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Abstract A (k, g)-cage is a graph that has the least number of vertices among all
k-regular graphs with girth g. It has been conjectured (Fu et al. in J. Graph Theory,
24:187–191, 1997) that all (k, g)-cages are k-connected for every k ≥ 3. A k-con-
nected graph G is called superconnected if every k-cutset S is the neighborhood of
some vertex. Moreover, if G−S has precisely two components, then G is called tightly
superconnected. In this paper, we prove that every (4, g)-cage is tightly superconnected
when g ≥ 11 is odd.
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1 Introduction

Throughout this paper, only undirected simple graphs are considered. Unless otherwise
defined, we follow [1] for terminology and definitions.
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Let G be a graph with vertex set V (G) and edge set E(G). For u, v ∈
V (G), dG(u, v) denotes the length of a shortest path between u and v in G. For vertex
sets T1, T2 ⊆ V (G), E(T1, T2) is the set of the edges with end-vertices in T1 and
T2, respectively, and d(T1, T2) = dG(T1, T2) = min{dG(t1, t2) : t1 ∈ T1, t2 ∈ T2}
denotes the distance between T1 and T2. For S ⊂ V (G), G − S is the subgraph of G
obtained by deleting the vertices in S and all the edges incident with them. The set
of vertices which are at distance r to S in G is denoted by Nr (S) = {v ∈ V (G) :
dG(v, S) = r}, where r is an integer. We write N (S) instead of N1(S). The length
of a shortest cycle in G is called the girth of G, denoted by g(G). The diameter of
G is the maximum distance between any two vertices in G. Let G[S] be the induced
subgraph of G for S ⊆ V (G).

A k-regular graph with girth g is called a (k, g)-graph. A (k, g)-cage is a (k, g)-
graph with the least number of vertices for given k and g. We use f (k, g) to denote
the number of vertices of a (k, g)-cage. A cutset X of G is called a non-trivial cutset
if X does not contain the neighborhood N (u) of any vertex u /∈ X . A k-connected
(or k-vertex-connected) graph G is called superconnected if for every vertex cutset
S ⊆ V (G) with |S| = k is a trivial cutset. The superconnectivity of G is denoted by
κ1 = κ1(G) = min{|X | : X is a non-trivial cutset}. Moreover, if G − S has precisely
two components, then G is called tightly superconnected. The edge-superconnectivity
λ1 is defined similarly.

Cages were introduced by Tutte [14] in 1947, and have been extensively studied.
Most of the work carried out so far has focused on the existence problem, whereas very
little is known about the structural properties of (k, g)-cages. For more information,
reader is referred to the surveys [4,16]. Recently, several researchers have studied the
connectivity of cages. Fu et al. [5] proved that all cages are 2-connected, and then
subsequently showed that all cubic cages are 3-connected. They then conjectured that
(k, g)-cages are k-connected. Daven and Rodger [2], and independently Jiang and Mu-
bayi [6], proved that all (k, g)-cages are 3-connected for k ≥ 3. Xu et al. [17] proved
that every (4, g)-cage is 4-connected, and Marcote et al. [12] improved this result in
showing that every (k, g)-cage with k ≥ 4 is 4-connected. Further, Lin et al. [8] have
proved that every (k, g)-cage with k ≥ 3 and odd girth g ≥ 7 is �√k + 1�-connected.

For the edge-connectivity of (k, g)-cages, Wang et al. [15] showed that (k, g)-cages
are k-edge-connected when g is odd, and subsequently, Lin et al. [9] proved that (k, g)-
cages are k-edge-connected when g is even. Recently, Lin et al. [7] and Marcote and
Balbuena [10] proved that (k, g)-cages are edge-superconnected.

The objective of this paper is to prove that every (4, g)-cage with odd girth is tightly
superconnected. Cubic cages have been shown to be tightly superconnected in [11].

2 Main Results

First, we list several known results which will be used in proving our main theorem.

Theorem 1 [3,5] Let G be a (k, g)-cage with diameter D, where k ≥ 2 and g ≥ 3.
Then D ≤ g and f (k, g) < f (k, g + 1).

Theorem 2 [10] Every (k, g)-cage with odd girth g ≥ 5 is edge-superconnected.
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For edge-connectivity, Tang et al. [13] made the following conjecture:

Conjecture 1 [13] Every (k, g)-cage of odd girth g ≥ 5 has λ1 = 2k − 2.

Here we verify the conjecture for k = 4.

Lemma 1 Every (4, g)-cage of girth g ≥ 5 has λ1 = 6.

Proof Let M be a non-trivial minimum edge cutset of G. From Theorem 2, every
(4, g)-cage is edge-superconnected and thus |M | ≥ 5. Suppose C is a component of
G − M . The degree sum of all the vertices in C should be even, i.e., 4|V (C)|− |M | =∑

v∈V (C) dC (v) ≡ 0 (mod 2). Thus |M | must be even and so |M | ≥ 6. Moreover, if
uv ∈ E(G), then E({u, v}, N ({u, v})) is a nontrivial edge cutset of G, of cardinality
6. As a consequence, λ1(G) = 6. ��

The following lemma has been proved in [13].

Lemma 2 [13] Let G be a (4, g)-cage with odd girth g ≥ 5. Assume that there exists
a non-trivial cutset X ⊆ V (G) such that |X | = 4, and let C be a component of G − X.
Then there exists a vertex u ∈ V (C) such that d(u, X) ≥ (g − 1)/2.

We now provide a stronger version of the above lemma.

Lemma 3 Let G be a (4, g)-cage with odd girth g ≥ 5. Assume that there exists a
non-trivial cutset X ⊆ V (G) such that |X | = 4, and let C be a component of G − X.
Then max{d(u, X) : u ∈ V (C)} = (g − 1)/2.

Proof By Lemma 1 we know that λ1 = 6, then G − X contains exactly two compo-
nents C and C ′. By Lemma 2, there exists a vertex v ∈ V (C ′) such that dC ′(v, X) ≥
(g − 1)/2. Since the diameter of G is at most g, there exists a vertex u ∈ V (C)

such that (g + 1)/2 ≥ d(u, X) ≥ (g − 1)/2. Suppose d(u, X) = (g + 1)/2, then
d(v, X) = (g − 1)/2. Let NC (u) = {u1, u2, u3, u4}, NC ′(v) = {v1, v2, v3, v4} and
X = {x1, x2, x3, x4}. Then d(ui , v j ) ≥ g − 2, for all i, j = 1, 2, 3, 4.

Claim 1 For each x ∈ X, if d(x, N (v)) = (g − 3)/2, then there exists a unique
v′ ∈ N (v) such that d(x, v′) = (g − 3)/2.

Otherwise, suppose d(x, v1) = d(x, v2) = (g−3)/2, then a cycle of length shorter
than g is formed by the two shortest paths from x to v1 and v2 together with vv1 and
vv2.

Claim 2 There exist un, u p ∈ N (u) and distinct vm, vq ∈ N (v) such that d(un, vm)

≥ g − 1 and d(u p, vq) ≥ g − 1.

Otherwise, assume that there exists at most one vertex s ∈ N (u) ∪ N (v), such that
d(ui , v j ) = g −2, for all ui , v j �= s. Then taking into account Claim 1, each vertex in
N (u) − s is at distance (g − 1)/2 from each vertex in X , and there are at least twelve
shortest paths of length (g − 1)/2 from N (u)− s to X , which can not have a common
vertex in (N (X) ∩ V (C)) − X (otherwise, a cycle of length shorter than g appears
in G). So |E(X, C)| ≥ 12 and then there are at most four edges left from X to C ′, a
contradiction to Lemma 1.
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Fig. 1 Graph G ∪ E( f ) ∪ E( f ∗)

Without loss of generality, by Claim 2, we assume d(u1, v1) ≥ g − 1 and
d(u2, v2) ≥ g − 1. Then we can construct a new (4, g′)-graph as follows: in
G ′ = G − u − v, add a vertex y and six edges u1v1, u2v2, yu3, yu4, yv3 and yv4. So
|V (G ′)| < |V (G)|, and it is clear that g′ ≥ g, a contradiction to Theorem 1. ��

Suppose U and W are two vertex subsets of a given graph and |U | = |W |. For a
1–1 mapping f : U �→ W , we define E( f ) = {u f (u) : u ∈ U }.
Lemma 4 Let H be a bipartite graph with bipartition (U, W ), where |U | = |W | = 4,
such that |E(H)| ≤ 4 and �(H) ≤ 3. Let H∗ be a copy of H with bipartition
(U∗, W ∗) and G = H ∪ H∗. Then there exist two 1–1 mappings f : W �→ U∗ and
f ∗ : W ∗ �→ U such that no new 4-cycle is created in graph G ∪ E( f ) ∪ E( f ∗).

Proof Let U = {a1, b1, c1, d1} and W = {a2, b2, c2, d2}. It suffices to show
that the result holds for |E(H)| = 4 and �(H) ≤ 3. Let f ∗ be defined
by E( f ∗) = {a∗

2a1, b∗
2b1, c∗

2c1, d∗
2 d1}, where a∗

i , b∗
i , c∗

i d∗
i denote the copies of

ai , bi , ci , di (i = 1, 2). Let us define the other 1–1 mapping f according to the fol-
lowing cases. First, if H can be partitioned into two disconnected bipartite subgraphs
H1 = ({a1, b1}, {a2, b2}) and H2 = ({c1, d1}, {c2, d2}) of cardinality four, then f is
defined by E( f ) = {a2c∗

1, b2d∗
1 , c2a∗

1 , d2b∗
1}. Second, if H has a vertex of degree 3,

say a2a1, a2b1a2c1 ∈ E(H) (see the two graphs depicted on the left in Fig. 1 in which
the pair of 1–1 mappings are indicated by dotted lines) or H contains a path of length 4
(see the graph depicted on the right in Fig. 1), then E( f ) = {a2d∗

1 , b2c∗
1, c2b∗

1, d2a∗
1 }.

In either case, it is easy to verify that G has no 4-cycles. ��
To prove that every (4, g)-cage G with odd girth g ≥ 11 is tightly superconnected,

we reason by contradiction and assume that there exists a non-trivial cutset S of order
4 in G. Let G1 be the smaller component of G − S and G2 = G − S − G1. Then,
from Lemma 3, we see that max{d(u, S) : u ∈ V (Gi )} = (g − 1)/2 (i = 1, 2) and
|V (G1)| ≤ |V (G)|/2 − 2. We proceed by constructing a (4, g′)-graph of order less
than |V (G)|, where g′ ≥ g, which contradicts Theorem 1. To do that, the following
consequence is quite useful.

Corollary 1 (i) Let N (u) = {u1, u2, u3, u4}, then

(g − 5)/2 ≤ dG1(N (ui ) − u, S) ≤ (g − 3)/2 for all i = 1, 2, 3, 4. (1)

(ii) Given s ∈ S such that d(s, ui j ) ≤ (g − 3)/2 for some ui j ∈ N (ui ), then
d(s, u′) ≥ (g − 1)/2 for all u′ ∈ N (ui ) − ui j .
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(iii) |N(g−5)/2(s) ∩ N2(u)| ≤ 1 for all s ∈ S and |N(g−5)/2(x) ∩ N2(u)| ≤ 1 for all
x ∈ N (S).

Proof If (i) does not hold, then the vertex ui is at distance (g + 1)/2 to S, which is
impossible by Lemma 3. If (i i) or (i i i) is not true, then a cycle of length g − 1 can be
created. ��

Lemma 5 If |V (G1) ∩ N (si )| = 2 and |V (G2) ∩ N (si )| = 2 for all si ∈ S, then G
is not a (4, g)-cage.

Proof Let N (u) = {u1, u2, u3, u4} and Wi = N (ui ) − u = {ui1, ui2, ui3} for
i = 1, 2, 3, 4.

Claim 1 For each Wi , i = 1, 2, 3, 4, if there exists at most one vertex x j ∈ Wi such
that d(x j , S) = (g − 5)/2, then G is not a (4, g)-cage.

Any two vertices from Wi are not at distance (g − 3)/2 to the same vertex in
S. Otherwise, a cycle of length g − 1 appears. Similarly, it is impossible to have
d(ui , s) = d(u j , s) ≤ (g − 3)/2 for any two distinct vertices ui , u j and a vertex
s ∈ S. And there is a vertex in Wi which is at distance (g − 5)/2 or (g − 3)/2
to S. Otherwise, the vertex ui is at distance (g + 1)/2 to S which is impossible by
Lemma 3. Without loss of generality, assume ui1 ∈ Wi to be a vertex that satisfies
d(ui1, S) ∈ {(g − 5)/2, (g − 3)/2}. In the rest of this paper, connecting two vertices
means joining the two vertices by a new edge and connecting a vertex x to a set R
means joining x to every vertex in R.

Let W = {z1, z2, z3, z4}. We construct a bipartite graph H = (W, S), where
|W | = |S| = 4 and zi s j ∈ E(H) if and only if dG1(s j , Wi − ui1) ≤ (g − 3)/2. It is
clear that there are at most eight paths in G of length at most (g−3)/2 from ∪4

i=1Wi to
S; otherwise, since |V (G1) ∩ N (si )| = 2 (i = 1, 2, 3, 4), containing more than eight
paths implies that a cycle of length shorter than g appears. This implies that there are
at most four paths of length at most (g − 3)/2 from ∪4

i=1(Wi − ui1) to S. Hence we
have that |E(H)| ≤ 4 and furthermore, we see that �(H) ≤ 3, because these four
paths can not start from the same Wi − ui1, otherwise, by the Pigeonhole Principle, it
would imply that ui1 and another vertex from Wi have distance (g − 3)/2 to the same
vertex in S, which is impossible.

Now for the bipartite graph H , we showed that �(H) ≤ 3 and |E(H)| ≤ 4. Let
H∗ be a copy of H . By Lemma 4, there are two 1–1 mappings f : S �→ W ∗ and
f ∗ : S∗ �→ W such that no new 4-cycles are created in H ∪ H∗ ∪ E( f ) ∪ E( f ∗).

Considering the subgraph N = G[(V (G1)−u − N (u))∪ S], each edge in H ∪ H∗
implies a path of length (g − 3)/2 in graph N , and the existence of mappings f and
f ∗ implies that there is a way to connect two copies of N such that there exists no
cycles of length (1 + 1 + (g − 3)/2 + (g − 3)/2) = g − 1, which is corresponding to
a 4 cycle in H ∪ H∗ ∪ E( f ) ∪ E( f ∗).

Let N∗ be a copy of N . For every x ∈ V (N ), let x∗ denote its copy in N∗. Now we
construct a 4-regular graph G ′ (see Fig. 2) with girth at least g by using N and N∗:
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N N*

S1

S4

S3

S2

S*1

S*4

S*3

S*2

u11

u31

u21

u41

u*31

u*21

u*11

u*41

Fig. 2 Illustration of the construction in Claim 1, where f ∗(s∗
i ) = zi (i = 1, 2, 3, 4) and f (s1) = z∗

2,
f (s2) = z∗

1, f (s3) = z∗
4, f (s4) = z∗

3

(a) connect ui1 and u∗
i1 for i = 1, 2, 3, 4;

(b) si is connected with u∗
j2 and u∗

j3 if and only if f (si ) = W ′∗
j for i, j = 1, 2, 3, 4;

(c) s∗
i is connected with u j2 and u j3 if and only if f ∗(s∗

i ) = W ′
j for i, j = 1, 2, 3, 4.

Consider the girth of G ′. Any new cycle C introduced in the construction has to use
at least two new edges added in the processes (a), (b) and (c). If C goes through two
edges in (a), then C has length at least 2(g−4)+2 > g since g ≥ 11. If C contains two
edges in (b) and (c), then the length of C is at least (g−1)/2+(g−3)/2+2 = g, because
H ∪ H∗ ∪ E( f ) ∪ E( f ∗) creates no new 4-cycles. If C goes through one edge in (a)
and one edge in (b) or (c), then C has the length at least (g − 4) + 2 + (g − 3)/2 > g
since g ≥ 11. It is obvious that if the cycle C goes through more than two new
edges, its length is at least g. Hence G ′ is 4-regular and has girth at least g, but
|V (G ′)| = |V (N∗)| + |V (N )| = 2|V (G1)| − 2 < |V (G)|, a contradiction to the fact
that G is a cage. So Claim 1 is proved.

We continue the proof by considering two cases according to the neighbors of u.

Case 1 All the neighbors of u are at distance (g − 3)/2 to S.

This is a special case of Claim 1.

Case 2 There are at most three neighbors of u at distance (g − 3)/2 to S.

Hence there exists a vertex v ∈ N (u) such that d(v, S) = d(u, S) = (g −1)/2. Let
N (u) = {u1, u2, u3, v}, N (v) = {v1, v2, v3, u}, Wi = N (ui ) − u = {ui1, ui2, ui3}
and Ti = N (vi )−v = {vi1, vi2, vi3}, i = 1, 2, 3. If there is at most one vertex x ∈ Wi

or y ∈ Ti such that d(x, S) = d(y, S) = (g − 5)/2 for i = 1, 2, 3, then by Claim 1,
G is not a (4, g)-cage.
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Assume that there exist two sets Wi and Tj , say W3 and T3, such that |N(g−5)/2(S)∩
T3| ≥ 2 and |N(g−5)/2(S) ∩ W3| ≥ 2.

Now we consider Wi and Ti for i = 1, 2. Let us examine the distance from Wi and
Ti to S. If, say in W1, there are no vertices with distance less than (g − 1)/2 to S, then
d(u1, S) = (g + 1)/2, contradicting to Lemma 3. If the shortest path from W1 to S is
of length (g−3)/2, then there exist at least two paths from W1 to S of length (g−3)/2;
otherwise, by applying Claim 1 on vertex u1, which is at distance (g − 1)/2 to S, we
see that G is not a (4, g)-cage. Another possibility is that there exists a path of length
(g − 5)/2 from W1 to S. So we may assume that, for each Wi and Ti (i = 1, 2), either
there exists a path of length (g − 5)/2 or there are two paths of length (g − 3)/2 to
S. Let F = (∪4

i=1 N (si ) ∩ V (G1)) and so |F | ≤ 8, and let P be the set of paths from
∪3

i=1(Wi ∪ Ti ) to S, of length (g − 5)/2 or (g − 3)/2. Consider any vertex x ∈ F .
Note that if some path in P of length (g −5)/2 goes through x , then there are no other
paths from P through this vertex, i.e., this path is unique (otherwise, some cycle of
length less than g appears). The girth condition also assures that at most two paths in
P of length (g − 3)/2 can go through vertex x , one of them starting at ∪3

i=1Wi and
the other one in ∪3

i=1Ti .
Suppose, in P , that there are m1 paths of length (g − 5)/2 and m2 paths of length

(g − 3)/2. Since |F | ≤ 8, for each vertex in F , there are at most two paths of length
(g − 3)/2 in P going through it, or there is only one path of length (g − 5)/2 in P
going through it, therefore we have 2m1 + m2 ≤ 16.

And we know that |N(g−5)/2(S)∩T3| = |N(g−5)/2(S)∩W3| = 2 by the assumption,
which implies m1 ≥ 4. As well, there are either one path of length (g − 5)/2 or two
paths of length (g−3)/2 to S from each Wi and Ti (i = 1, 2). Therefore 2m1+m2 = 16
and there are no other paths of length shorter than (g −1)/2 from Wi ∪Ti (i = 1, 2, 3)
to S. Hence, there are exactly two paths of length less than (g − 1)/2 from W3 to S.
Without loss of generality, assume d(u31, s1) = (g−5)/2 and d(u32, s2) = (g−5)/2.
We also know d(u33, S) ≥ (g−1)/2, d(u31, S−s1) ≥ (g−1)/2 and d(u32, S−s2) ≥
(g − 1)/2.

Let L3i = N (u3i ) − u3 = {u3i1, u3i2, u3i3} (i = 1, 2, 3), and d(u311, s1) =
(g − 7)/2 and d(u321, s2) = (g − 7)/2. Apart from these two paths of length
(g − 7)/2 there are no other paths of length less than (g − 1)/2 joining
{L31, L32, L33, u1, u2, v} to {s1, s2} and there are at most four paths of length (g−3)/2
from {L31, L32, L33, u1, u2, v} to {s3, s4} due to the girth condition (for each s j , one
path from ∪3

i=1L3i to s j and another path from {u1, u2, v} to s j ). Suppose d(u331, S) =
d(L33, S) and d(u1, S) = d(N (u)− u3, S). Let N = G[(G1 − u3 − N (u3))∪ S] and
N∗ be a copy of N . Now we construct a new 4-regular graph G ′ = N ∪ N∗ ∪ M (see
Fig. 3), where M is the set of edges defined as:

(a) connect u3i1 and u∗
3i1 (i = 1, 2, 3), u1 and u∗

1;
(b) let b1 = L31 − u311, b2 = L32 − u321, b3 = L33 − u331, b4 = {u2, v},

B = {b′
1, b′

2, b′
3, b′

4}, and let � = (B, S) be a bipartite graph defined as fol-
lows: b′

i s j ∈ E(�) if and only if d(bi , s j ) ≤ (g − 3)/2. It is easy to see that �

satisfy the conditions of Lemma 4, and thus there is a way to connect N and N∗
without creating small cycles.

(c) then other edges are added in a similar fashion as in Claim 1.
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N N*

S1

S4

S3

S2

S*1

S*4

S*3

S*2

u311

u331

u321

u1

u*331

u*321

u*311

u*1u2

v
u*2

v*

(g-7)/2

(g-7)/2

Fig. 3 Illustration of the construction in Case 2

The length of any new cycle containing u∗
3i1u3i1 or u1u∗

1 is at least (g − 7)/2 +
2 + (g − 4) ≥ g (i = 1, 2, 3) since g ≥ 11. Other new cycles are of length at least
g as shown in Claim 1. Moreover |V (G ′)| = 2|V (G1)| − 2 < |V (G)|. Hence G ′
is a 4-regular graph and its girth is at least g, a contradiction to the fact that G is a
(4, g)-cage. ��

Lemma 6 If |V (G1)∩ N (s1)| = |V (G1)∩ N (s2)| = 3, |V (G2)∩ N (s1)| = |V (G2)∩
N (s1)| = 1 and |V (G1)∩N (s3)| = |V (G1)∩N (s4)| = |V (G2)∩N (s3)| = |V (G2)∩
N (s4)| = 2, where si ∈ S, then G is not a (4, g)-cage.

Proof Let N (u) = {u1, u2, u3, u4} and Wi = N (ui ) − u = {ui1, ui2, ui3},
i = 1, 2, 3, 4.

Claim 1 If there is at most one path of length (g − 5)/2 from each Wi to
S(i = 1, 2, 3, 4), then G is not a (4, g)-cage.

Without loss of generality, we may assume d({W1, W2}, {s3, s4}) ≥ (g − 3)/2 and
d({W3, W4}, {s1, s2}) ≥ (g − 3)/2. Then we have

d({u1, u2}, {s3, s4}) ≥ g − 1

2
, d({u3, u4}, {s1, s2}) ≥ g − 1

2
. (2)

Suppose that d(u31, s3) ≤ (g − 3)/2 and d(u41, s4) ≤ (g − 3)/2, then by Corollary 1
we have

d(W3 − u31, s3) ≥ g − 1

2
, d(W4 − u41, s4) ≥ g − 1

2
. (3)
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N N*

S1

S4

S3

S2

S*1

S*4

S*3

S*2

u1

u31

u2

u41

u*31

u*2

u*1

u*41

Fig. 4 Illustration of the construction in Claim 1

Moreover, since there is at most one path of length (g − 5)/2 from each Wi to each
vertex in S, we also have

d(W3 − u31, s4) ≥ g − 3

2
, d(W4 − u41, s3) ≥ g − 3

2
. (4)

We consider a subgraph N of G1 induced by (V (G1) − {u, u3, u4}) ∪ S and let N∗
be a copy of N . For every x ∈ V (N ), let x∗ denote its copy in N∗. Now we construct
a 4-regular graph G ′ by adding the following edges between N and N∗ (see Fig. 4):

(a) connect s1 and u∗
2, s2 and u∗

1, s∗
1 and u1, s∗

2 and u2;
(b) connect ui1 and u∗

i1, i = 3, 4;
(c) connect s3 and the two vertices of W ∗

4 − u∗
41;

(d) connect s4 and the two vertices of W ∗
3 − u∗

31;
(e) connect s∗

3 and the two vertices of W3 − u31, s∗
4 and the two vertices of W4 − u41.

Taking into account (2), (3) and (4), it can be verified that the cycles in the new graph
are of length at least g. For instance, if the new edges s∗

1 u1 and u∗
31u31 (or s1u∗

2 and
u31u∗

31) lie on the same cycle, then this cycle has length at least (g−5)/2+(g−3)+2 =
g; if the new edges s∗

3 u33 and u∗
2s1 lie on the same cycle, then this cycle has length

d(u33, s1) + d(u2, s3) ≥ (g − 3)/2 + (g − 1)/2 + 2 = g because of (2); or if
the new edges s∗

3 u33 and u∗
42s3 lie on the same cycle, then this cycle has length

d(u33, s3) + d(u42, s3) ≥ (g − 1)/2 + (g − 3)/2 + 2 = g because of (3) and (4).
Furthermore, |V (G ′)| = |N∗| + |N | = 2|V (G1)| + 2 ≤ |V (G)| − 2, a contradiction.

Claim 2 If there is at most one vertex in each Wi at distance (g − 5)/2 to S, where
i = 1, 2, 3, 4, then G is not a (4, g)-cage.

Based on Claim 1, we can assume that there is a vertex, say u11, such that
|N(g−5)/2(u11) ∩ S| ≥ 2. Suppose d(u11, s1) = d(u11, s2) = (g − 5)/2. Then by
Corollary 1
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N N*

S1

S4

S3

S2

S*1

S*4

S*3

S*2

u11

u31

u21

u41

u*31

u*21

u*11

u*41

Fig. 5 Illustration of the construction in Claim 2

d(W1 − u11, {s1, s2}) ≥ g − 1

2
, d(W1 − u11, {s3, s4}) ≥ g − 3

2
. (5)

Since there are at most four paths of length (g−5)/2 from ∪4
i=1Wi to S, by Pigeonhole

Principle there exists a set, say W2, satisfying

d(W2, S) ≥ (g − 3)/2. (6)

That is, dG1(u2, S) = (g − 1)/2. Therefore, applying Claim 1 to u2 we may
assume that in W2, there is a vertex, say u21, such that |N(g−3)/2(u21) ∩ S| ≥ 2.
Moreover, by Corollary 1 we see that d(W3, S) = d(u31, S) ≤ (g − 3)/2 and
d(W4, S) = d(u41, S) ≤ (g−3)/2. Hence (4) is again valid and further, there are four
paths of length (g − 5)/2 or (g − 3)/2 from W1, W3 and W4 to S, as well as other two
paths of length (g − 3)/2 from u21 to S. By the hypothesis on degree distributions of
vertices of S, the graph G can only contain in total ten paths of length at most (g−3)/2
from ∪4

i=1Wi to S. Therefore, there are at most four paths of length (g − 3)/2 from
∪4

i=1Wi to S left and then there are no paths of length (g − 5)/2 from ∪4
i=1Wi to S.

Let N be the subgraph induced by (V (G1) − u − N (u)) ∪ S and N∗ be a copy of
N . For every x ∈ V (N ), let x∗ denote its copy in N∗. Now we construct a 4-regular
graph G ′ by adding the following edges between N and N∗ (see Fig. 5):

(a) connect ui1 and u∗
i1, i = 1, 2, 3, 4;

(b) connect s1 and u∗
22, s2 and u∗

12, s∗
1 and u12, s∗

2 and u22;
(c) connect s3 and the two vertices of W ∗

4 − u∗
41;

(d) connect s4 and the two vertices of W ∗
3 − u∗

31;
(e) connect s∗

3 and the two vertices of W3 − u31, s∗
4 and the two vertices of W4 − u41;

(f) connect all the remaining ui j and u∗
i j of degree 3 in N ∪ N∗.
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Taking into account (4), (5) and (6), it can be verified that the cycles in the new graph
are of length at least g. Then G ′ is a (4, g′)-graph, where g′ ≥ g, but |V (G ′)| < |V (G)|,
a contradiction.

In what follows, we consider three cases based on the distance of the neighbors of
u to S.

Case 1 All the neighbors of u are at distance (g − 3)/2 to S.

It follows from Claim 2 that G is not a (4, g)-cage.

Case 2 There are exactly three neighbors of u at distance (g − 3)/2 to S.

Let N (u) = {u1, u2, u3, v}, N (v) = {v1, v2, v3, u}, Wi = N (ui ) − u =
{ui1, ui2, ui3} and Ti = N (vi ) − v = {vi1, vi2, vi3}, for i = 1, 2, 3, 4. Let
d(u, S) = d(v, S) = (g − 1)/2. If there is at least one neighbor of v distinct from u at
distance (g−1)/2 from S, then we can replace v by u and discuss it as in Case 3 later. So
assume d(vi , S) = d(ui , S) = (g − 3)/2 and d(ui1, S) = d(vi1, S) = (g − 5)/2, for
i = 1, 2, 3. If |N(g−5)/2(S)∩Wi | ≤ 1 or |N(g−5)/2(S)∩Ti | ≤ 1 for all i = 1, 2, 3, then
by Claim 2, G is not a (4, g)-cage. Therefore we may assume that |N(g−5)/2(S)∩W3| =
|N(g−5)/2(S) ∩ T3| = 2. This implies that |N(g−5)/2(S) ∩ (∪3

i=1Wi ∪ Ti )| ≥ 8, since

there are at most eight paths of length (g − 5)/2 from
⋃3

i=1(Wi ∪ Ti ) to S. Hence we
have |N(g−5)/2(S) ∩ (∪3

i=1Wi ∪ Ti )| = 8.

Claim 3 For every X ∈ {W1, W2, T1, T2}, there is at least one path of length (g−3)/2
from X to S.

By symmetry, we need only to show that there is at least one path of length (g−3)/2
from W1 to S. Suppose the claim is false, then there is exactly one path of length less
than (g − 1)/2 from W1 to S, which is the path from u11 to S of length (g − 5)/2. If
d(W1, {s3, s4}) = (g − 5)/2, then we regard u1 as u, and let N = (G1 − u1 − u12 −
u13) ∪ S and N∗ be a copy of N . Using N and N∗, we construct a new (4, g′)-graph
as in Claim 1 and the new graph is of smaller order and g′ ≥ g, a contradiction.

So we assume d(W1, {s1, s2}) = d(u11, s1) = (g − 5)/2. Let r = u1, r1 =
u11, r2 = u12, r3 = u13, r4 = u (i.e., N (r) = {r1, r2, r3, r4}) and Ri = N (ri ) − r =
{ri1, ri2, ri3}, i = 1, 2, 3, 4. Then d(r2, S) = d(r3, S) = d(r4, S) = (g − 1)/2, and
we may assume d(r11, S) = (g −7)/2. By Claim 2, without loss of generality, assume
that there is a vertex in N (ri ), say ri1, such that |N(g−3)/2(ri1) ∩ (S − s1)| ≥ 2 for
i = 2, 3, 4. So there is at most one path of length (g − 3)/2 from ∪4

i=1(Ri − ri1) to
S − s1 and no path of length (g − 5)/2 since dG1(s2) + dG1(s3) + dG1(s4) = 7. Thus
we can delete N (r) ∪ r from G1 and use a similar construction as in Claim 2 to get a
contradiction. So we prove Claim 3.

Since |N(g−5)/2(S) ∩ (∪3
i=1Wi ∪ Ti )| = 8, there are at most four paths of length

(g −3)/2 from
⋃3

i=1(Wi ∪Ti ) to S. Furthermore, there are exactly two paths of length
(g−5)/2 and no path of length (g−3)/2 from W3 to S by Claim 3. Denote u by u34. Let
Ui = N (u3i ) − u3 = {u3i1, u3i2, u3i3} for i = 1, 2, 3, 4. Without loss of generality,
assume d(u311, S) = d(u321, S) = (g−7)/2. If d({u311, u321}, {s1, s2}) ≥ (g−3)/2,
then using the similar construction as in Claim 1, we get a contradiction. Thus we
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assume d({u311, u321}, {s1, s2}) = (g − 7)/2. Note that there are at least one path of
length (g − 3)/2 from U4 to S, i.e., d(u1, S) = (g − 3)/2. So we have at most four
paths of length (g − 3)/2 from (U1 − u311) ∪ (U2 − u321) ∪ U3 ∪ (U4 − u1) to S.
Next we use a similar construction as in Claim 2 to yield a contradiction.

Case 3 There are at most two neighbors of u at distance (g − 3)/2 to S.

Let N (u) = {u1, u2, u3 = r, u4 = v}, and assume d(u, S) = d(v, S) = d(r, S)

= (g − 1)/2. Let Wi = N (ui ) − u = {ui1, ui2, ui3}, for i = 1, 2, W3 = N (r) − u =
{r1, r2, r3}, W4 = N (v) − u{v1, v2, v3}, Tj = N (v j ) − v = {v j1, v j2, v j3} and L j =
N (r j )−r = {r j1, r j2, r j3} for j = 1, 2, 3. Note that d(Wi , S) = (g−3)/2 for i = 3, 4.

By Corollary 1, there are at most ten paths of length (g − 5)/2 from (∪2
i=1Wi ) ∪

(∪3
j=1Tj )∪(∪3

j=1L j ) to S, since
∑

dG1(si ) = 10. Applying Claim 2 to u, v and r , we
may assume that |N(g−5)/2(S) ∩ T2| ≥ 2, |N(g−5)/2(S) ∩ L2| ≥ 2 and |N(g−5)/2(S) ∩
W2| ≥ 2. Furthermore, we may assume either |N(g−5)/2(S) ∩ (W1 ∪ W2 ∪ L1 ∪ L2 ∪
L3)| ≤ 6 or |N(g−5)/2(S)∩(W1 ∪W2 ∪T1∪T2 ∪T3)| ≤ 6; otherwise, if |N(g−5)/2(S)∩
(W1 ∪ W2)| ≥ 4, then we can regard v or r as u instead. Without loss of generality,
assume there are at most six paths of length (g−5)/2 from W1∪W2 ∪T1∪T2 ∪T3 to S.
Moreover, we may assume that there are at most three paths of length (g−5)/2 from the
set W1 ∪ W2 to S and there are also at most three paths of length (g −5)/2 from the set
T1 ∪T2 ∪T3 to S. If not, say there are four paths of length (g−5)/2 from W1 ∪W2 to S,
then we can replace {u, v} by {v1, v} to have the desired property. Suppose {v1, v} does
not have the property we want, then we see |N(g−5)/2(S)∩N2(v1)| = 4, |N(g−5)/2(S)∩
N2(u)| = 4 and |N(g−5)/2(S) ∩ N2(v)| = 2. Moreover, |N (S) ∩ V (G1)| = 10, then
we have d(v3, S) ≥ (g + 1)/2, which yields a contradiction to Lemma 3.

Now we may assume |N(g−5)/2(S) ∩ T2| = |N(g−5)/2(S) ∩ W2| = 2 and
|N(g−5)/2(s j ) ∩ (W1 ∪ T1 ∪ T3)| ≤ 1 for j = 3, 4. Next we consider two subcases.

Subcase 3.1. There are at most five paths of length (g − 5)/2 from
⋃3

i=1(Wi ∪ Ti )

to S.
Suppose d(W1∪W3), {s3, s4}) ≥ (g−3)/2, d(T1∪T3, {s1, s2}) ≥ (g−3)/2, d(W1∪

W3, {s1, s2}) = d(W1, s1) = d(u11, s1) and d(T1 ∪ T3, {s3, s4}) = d(T1, s4) =
d(v11, s4). We choose v31 such that there is at most one path of length (g−3)/2 between
(T1 −v11)∪(T3 −v31) and {s3, s4}. Moreover, let d((T1 −v11)∪(T3 −v31), {s3, s4}) =
d(T1 −v11, s3). Let N be the subgraph of G1 induced by (V (G1)−{v1, v3, u, v})∪ S
and N∗ be a copy of N . Now we construct a 4-regular graph G ′ by adding the following
edges between N and N∗:

(a) connect u2 and u∗
2, v2 and v∗

2 , v11 and v∗
11, v31 and v∗

31;
(b) connect s1 and u∗

1, s2 and u∗
3, s∗

1 and u3, s∗
2 and u1;

(c) connect s3 and T ∗
1 − v∗

11, s4 and T ∗
3 − v∗

31, s∗
3 and T3 − v31, s∗

4 and T1 − v11.

The cycle containing edges of type (a) has length at least (g−5)/2+2+(g−5) ≥ g
or 2 + 2(g − 4) ≥ g; the cycle containing the edges in (b) and (c) is at least
(g − 3)/2 + (g − 1)/2 + 2 ≥ g or (g − 4) + 4 = g or (g − 5) + 2 + 3 ≥ g or
(g − 4) + 3 + 3 ≥ g + 2. Therefore the girth of G ′ is g.

Clearly, |V (N ) ∪ V (N∗)| ≤ 2|V (G1)| < |V (G)|. So G ′ is a (4, g′)-graph of
smaller order with g′ ≥ g, a contradiction.

123



Graphs and Combinatorics (2013) 29:105–119 117

Subcase 3.2. There are six paths of length (g − 5)/2 from ∪3
i=1(Wi ∪ Ti ) to S.

Without loss of generality, assume d(W1, S) = d(u11, S) = (g − 5)/2 and
d(T1, S) = d(v11, S) = (g − 5)/2. Then d(u3, S) = d(v3, S) = (g − 1)/2. Note that
there is at least one path of length (g − 3)/2 from W1 to S, and at least one path of
length (g − 3)/2 from T1 to S. By Claim 1, we can see that there is a vertex, say u31,
in W3 such that there exist two paths of length (g − 3)/2 from u31 to S.

Claim 4 There are at least three paths of length (g − 3)/2 from X to S, where
X ∈ {W3, T3}.

Note that we need only to show that there are at least three paths of length
(g − 3)/2 from W3 to S. Suppose the claim is false, then there are exactly two
paths of length (g − 3)/2 from W3 to S. Denote u = u34. By Claim 2, we may
assume d(u311, S) = d(u312, S) = (g − 5)/2. Since d(u3i , S) = (g − 1)/2 for
i = 2, 3, there is a vertex, say u3i1, in N (u3i ) such that there are at least two paths
of length (g − 3)/2 from u3i1 to S for i = 2, 3. There are also three paths of length
(g − 3)/2 from N (u34) − u3 to S. Now we have at most one path of length (g − 3)/2
from N2(u3)−{u311, u312, u321, u331, u341, u342} to S. Let d({u313, u343}, {s1, s2}) =
d(u313, s1) and d({u322, u323, u332, u333}, {s3, s4}) = d(u322, s3). Let N be the sub-
graph of G1 induced by (V (G1) − u3 − N (u3)), and N∗ be a copy of N . Now we
construct a new graph G ′ = N ∪ N∗ ∪ M , where M is a set of edges connecting
between

(a) u31i and u∗
31i , u34i and u∗

34i , for i = 1, 2;
(b) s1 and u∗

313, s2 and u∗
343, s∗

1 and u343, s∗
2 and u313;

(c) u321 and u∗
321, u331 and u∗

331;
(d) s3 and {u∗

322, u∗
323}, s4 and {u∗

332, u∗
333}, s∗

3 and {u332, u333}, s∗
4 and {u322, u323}.

With a similar verification as in Claim 2, we conclude that G ′ is a (4, g′)-graph,
where g′ ≥ g, and |V (G ′)| = |V (N )| + |V (N∗)| ≤ 2|V (G)| − 6, a contradiction.

Claim 4 implies that |N (S) ∩ V (G1)| = 10; using a similar technique as in the
proof of Case 2 we conclude that there are exactly two paths of (g − 5)/2 and no path
of length (g − 3)/2 from w2 to S by Claim 4. Then, as in the proof of Case 2, we can
construct a (4, g′)-graph, where g′ ≥ g, such that |G ′| < |G|.

We complete the proof of this lemma. ��

Theorem 3 Every (4, g)-cage with odd girth g ≥ 11 is superconnected.

Proof Suppose G is not superconnected, then we choose a non-trivial cutset S of
order 4 such that S minimizes the order of the smaller component of G − S among all
non-trivial cutsets. Since 4|V (G1)| − E(S, G1) = ∑

v∈V (G1)
dG1(v) ≡ 0 (mod 2),

we have E(S, G1) ≡ 0 (mod 2). Similarly, E(S, G2) ≡ 0 (mod 2). Since every
(4, g)-cage is edge-superconnected, we need only to discuss three cases for the cut-
sets S shown in Fig. 6. Cases (a) and (b) are impossible by Lemmas 5 and 6. For
(c), we can simply delete edge s1s2 from G[S] and obtain a contradiction as in
Lemma 5. ��
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G1 G2

SSS

(a) (c)(b)

s1

s2G1G1 G2G2

Fig. 6 The three considered cutsets in the proof of Theorem 3

Corollary 2 Every (4, g)-cage with odd girth g ≥ 11 is tightly superconnected.

Proof By contradiction. Let G be a (4, g)-cage and S be a 4-cutset such that G − S
contains three or more components, say C1, C2, C3, . . .. By Theorem 3, S is the neigh-
borhood of some vertex, that is, G − S contains an isolated vertex, say V (C1) = {v}.
If G − S contains two isolated vertices, then we have g(G) = 4, a contradiction. So
|Ci | ≥ 2 (i = 2, 3, . . .). Furthermore, since g ≥ 11, we see |Ci | ≥ 3 (i = 2, 3, . . .).
Denote N (v) = {u1, u2, u3, u4}. Since G is edge-superconnected, so e(N (v), C2) ≥ 6
and e(N (v), C3) ≥ 6. Note that dG(u j ) = 4, for j = 1, 2, 3, 4, so e(N (v), C2) = 6,
e(N (v), C3) = 6 and e(N (v), N (v)) = 0 and hence (N (u1)−v)∩(V (C2)∪V (C3)) =
3. So either |(N (u1) − v) ∩ V (C2)| = 1 or |(N (u1) − v) ∩ V (C3)| = 1. Sup-
pose |(N (u1) − v) ∩ V (C2)| = 1 and let (N (u1) − v) ∩ V (C2) = {x}, then S′ =
{x, u2, u3, u4} is non-trivial 4-cutset, a contradiction. ��
Acknowledgments The authors are indebted to the anonymous referees for their corrections and
constructive comments.
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