the edges of
G!. By Lemma 2.2 and |V(G%)| > 4, there are two edge-disjoint Hamil-
ton paths P; and P, with {Bj, B} and {Bj, Bj} as their end vertices
because G§ is a complete graph K,, with m = Cl = n > 5. Then
(Cl - Ble) UBlBi up UBgBé and (Cy — 3334) UBaBé UP, UBqBé are
two edge-disjoint Hamilton cycles in G! (see Fig. 2). Hence we complete

the proof. (|
Cl -‘._.:‘; _____________ rogh
'% By B P,
4 I
i B, B,
_ - 1 “
- e e i el ’ -
; "B, :_ By
g - ' P,
“ C2 ‘A""-:‘“"-g e —0734
Gf 7 . G,*
Fig. 2 )

Proof of Theorem 2.1: We prove the theorem by induction on |E| =n.
Note that |E| > 3 by the hypothesis. When 7(M) = 2, by Lemma 2.10, the
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theorem holds. When |E| = 5 and 3 < r(M) < 4, G' is a complete graph
K. Since m > 5, G! has at least two edge-disjoint Hamilton cycles.

Assume that the theorem is true for |F] < n — 1. We show that the
theorem holds for |E] = n > 6. When n < 27, G! is a complete graph
K, with m > 5 and thus has two edge-disjoint Hamilton cycles. Next we
consider the case n > 2r > 6.

Let e be a given element of E. If M\e has coloops, by Lemma 2.6, we
have [V(G$)| 2 2(n—7—-1)+1> 2(r—1)+1 > 5; then G{ is a complete
graph K, with order m > 5. So G§ has two edge-disjoint Hamilton cycles
C) and Cy. If M\e does not have coloops, then the induction hypothesis
assures that G also has two edge-disjoint Hamilton cycles C and Cbs.

By Lemma 2.5, we can choose e; = B1 By € E(C;) and ey = B3B, €
E(C5) such that {e1,e2} is a matching of Gi. By Lemma 2.9, there exist
four distinct vertices Bj, B}, B} and Bj of G§ such that B\Bj, ByBq,
B3 B} and BB are edges of G'. By Lemma 2.2 and |V(G3)| 2 n—r+1 2>
r 4+ 1 > 4, that have two edge disjoint Hamilton paths P; and P> in G§
that have {B], B4} and {Bj, B}} as their end vertices, respectively. Thus
(C]_ s Ble) U B, Bi upP UBgBé and (Cg o B3B4) UBgBé UpPu B4BQ’1 are
two edge disjoint Hamilton cycles in G! (see Fig. 2). Hence we complete
the proof. O

Remark. When 7(M) = 2, the intersection graph G!(M) is the same as
the base graph G'(M). By Lemma 2.10, we can conclude that base graph
G'(M) of a simple matroid M with rank (M) = 2 has at least two edge-
disjoint Hamilton cycles whenever |E| = n > 4. The example shown in Fig.
1 has only two edge-disjoint Hamilton cycles, which demonstrate that The-
orem 2.1 is best possible. For simple matroids M with rank »(M) > 3, we
anticipate that G'(M) has at least two edge-disjoint Hamilton cycles when
|[V(G'(M))] is relatively large. Note that M needs to be a simple matroid;
otherwise, consider a matroid M consisting of three connected components
and each component is a 2-circuit. Then we can see that the base graph of
M is the cube C430K5, which does not contain two edge-disjoint Hamilto-
nian cycles.

Since all the known examples without two edge-disjoint Hamilton cycles
have relatively small orders, this prompts us to pose an open problem:

Open Problem 2.11. Let G’ be the base graph for a simple matroid with
rank r(M) > 3. Does there ezist a constant Ny such that G' contains two
or more edge-disjoint Hamilton cycles when |V{(G'(M))| > Np?
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