On Cartesian Product of Factor-Critical Graphs

Zefang Wu, Xu Yang \& Qinglin Yu

Graphs and Combinatorics

ISSN 0911-0119
Volume 28
Number 5
Graphs and Combinatorics (2012)
28:723-736
DOI 10.1007/s00373-011-1072-8

Graphs and Combinatorics

Volume 22 Number 12006

Springer
373 Graphs and Combinatorics ISSN 0911-0119 GRCOES 22(1) 1ñ143

Your article is protected by copyright and all rights are held exclusively by Springer. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your work, please use the accepted author's version for posting to your own website or your institution's repository. You may further deposit the accepted author's version on a funder's repository at a funder's request, provided it is not made publicly available until 12 months after publication.

On Cartesian Product of Factor-Critical Graphs

Zefang Wu • Xu Yang • Qinglin Yu

Received: 6 April 2010 / Revised: 5 July 2011 / Published online: 11 August 2011
© Springer 2011

Abstract

A graph G is k-factor-critical if $G-S$ has a perfect matching for any k-subset S of $V(G)$. In this paper, we investigate the factor-criticality in Cartesian products of graphs and show that Cartesian product of an m-factor-critical graph and an n-factor-critical graph is ($m+n+\varepsilon$)-factor-critical, where $\varepsilon=0$ if both of m and n are even; $\varepsilon=1$, otherwise. Moreover, this result is best possible.

Keywords Matching • Factor-criticality • Projection • Cartesian product of graphs

1 Introduction

Graphs considered in this paper will be finite, undirected, simple and connected. We use $[x]_{2}$ to denote the largest even integer not greater than x, i.e., $[x]_{2}=2\lfloor x / 2\rfloor$.

A perfect matching is a set of independent edges incident with every vertex of G. A graph G is k-factor-critical if $G-S$ has a perfect matching for any k-subset S of $V(G)$. In particular, 0 -factor-critical means there exists a perfect matching in G. By definition, we see that a k-factor-critical graph has a perfect matching if and only if k is even and $|V(G)| \geqslant k+2$. For the cases of $k=1,2$, they are also referred as factor-critical and bicritical graphs by Gallai and Lovász (see [7]), respectively. The factor-critical graphs are used as essential "building blocks" for the so-called

[^0]Gallai-Edmonds matching structure of general graphs and bicritical graphs are studied by Lovász to develop the brick-decomposition as a powerful tool to determine the dimensions of matching lattices.

If every matching of size k can be extended to a perfect matching in G, then G is called k-extendable. To avoid triviality, we require that $|V(G)| \geqslant 2 k+2$ for k extendable graphs. This family of graphs was introduced by Plummer in 1980 and studied extensively by Lovász and Plummer [7].

It is natural to study factor criticality and matching extendability of different types of graph products, as such products contain a large number of perfect matchings. Motivation is also from the study of Cayley graphs since graph products often form a 'frame' of Cayley graphs. Győri and Plummer [3] showed that the Cartesian product of an m-extendable graph and an n-extendable graph is $(m+n+1)$-extendable. Győri and Imrich [4] proved that the strong product of an m-extendable graph and an n-extendable graph is $[(m+1)(n+1)]_{2}$-factor-critical. In the same paper, Győri and Imrich conjectured that the factor-criticality of strong product can be improved to $[(m+2)(n+2)]_{2}-2$. Liu and $\mathrm{Yu}[6]$ studied matching extension properties in Cartesian products and lexicographic products. More researches on graph products can be found in the monograph by Imrich and Klavžar [5].

Favaron [2] and Yu [8] introduced the concept of k-factor-critical, independently, and studied the basic properties of k-factor-critical graphs. Several of these properties are used in our proofs, so we summarize them below.

Theorem 1.1 $[2,8]$ Let G be a k-factor-critical graph with $k \geqslant 1$, then
(1) G is also $(k-2)$-factor-critical if $k \geqslant 2$;
(2) G is k-connected;
(3) G is $(k+1)$-edge-connected. In particular, $\delta \geqslant k+1$.

In this paper, we investigate the factor-criticality in Cartesian product of an m-factor-critical and an n-factor-critical graphs.

Cartesian product $G_{1} \square G_{2}$ of two graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if either $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} in G_{2} or $v_{1}=v_{2}$ and u_{1} is adjacent to u_{2} in G_{1}. For example, $K_{2} \square K_{2}=C_{4}$.

For a fixed vertex $v_{0} \in V\left(G_{2}\right)$, the projection of G_{1} in v_{0}, denoted by $G_{1}^{v_{0}}$, is the subgraph of $G_{1} \square G_{2}$ induced by the vertex set $\left\{\left(u, v_{0}\right) \mid u \in V\left(G_{1}\right)\right\}$ and it is called a row of $G_{1} \square G_{2}$. We denote by $G_{1}^{V_{0}}$ the subgraph of $G_{1} \square G_{2}$ induced by the vertex set $\left\{(u, v) \mid u \in V\left(G_{1}\right), v \in V_{0} \subseteq V\left(G_{2}\right)\right\}$. Similarly, we can define $G_{2}^{u_{0}}$ (a column of $G_{1} \square G_{2}$) and $G_{2}^{U_{0}}$. Clearly, $G_{1}^{u_{0}} \cong G_{1}$ and $G_{2}^{v_{0}} \cong G_{2}$.

The projection of a vertical edge $e=\left(u, v_{1}\right)\left(u, v_{2}\right)$ on G_{1}^{x}, where $u \in G_{1}$ and $v_{1}, v_{2} \in G_{2}$, denoted by $\operatorname{Proj}_{G_{1}^{x}}(e)$, is the vertex (u, x) in G_{1}^{x}. Similarly, we define $\operatorname{Proj}_{G_{2}^{y}}(e)$, where $e=\left(u_{1}, v\right)\left(u_{2}, v\right)$ is a horizontal edge. The projections of a vertex $v_{0}=(u, v)$ on $G_{1}^{v_{i}}$ and $G_{2}^{u_{j}}$ are $\operatorname{Proj}_{G_{1}^{v_{i}}}\left(v_{0}\right)=\left(u, v_{i}\right), \operatorname{Proj}_{G_{2}}^{u_{j}}\left(v_{0}\right)=\left(u_{j}, v\right)$, respectively.

For terminology and notation not defined here, readers are referred to [1] and [7].

2 Main results

The main result of this paper is the following theorem.
Theorem 2.1 Let G_{1} be an m-factor-critical graph and G_{2} an n-factor-critical graph. Then $G_{1} \square G_{2}$ is $(m+n+\varepsilon)$-factor-critical, where $\varepsilon=0$, if both of m and n are even; $\varepsilon=1$, otherwise.

An interesting special case of Theorem 2.1 is the following theorem. In fact, it will serve as one of basic tools in the proof of Theorem 2.1, so we prove it first.

Theorem 2.2 Let G be an m-factor-critical graph. Then $G \square K_{2}$ is $[m+1]_{2}$-factorcritical.

Proof Suppose that G is m-factor-critical, and $V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\}$. Let X be a vertex set of $G \square K_{2}$ with $|X|=[m+1]_{2}$.

Case $1 .\left|X \cap V\left(G^{v_{1}}\right)\right| \equiv\left|X \cap V\left(G^{v_{2}}\right)\right| \equiv m(\bmod 2)$.
By the definition of m-factor-criticality and Theorem 1.1, $G^{v_{1}}-X$ and $G^{v_{2}}-X$ have perfect matchings M_{1} and M_{2}, respectively. Therefore, $M_{1} \cup M_{2}$ is a perfect matching of $G \square K_{2}-X$.

Case 2. $\left|X \cap V\left(G^{v_{1}}\right)\right| \equiv\left|X \cap V\left(G^{v_{2}}\right)\right| \equiv m+1(\bmod 2)$.
If $\left|X \cap V\left(G^{v_{1}}\right)\right|,\left|X \cap V\left(G^{v_{2}}\right)\right| \leqslant m$, since G is m-factor-critical and hence $|V(G)| \geqslant m+2$, then we can always find a vertical edge $u u^{\prime}$ between $G^{v_{1}}$ and $G^{v_{2}}$ such that both u and u^{\prime} are not covered by X. So, both $G^{v_{1}}-X-\left\{u, u^{\prime}\right\}$ and $G^{v_{2}}-X-\left\{u, u^{\prime}\right\}$ have perfect matchings M_{1} and M_{2}, respectively, as $\left|\left(X \cup\left\{u, u^{\prime}\right\}\right) \cap V\left(G^{v_{i}}\right)\right| \equiv m$ $(\bmod 2)$ and is at most m for $i=1,2$. Therefore, $M_{1} \cup M_{2} \cup\left\{u u^{\prime}\right\}$ is a perfect matching of $G \square K_{2}-X$.

Without loss of generality, assume $\left|X \cap V\left(G^{v_{1}}\right)\right|=m+1$ and so m is odd. Select $u \in X$ and so $G^{v_{1}}-(X-\{u\})$ has a perfect matching M_{1}. Suppose $v v^{\prime}$ is the vertical edge of $G \square K_{2}$ with $u v \in M_{1}$ and $v^{\prime} \in V\left(G^{v_{2}}\right)$. Thus, $G^{v_{2}}-v^{\prime}$ has a perfect matching M_{2}, and $\left(M_{1}-u v\right) \cup M_{2} \cup\left\{v v^{\prime}\right\}$ is a perfect matching of $G \square K_{2}-X$.

In addition, we also need the following lemmas.
Lemma 2.3 Let G_{1} be an m-factor-critical graph and G_{2} an n-factor-critical graph with $m, n \geqslant 1$ and n even. If there is an edge $v_{1} v_{2} \in G_{2}$ such that each component of $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ is $[m+n-1]_{2}$-factor-critical, then after deleting of any k vertices of $G_{1}^{\left\{v_{1}, v_{2}\right\}}$ and any $[m+n+1]_{2}-k$ vertices of $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ with $[m+1]_{2}+1 \leqslant k \leqslant[m+n+1]_{2}$, the remaining subgraph of $G_{1} \square G_{2}$ has a perfect matching.

Proof Suppose that there exists an edge $v_{1} v_{2} \in E\left(G_{2}\right)$ such that each component of $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ is $[m+n-1]_{2}$-factor-critical. Let X be any set of $[m+n+1]_{2}$ vertices of $G_{1} \square G_{2}$ with $k=\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \geqslant[m+1]_{2}+1$. Let C_{1}, \ldots, C_{l} be the connected components of $G_{2}-\left\{v_{1}, v_{2}\right\}$. (Here, l allows to be 1 . Moreover, if $l>1$, as n is even, it follows from Theorem 1.1 that G_{2} must be bicritical, $n=2$ and $\left.[m+1]_{2}+1 \leqslant k \leqslant[m+1]_{2}+2.\right)$

Choose any $[m+1]_{2}$-set $X_{1} \subseteq X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$, then $G_{1}^{\left\{v_{1}, v_{2}\right\}}-X_{1}$ has a perfect matching M_{0} by Theorem 2.2. Consider the edges $x_{1} y_{1}, \ldots, x_{p} y_{p}$ of M_{0} such that $x_{i} \in\left(X-X_{1}\right)$ and $y_{i} \notin\left(X-X_{1}\right)$. Note that $p \leqslant k-[m+1]_{2} \leqslant n$.

Case $1 . l=1$.
As G_{2} is n-factor-critical, G_{2} is $(n+1)$-edge-connected and $\delta\left(G_{2}\right) \geqslant n+1$ by Theorem 1.1 (3). Since $l=1$, both of v_{1} and v_{2} have at least n neighbors in C_{1}, then each $y_{i}(1 \leqslant i \leqslant p)$ has at least n neighbors in $G_{1} \square C_{1}$. Now, $\left|X \cap V\left(G_{1} \square C_{1}\right)\right|=$ $[m+n+1]_{2}-\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \leqslant n-p$, so we can always find distinct vertices z_{1}, \ldots, z_{p} in $V\left(G_{1} \square C_{1}\right)-X$ such that $y_{i} z_{i} \in E\left(G_{1} \square G_{2}\right)$ and $\mid\left(X \cup\left\{z_{1}, \ldots, z_{p}\right\}\right) \cap$ $V\left(G_{1} \square C_{1}\right) \mid \equiv 0(\bmod 2)$. Since $\left|\left(X \cup\left\{z_{1}, \ldots, z_{p}\right\}\right) \cap V\left(G_{1} \square C_{1}\right)\right| \leqslant[m+n+1]_{2}-$ $\left([m+1]_{2}+p\right)+p \leqslant[m+n-1]_{2}$, by assumption, $G_{1} \square C_{1}-\left(X \cup\left\{z_{1}, \ldots, z_{p}\right\}\right)$ has a perfect matching M_{1}. Let M_{0}^{\prime} denote the set of edges of M_{0} with both ends in X. Then $M_{0} \cup M_{1} \cup\left\{y_{1} z_{1}, \ldots, y_{p} z_{p}\right\}-M_{0}^{\prime}-\left\{x_{1} y_{1}, \ldots, x_{p} y_{p}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Case 2. $l>1, k=[m+1]_{2}+2$.
In this case $n=2, X \subseteq V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$ and p equals to either 0 or 2 . If $p=0$, as G_{1} and $C_{j}(1 \leqslant j \leqslant l)$ are m-factor-critical and 0 -factor-critical, respectively, there exists a perfect matching M_{j} in $G_{1} \square C_{j}$. Then $\bigcup_{j=0}^{l} M_{j}-\left\{e_{0}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$, where e_{0} denotes the edge of M_{0} with both ends in X. If $p=2$ and $y_{1} y_{2} \in E\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$, let M_{j} denote a perfect matching of $G_{1} \square C_{j}$ for all $1 \leqslant j \leqslant l$, then $\bigcup_{j=0}^{l} M_{j} \cup\left\{y_{1} y_{2}\right\}-\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$. At last, assume $p=2$ and $y_{1} y_{2} \notin E\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$. Since G_{2} is 3-edge-connected, both v_{1} and v_{2} are adjacent to each C_{j}. Hence, we can match y_{1} and y_{2} with two vertices z_{1}, z_{2} in $G_{1} \square C_{j}$ such that $y_{i} z_{i} \in E\left(G_{1} \square G_{2}-X\right)$ and $\left|\left(X \cup\left\{z_{1}, z_{2}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right| \equiv 0(\bmod 2)$ for all $1 \leqslant j \leqslant l$. Since $\left|\left(X \cup\left\{z_{1}, z_{2}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right| \leqslant 2 \leqslant[m+n-1]_{2}$, by assumption, $G_{1} \square C_{j}-\left(X \cup\left\{z_{1}, z_{2}\right\}\right)$ has a perfect matching M_{j} for all $1 \leqslant j \leqslant l$. Therefore, $\bigcup_{j=0}^{l} M_{j} \cup\left\{y_{1} z_{1}, y_{2} z_{2}\right\}-\left\{x_{1} y_{1}, x_{2} y_{2}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Case 3. $l>1$ and $k=[m+1]_{2}+1$.
Now $n=2$ and $p=1$, there exists only one component, say C_{1}, satisfying $X \cap V\left(G_{1} \square C_{1}\right) \neq \emptyset$. Furthermore, $\left|X \cap V\left(G_{1} \square C_{1}\right)\right|=|X|-k=1$. Assume $\left(u_{0}, v_{0}\right) \in X \cap V\left(G_{1} \square C_{1}\right)$. Since G_{2} is bicritical, it is 2-connected and 3-edge-connected. So every $v_{i}(i=1,2)$ has at least one neighbor in C_{j} for all $j(1 \leqslant j \leqslant l)$. Then y_{1} has at least one neighbor in $G_{1} \square C_{j}$ for all $j(1 \leqslant j \leqslant l)$. There are two subcases to consider.

Subcase 3.1. y_{1} has a neighbor z_{1} in $G_{1} \square C_{1}-X$.
Clearly, $\left|\left(X \cup\left\{z_{1}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right|$ equals to 0 or 2 for each $1 \leqslant j \leqslant l$. But $[m+n-1]_{2} \geqslant 2$, by assumption, $G_{1} \square C_{j}-\left(X \cup\left\{z_{1}\right\}\right)$ has a perfect matching M_{j} for all $j(1 \leqslant j \leqslant l)$ and thus $\bigcup_{j=0}^{l} M_{j} \cup\left\{y_{1} z_{1}\right\}-\left\{x_{1} y_{1}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Subcase 3.2. y_{1} doesn't have any neighbor in $G_{1} \square C_{1}-X$.
So y_{1} is adjacent to $\left(u_{0}, v_{0}\right)$. Since $d_{G_{1} \square G_{2}}\left(y_{1}\right) \geqslant m+1+n+1>[m+n+1]_{2}$, there exists a vertex $z_{1} \in V\left(G_{1} \square G_{2}\right)-X$ such that $y_{1} z_{1} \in E\left(G_{1} \square G_{2}\right)$.

If $z_{1} \in V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$, we may assume z_{1} is matched with z_{1}^{\prime} in M_{0}. It is not difficult to see that z_{1}^{\prime} is not adjacent to $\left(u_{0}, v_{0}\right)$. As G_{2} is 3-edge-connected, z_{1}^{\prime} has a neighbor
z_{2} in $G_{1} \square C_{1}-\left(u_{0}, v_{0}\right)$. Then $\left|\left(X \cup\left\{z_{1}, z_{2}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right|$ equals to 0 or 2 , and hence $G_{1} \square C_{j}-\left(X \cup\left\{z_{1}, z_{2}\right\}\right)$ has a perfect matching M_{j} for $j(1 \leqslant j \leqslant l)$. Thus, $\bigcup_{j=0}^{l} M_{j} \cup\left\{y_{1} z_{1}, z_{1}^{\prime} z_{2}\right\}-\left\{x_{1} y_{1}, z_{1} z_{1}^{\prime}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Without loss of generality, suppose $z_{1} \in V\left(G_{1} \square C_{2}\right)$ and y_{1} contains no neighbor in $G_{1}^{\left\{v_{1}, v_{2}\right\}}-X$. Since $\left|V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \geqslant 2(m+2)$, there must be an edge $z_{2} z_{3} \in M_{0}$. Note that y_{1} doesn't in the same column with both z_{2} and z_{3}; neither do z_{1} and $\left(u_{0}, v_{0}\right)$. Because G_{2} is 3-edge-connected, we can find $z_{2}^{\prime} \in V\left(G_{1} \square C_{1}\right), z_{3}^{\prime} \in V\left(G_{1} \square C_{2}\right)$ such that $z_{i} z_{i}^{\prime} \in E\left(G_{1} \square G_{2}-\left(X \cup\left\{z_{1}\right\}\right)\right)$. Since $\left|\left(X \cup\left\{z_{1}, z_{2}^{\prime}, z_{3}^{\prime}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right|$ equals to 0 or $2, G_{1} \square C_{j}-\left(X \cup\left\{z_{1}, z_{2}^{\prime}, z_{3}^{\prime}\right\}\right)$ has a perfect matching M_{j} for all j $(1 \leqslant j \leqslant l)$, and hence $\bigcup_{j=0}^{l} M_{j} \cup\left\{y_{1} z_{1}, z_{2} z_{2}^{\prime}, z_{3} z_{3}^{\prime}\right\}-\left\{x_{1} y_{1}, z_{2} z_{3}\right\}$ is the desired perfect matching of $G_{1} \square G_{2}-X$.

We complete the proof.
Use the same technique, we can prove the following result about factor-criticality when $m n$ is odd.

Lemma 2.4 Let G_{1} be m-factor-critical, and $G_{2} n$-factor-critical with $m, n \geqslant 1$ and mn odd. If there is an edge $v_{1} v_{2} \in G_{2}$ such that each component of $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ is $(m+n-1)$-factor-critical, then after deletion of any k vertices of $G_{1}^{\left\{v_{1}, v_{2}\right\}}$ and any $m+n+1-k$ vertices of $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ with $m+2 \leqslant k \leqslant m+n+1$, the remaining subgraph of $G_{1} \square G_{2}$ has a perfect matching.

Lemma 2.5 Let G_{1} be m-factor-critical and $G_{2} n$-factor-critical, where m, n are positive even integers. Let X be an arbitrary subset of $V\left(G_{1} \square G_{2}\right)$ with $|X|=m+n$. If for any $u_{i} u_{j} \in E\left(G_{1}\right),\left|X \cap V\left(G_{2}^{\left\{u_{i}, u_{j}\right\}}\right)\right| \leqslant 1$ and for any $v_{i} v_{j} \in E\left(G_{2}\right), \mid X \cap$ $V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right) \mid \leqslant 1$, then there exists a perfect matching in $G_{1} \square G_{2}-X$.

Proof Without loss of generality, assume that $m \geqslant n$ and $\left|V\left(G_{2}\right)\right|=2 t$. Let $I:=$ $\left\{v_{i}\left|v_{i} \in V\left(G_{2}\right),\left|X \cap V\left(G_{1}^{v_{i}}\right)\right|=1\right\}\right.$. Then $|I|=m+n$ and it is an independent set of G_{2}.

Since G_{2} is n-factor-critical with n even, there is a perfect matching in G_{2} and $\left|V\left(G_{2}\right)\right| \geqslant 2(m+n)$. (Note that any vertex in I must be matched with a vertex in $G_{2}-I$.) Furthermore, for any n-vertex set $N \subseteq V\left(G_{2}\right)-I$, there is a perfect matching in $G_{2}-N$ and $\left|V\left(G_{2}\right)-N\right| \geqslant 2(m+n)$. Therefore, $\left|V\left(G_{2}\right)\right| \geqslant n+2(m+n)$. Similarly, $\left|V\left(G_{1}\right)\right| \geqslant m+2(m+n)$. Since G_{2} is bicritical, it is non-bipartite and then there exists an edge, say $e=v_{1} v_{2} \in E\left(G_{2}-I\right)$, of G_{2} such that $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|=0$. Now we relabel the vertices of G_{2} as an ordered sequence $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, \ldots$, where $v_{1}^{\prime}=v_{1}$ and $v_{2}^{\prime}=v_{2}$, satisfying the following property

$$
\begin{equation*}
\text { each } v_{i}^{\prime} \text { has at least one neighbor in }\left\{v_{1}^{\prime}, \ldots, v_{i-1}^{\prime}\right\} . \tag{*}
\end{equation*}
$$

Such a sequence can be easily constructed. For example, find a spanning tree T of G_{2} with root v_{1}, and put the vertices with distance 1 to v_{1} in the sequence first (in arbitrary order except v_{2}), then vertices with distance $2, \ldots$, to obtain a desired sequence (see Example 2.6). So we obtain an ordering of $V\left(G_{2}\right)$, and thus
an ordering of rows of $G_{1} \square G_{2}$. For convenience, denote this ordering of rows by $\mathbb{S}: G_{1}^{v_{2 t}^{\prime}}, G_{1}^{v_{2 t-1}^{\prime}}, \ldots, G_{1}^{v_{2}^{\prime}}, G_{1}^{v_{1}^{\prime}}$.

We start our proof by describing a Transitive Projection Method (TPM). Without loss of generality, assume $\mathbb{S}:=G_{1}^{v_{2 t}}, G_{1}^{v_{2 t-1}}, \ldots, G_{1}^{v_{2}}, G_{1}^{v_{1}}$ from now on.

The aim of this method is to find a matching M such that $\left|\left(X \cup V_{M}\right) \cap V\left(G_{1}^{v}\right)\right|$ is even, for every $v \in V\left(G_{2}\right)$. (Hereafter, let V_{M} denote the vertex set of the graph induced by M in $G_{1} \square G_{2}$.) The matching M consists of vertical edges of $G_{1} \square G_{2}$, which is constructed step by step.
$T P M$. Set $M=\emptyset$ and process each row $G_{1}^{v_{i}}$ according to the order \mathbb{S}. At first, consider $G_{1}^{v_{2 t}}$ and set $k:=2 t$.

Step 1. If $k=1$, stop.
If $k>1$ and

$$
\left|X \cap V\left(G_{1}^{v_{k}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{k}}\right)\right| \leqslant m,
$$

then go to Step 2.
If $k>1$ and

$$
\begin{equation*}
\left|X \cap V\left(G_{1}^{v_{k}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{k}}\right)\right|>m \tag{**}
\end{equation*}
$$

then go to Step 4.
Step 2. If $\left|X \cap V\left(G_{1}^{v_{k}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{k}}\right)\right|$ is even (0 is allowed), then set $k:=k-1$ and go to Step 1 ; otherwise go to Step 3.

Step 3. Find the first neighbor v of v_{k} ('first' means that $v \in\left\{v_{k-1}, \ldots, v_{1}\right\}$, and if $v_{k} v_{i} \in E\left(G_{2}\right)$ and $v_{k} v_{j} \in E\left(G_{2}\right)$ with $k>i>j$, then we prefer v_{i} over $\left.v_{j}\right)$. Similarly, we can find the first neighbor v^{\prime} of v. (Note that if $\left|X \cap V\left(G_{1}^{v^{\prime}}\right)\right|=1$, denote the common vertex by $\left(x, v^{\prime}\right)$, then $\left\{(x, v),\left(x, v_{k}\right)\right\} \cap X=\emptyset$ and $\left|X \cap V\left(G_{2}^{x}\right)\right| \leqslant 1$ as $\left|X \cap V\left(G_{2}^{\left\{u_{i}, u_{j}\right\}}\right)\right| \leqslant 1$ for any $u_{i} u_{j} \in E\left(G_{1}\right)$.) We consider three cases:
(1) If $\left|X \cap V\left(G_{1}^{v^{\prime}}\right)\right|=0$ (or 1 and $(x, v) \in V_{M}$), then find a vertical edge e between $G_{1}^{v_{k}}$ and G_{1}^{v}, with both ends being not covered by $X \cup V_{M}$, and add it to M. Set $k:=k-1$ and go to Step 1.
(2) If $\left|X \cap V\left(G_{1}^{v^{\prime}}\right)\right|=1$ and $(x, v) \notin V_{M},\left(x, v_{k}\right) \notin V_{M}$, then set $e:=\left(x, v_{k}\right)(x, v)$ and add it to M. Set $k:=k-1$ and go to Step 1.
(3) If $\left|X \cap V\left(G_{1}^{v^{\prime}}\right)\right|=1$ and $(x, v) \notin V_{M}$, then $\left(x, v_{k}\right) \in V_{M}$, we may assume that $\left(x, v_{k}\right)$ is matched with $\left(x, v_{i}\right)$ (where $i>k$) under M and then replace the vertical edge $\left(x, v_{i}\right)\left(x, v_{k}\right)$ by another vertical edge e^{\prime} between $G_{1}^{v_{i}}$ and $G_{1}^{v_{k}}$ such that both ends of e^{\prime} are not covered by $X \cup V_{M}$. Set $e:=\left(x, v_{k}\right)(x, v), M:=$ $M \cup\left\{e, e^{\prime}\right\}-\left(x, v_{i}\right)\left(x, v_{k}\right), k:=k-1$, and go to Step 1.

Step 4. Suppose that $\left|X \cap V\left(G_{1}^{v_{k}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{k}}\right)\right|=m+l$, by the construction of M, then $1 \leqslant l \leqslant n \leqslant m$. Denote the vertex v_{k} by v^{*}, and assume that v is the first neighbor of v^{*}. Select m vertices from $\left(X \cup V_{M}\right) \cap V\left(G_{1}^{v^{*}}\right)$, denote the set of selected vertices by X^{*}, such that if $X \cap V\left(G_{1}^{v}\right)=\{(x, v)\}$, then $\left(x, v^{*}\right) \in X^{*}$. This is possible according to the construction of M in Step 3.

Clearly, $G_{1}^{v^{*}}-X^{*}$ has a perfect matching M^{*}. Consider the edges $e_{i}=y_{i} z_{i}$ $(1 \leqslant i \leqslant p)$ of M^{*} such that $y_{i} \notin X-X^{*}$ and $z_{i} \in X-X^{*}$. Then $p \leqslant l$ and $p \equiv l$ $(\bmod 2)$. For each $y_{i}(1 \leqslant i \leqslant p)$,
(1) if $y_{i}^{\prime}=\operatorname{Proj}_{G_{1}^{v}}\left(y_{i}\right) \notin\left(X \cup V_{M}\right)$, then add $y_{i} y_{i}^{\prime}$ to M and set $M^{*}:=M^{*}-e_{i}$;
(2) if $y_{i}^{\prime}=\operatorname{Proj}_{G_{1}^{v}}\left(y_{i}\right) \in\left(X \cup V_{M}\right)$, say $y_{i}^{\prime} w_{i} \in M$, then replace $y_{i}^{\prime} w_{i}$ by another vertical edge e^{\prime} such that both ends of e^{\prime} are not covered by V_{M}. Here vertical edges $y_{i}^{\prime} w_{i}$ and e^{\prime} are between two same rows. Set $e:=y_{i} y_{i}^{\prime}, M:=M \cup\left\{e, e^{\prime}\right\}-y_{i}^{\prime} w_{i}$ and $M^{*}:=M^{*}-e_{i}$.
Finally, set $k:=k-1$ and go to Step 1. (See Example 2.6 for an illustration.)
To insure the validity of TPM, we need to verify the following:
(1) The above method is feasible;
(2) the case $\left.{ }^{(* *}\right)$ occurs at most once;
(3) $\left|X \cap V\left(G_{1}^{v_{i}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{i}}\right)\right|$ is even and less than m for all $v_{i} \in\left\{v_{2 t}, \ldots, v_{2}\right\}$ except for v^{*} if $\left({ }^{* *}\right)$ occurs.
(4) $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{1}}\right)\right|$ is even and no more than m.

By the construction of M, the assertion (3) holds. It is not difficult to see that the process of constructing M is actually to pass the vertices common with X from one row to another row. So, as $|X|=m+n(m \geqslant n),\left(^{* *}\right)$ occurs at most once, that is, the assertion (2) holds. Furthermore, since $\left|V\left(G_{1}\right)\right| \geqslant 3 m+2 n$, so $\left|V\left(G_{1}\right)\right|>2|X|>$ $m+2 n \geqslant m+2 l$ and thus the above method is always feasible.

It remains to confirm the assertion (4). If $\left({ }^{* *}\right)$ doesn't occur, then (4) holds as $\left|\left(X \cup V_{M}\right) \cap V\left(G_{1}^{v_{i}}\right)\right|(i \neq 1)$ and $\left|X \cup V_{M}\right|$ are even. If (**) occurs, then (4) holds because $p \equiv l(\bmod 2)$, and $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{1}}\right)\right|$ has the same parity as $\left|X \cup V_{M}\right|-(m+l)+p$ from the construction of M.

Therefore $G_{1}^{v_{i}}-X \cup V_{M}$ has a perfect matching M_{i} for each $v_{i} \in\left\{v_{2 t}, \ldots, v_{1}\right\}$ with $v_{i} \neq v^{*}$ by Theorem 1.1.

Let M_{0} be the edge set of M^{*} with both ends in X if $\left(^{* *}\right)$ occurs. Then, when $\left(^{* *}\right)$ occurs, $G_{1} \square G_{2}-X$ has a perfect matching $\bigcup_{i=1, v_{i} \neq v^{*}}^{2 t} M_{i} \cup\left(M^{*}-M_{0}\right) \cup M$. Otherwise, $G_{1} \square G_{2}-X$ has a perfect matching $\bigcup_{i=1}^{2 t} M_{i} \cup M$.

Example 2.6 Let G_{1} and G_{2} be two bicritical graphs shown in Fig. 1, where $m=n=$ 2. Suppose $X=\left\{\left(u_{1}, v_{3}\right),\left(u_{3}, v_{5}\right),\left(u_{6}, v_{9}\right),\left(u_{8}, v_{10}\right)\right\}$. Clearly, G_{1}, G_{2}, X satisfy the conditions of Lemma 2.5. To find a perfect matching by TPM, starting with v_{2}, we find an ordering of $G_{2}-v_{1}$ satisfying property $\left(^{*}\right)$, by neighborhood relations (\rightarrow) as following:

$$
v_{2}\left(v_{2}^{\prime}\right) \rightarrow\left\{\begin{array}{l}
v_{3}\left(v_{3}^{\prime}\right) \rightarrow v_{7}\left(v_{5}^{\prime}\right) \rightarrow\left\{\begin{array}{l}
v_{6}\left(v_{7}^{\prime}\right) \rightarrow\left\{\begin{array}{l}
v_{4}\left(v_{10}^{\prime}\right) \\
v_{5}\left(v_{11}^{\prime}\right)
\end{array}\right. \\
v_{10}\left(v_{8}^{\prime}\right) \rightarrow v_{11}\left(v_{12}^{\prime}\right)
\end{array}\right. \tag{3}\\
v_{8}\left(v_{4}^{\prime}\right) \rightarrow v_{9}\left(v_{6}^{\prime}\right) \rightarrow v_{12}\left(v_{9}^{\prime}\right)
\end{array}\right.
$$

Hence a sequence is

$$
\begin{aligned}
\mathbb{S} & =G_{1}^{v_{12}^{\prime}}, G_{1}^{v_{11}^{\prime}}, \ldots, G_{1}^{v_{1}^{\prime}} \\
& =G_{1}^{v_{11}}, G_{1}^{v_{5}}, G_{1}^{v_{4}}, \ldots, G_{1}^{v_{1}} .
\end{aligned}
$$

Fig. 1 Two bicritical graphs G_{1} and G_{2}

Next, we construct a matching M by TPM:
When $k=12$, then $G_{1}^{v_{12}^{\prime}}=G_{1}^{v_{11}}$ and $M=\emptyset$;
when $k=11$, then $G_{1}^{v_{11}^{\prime}}=G_{1}^{v_{5}}$ and $e_{1}=\left(u_{6}, v_{5}\right)\left(u_{6}, v_{4}\right)$;
when $k=10$, then $G_{1}^{v_{10}^{\prime}}=G_{1}^{v_{4}}$ and $e_{2}=\left(u_{5}, v_{4}\right)\left(u_{5}, v_{6}\right)$;
when $k=9$, then $G_{1}^{v_{9}^{\prime}}=G_{1}^{v_{12}}$ and no edge is selected and $M:=M$; continue on, we obtain edges $e_{3}=\left(u_{1}, v_{10}\right)\left(u_{1}, v_{7}\right), e_{4}=\left(u_{4}, v_{6}\right)\left(u_{4}, v_{7}\right)$ and $e_{5}=\left(u_{5}, v_{9}\right)\left(u_{5}, v_{7}\right)$;
when $k=5$, then $G_{1}^{v_{5}^{\prime}}=G_{1}^{v_{7}}$ and $\left|X \cap V\left(G_{1}^{v_{7}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v_{7}}\right)\right|=3>2=m$. We select $X^{*}=\left\{\left(u_{1}, v_{7}\right),\left(u_{4}, v_{7}\right)\right\}$ and thus $G_{1}^{v_{7}}-X^{*}$ has a perfect matching $\left\{\left(u_{2}, v_{7}\right)\left(u_{3}, v_{7}\right),\left(u_{5}, v_{7}\right)\left(u_{6}, v_{7}\right),\left(u_{7}, v_{7}\right)\left(u_{8}, v_{7}\right),\left(u_{9}, v_{7}\right)\left(u_{0}, v_{7}\right)\right\}$. So, set $e_{6}=$ $\left(u_{6}, v_{7}\right)\left(u_{6}, v_{8}\right)$; similarly, we have $e_{7}=\left(u_{9}, v_{8}\right)\left(u_{9}, v_{2}\right), e_{8}=\left(u_{0}, v_{3}\right)\left(u_{0}, v_{2}\right)$.

At the end, we obtain a matching $M=\left\{e_{1}, e_{2}, \ldots, e_{8}\right\}$ such that $\left|\left(X \cup V_{M}\right) \cap V\left(G_{1}^{v}\right)\right|$ is even for every $v \in V\left(G_{2}\right)$ (see Fig.2).

3 Proofs of the main results

Before proving Theorem 2.1, we introduce two algorithms which find specific matchings in two special cases.

Suppose that G_{1} is m-factor-critical and G_{2} is 0 -factor-critical and connected (resp. G_{1} is m-factor-critical with m odd and G_{2} is 1-factor-critical). Let X be any subset of $V\left(G_{1} \square G_{2}\right)$ with $|X|=[m+1]_{2}$ if $n=0$ (resp. $m+2$ if $n=1$). If $n=0$ (resp. $n=1$), G_{2} has a perfect matching $\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$ (resp. $G_{2}-v$ has a perfect matching $\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$, where v satisfies $\left|X \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$ and $\left.\left|X \cap V\left(G_{1}^{v}\right)\right|>0\right)$. Suppose $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is odd for some $i(1 \leqslant i \leqslant t)$ and I_{0} denotes the set of such indices i. Clearly, $\left|I_{0}\right|$ is even.

We construct a matching M consisting of vertical edges of $G_{1} \square G_{2}$ step by step and satisfying

Fig. 2 Finding M in Example 2.6

(1) $X \cap V_{M}=\emptyset$;
(2) $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant[m+1]_{2}$ is even for all $i(1 \leqslant i$ $\leqslant t$).

Algorithm A_{1}
 Starting with $M=\emptyset, I:=I_{0}$.

Step 1. Choose any $i_{0}, j_{0} \in I$ and find a path P in G_{2} from $v_{2 i_{0}-1}$ (or $v_{2 i_{0}}$) to $v_{2 j_{0}-1}$ (or $v_{2 j_{0}}$). This is possible as G_{2} is connected.

Step 2. For each edge $e=x y$ in P,
(a) if $e \neq v_{2 i-1} v_{2 i}$ for each $i(1 \leqslant i \leqslant t)$, then choose a vertical edge e^{\prime} between G_{1}^{x} and G_{1}^{y} such that both endvertices of e^{\prime} are not covered by X and M, set $M:=M \cup\left\{e^{\prime}\right\}$;
(b) if $e=v_{2 i-1} v_{2 i}$ for some $i(1 \leqslant i \leqslant t)$, then set $M:=M$;

Step 3. Set $I:=I-\left\{i_{0}, j_{0}\right\}$. If $I=\emptyset$, stop; else, go to Step 1 .
To see the validity of Algorithm A_{1}, note that Step 2 is always possible since
(1) $\left|V\left(G_{1}^{v_{i}}\right)\right| \geqslant m+2$, for $v_{i} \in V\left(G_{2}\right)$;
(2) if $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is even, then $i \notin I$ and $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$
$\leqslant\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+2 \frac{[m+1]_{2}-\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|}{2}=[m+1]_{2} ;$
(3) if $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is odd, then $i \in I$ and $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ $\leqslant\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+2\left(\frac{[m+1]_{2}-\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+1}{2}-1\right)+1$ $=[m+1]_{2}$;
(4) $\mid\left\{u \in V\left(G_{1}\right) \mid(u, x) \in X \cup V_{M}\right.$ or $\left.(u, y) \in X \cup V_{M}\right\} \mid \leqslant[m+1]_{2}$ for any $x y \in E\left(G_{2}\right)$ by the construction of M and (2), (3).

Note that if $n=1,\left|X \cap V\left(G_{1}^{v}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$ and is no more than $m+2$. If $m+2$ is reached, every path P constructed must 'pass' through G_{1}^{v}, and then for all $i(1 \leqslant i \leqslant t),\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant 1$. If v is not a cut vertex, we can change some paths so that $\left|X \cap V\left(G_{1}^{v}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v}\right)\right|$ decreases by at least 2. If v is a cut vertex, there exists $v^{\prime}(\neq v) \in G_{2}$ such that $\left|X \cap V\left(G_{1}^{v^{\prime}}\right)\right| \equiv m(\bmod 2)$. Set $v:=v^{\prime}$ and apply Algorithm A_{1} again. Above all, we can always find v and a desired M satisfying $m \geqslant\left|X \cap V\left(G_{1}^{v}\right)\right|+\left|V_{M} \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$.

Now, suppose that G_{1} is m-factor-critical with m even and G_{2} is 1-factor-critical. Let X be any subset of $V\left(G_{1} \square G_{2}\right)$ with $|X|=m+2$. Suppose $\left|V\left(G_{2}\right)\right|=2 t+1$ and $\left|X \cap V\left(G_{1}^{v_{i}}\right)\right| \equiv 1(\bmod 2)$ for some $i(0 \leqslant i \leqslant 2 t)$ and I_{0} denotes the set of such indices i. Clearly, $\left|I_{0}\right|$ is even. We would like to construct a matching M of $G_{1} \square G_{2}$ and an induced subgraph F of G_{2}.

Algorithm A_{2}

Starting with $F=\emptyset, M=\emptyset, I:=I_{0}, \mathcal{P}=\emptyset$.
Step 1. Choose any $i_{0}, j_{0} \in I$ and find a path P in G_{2} from $v_{i_{0}}$ to $v_{j_{0}}$.
Step 2. Set $I:=I-\left\{i_{0}, j_{0}\right\}, F:=F \Delta P(\triangle$ denotes symmetric difference $)$ and $\mathcal{P}:=\mathcal{P} \cup\{P\}$. If there is an Eulerian cycle in F, delete all the edges of the cycle from F. If $I=\emptyset$, stop; else, go to Step 1 .

Let $d_{F}(v)$ denote the degree of v in F. Then $\left|X \cap V\left(G_{1}^{v}\right)\right|+d_{F}(v) \equiv m(\bmod 2)$, for each $v \in V\left(G_{2}\right)$. Similar to A_{1}, we can prove that $\left|X \cap V\left(G_{1}^{v}\right)\right|+d_{F}(v) \leqslant m+2$. Moreover, if $m+2$ is reached for some v, then each path $P \in \mathcal{P}$ contains v and thus there is at most one such vertex v by construction of F. Choose a row $G_{1}^{v_{0}}$ such that $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|+d_{F}\left(v_{0}\right)=\max \left\{\left|X \cap V\left(G_{1}^{v}\right)\right|+d_{F}(v) \mid v \in V\left(G_{2}\right)\right\}$. When $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|+d_{F}\left(v_{0}\right) \leqslant m$, go to Step 3; when $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|+d_{F}\left(v_{0}\right)=m+2$, go to Step 4.

Step 3. For each edge $e=x y$ in $E(F)$, choose a vertical edge e^{\prime} between G_{1}^{x} and G_{1}^{y} such that both end-vertices of e^{\prime} are not covered by X and M, set $M:=M \cup\left\{e^{\prime}\right\}$;

Step 4. When $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|+d_{F}\left(v_{0}\right)=m+2$, every path we constructed above should 'pass' the row $G_{1}^{v_{0}}$, so for all $v \neq v_{0},\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant 1$ and $\left|X \cap V\left(G_{1}^{v}\right)\right|+$ $d_{F}(v) \leqslant 2$.
(1) If we can replace a path $P \in \mathcal{P}$ by another path P^{\prime} in $G_{2}-v$ and P^{\prime} has the same end-vertices with P, then set $F:=(F \Delta P) \triangle P^{\prime}$ and go to Step 3 .
(2) Otherwise, v_{0} is a cut vertex of G_{2}, we stop and set $F=\emptyset, M=\emptyset$. Note that in this case, $\left|X \cap V\left(G_{1} \square C\right)\right| \leq 1$ for all connected component C of $G_{2}-v_{0}$.

The validity of Step 3 can be argued in the same way as in Algorithm A_{1}.

In Step 4 , when $m \geqslant 4$, whenever we change a path $P,\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|+d_{F}\left(v_{0}\right)$ decreases by at least 2 . Then for any $v \neq v_{0},\left|X \cap V\left(G_{1}^{v}\right)\right|+d_{F}(v) \leqslant 4$, and we can go to Step 3 . When $m=2$, we can choose i_{0} and j_{0} properly to avoid this.

Now, we are ready to prove the main theorem.

3.1 Proof of Theorem 2.1

Suppose that G_{1} is m-factor-critical and G_{2} is n-factor-critical, where $m \geqslant n$. We use induction on $m+n$.

When $n=0$, let $M^{*}=\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$ be a perfect matching of G_{2} and X a vertex set with $|X|=[m+1]_{2}$.

Case 1. $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is even for all $i(1 \leqslant i \leqslant t)$.
Clearly, $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-X$ has a perfect matching M_{i} by Theorems 1.1 and 2.2. Thus, $\bigcup_{i=1}^{t} M_{i}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Case 2. $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is odd for some $i(1 \leqslant i \leqslant t)$.
We apply Algorithm A_{1} and obtain a matching M such that $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ $+\left|V_{M} \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant[m+1]_{2}$ is even, for all $i(1 \leqslant i \leqslant t)$. Thus, $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-$ $\left(X \cup V_{M}\right)$ has a perfect matching M_{i} by Theorems 2.2 and 1.1.

Hence, $M \cup \bigcup_{i=1}^{t} M_{i}$ is a perfect matching of $G_{1} \square G_{2}-X$.
When $m \geqslant n=1$, let $|X|=m+2$. We consider the following cases.
Case 1. $\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m$ for all $v \in V\left(G_{2}\right)$.
Subcase 1.1. m is odd. Then $|X|=m+2$ is odd and there exists a row, say G_{1}^{v}, such that $\left|X \cap V\left(G_{1}^{v}\right)\right|$ is odd. So $G_{1}^{v}-X$ has a perfect matching M_{0} as $\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m$ and $\left|X \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$. On the other hand, G_{2} is 1-factor-critical, $G_{2}-v$ has a perfect matching $\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$.

Subcase 1.1.1. $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is even, for all $i(1 \leqslant i \leqslant t)$.
Then $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant[m+1]_{2}$ for each $i(1 \leqslant i \leqslant t)$ and thus $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-X$ has a perfect matching M_{i}. So $\bigcup_{i=0}^{t} M_{i}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Subcase 1.1.2. $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1} v_{2 i}\right\}}\right)\right|$ is odd for some $i(1 \leqslant i \leqslant t)$.
We use Algorithm A_{1} to obtain a matching M such that $X \cap V_{M}=\emptyset$ and $\mid X \cap$ $V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\left|+\left|V_{M} \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant[m+1]_{2}\right.$ is even for all $i(1 \leqslant i \leqslant t)$. Moreover, $\left|\left(X \cup V_{M}\right) \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$ is less than m. Let M_{i} and M_{0}^{\prime} be perfect matchings of $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-\left(X \cup V_{M}\right)$ and $G_{1}^{v}-\left(X \cup V_{M}\right)$, respectively. Then $\bigcup_{i=1}^{t} M_{i} \cup M_{0}^{\prime} \cup M$ is a perfect matching of $G_{1} \square G_{2}-X$.

Subcase 1.2. m is even. We apply Algorithm A_{2} to obtain a matching M. Suppose $\left|V\left(G_{2}\right)\right|=2 t+1$.

Subcase 1.2.1. If $M \neq \emptyset$, since $\left|\left(X \cup V_{M}\right) \cap V\left(G_{1}^{v_{i}}\right)\right| \equiv 0(\bmod 2)$ and is less than $m, G_{1}^{v_{i}}-\left(X \cup V_{M}\right)$ has a perfect matching M_{i} for each $v_{i} \in V\left(G_{2}\right)$. Then $\bigcup_{i=0}^{2 t} M_{i} \cup M$ is a perfect matching of $G_{1} \square G_{2}-X$.

Subcase 1.2.2. If $M=\emptyset$, in this case, v_{0} is a cut-vertex of G_{2}. Let C_{1}, \ldots, C_{l} be the connected components of $G_{2}-v_{0}$. So $\left|X \cap V\left(G_{1} \square C_{j}\right)\right| \leqslant 1$ and $d_{G_{1} \square C_{j}}\left(v_{0}\right) \geqslant 2$ for $j=1, \ldots, l$, since G_{2} is 1-factor-critical and 2-edge-connected. Assume $\mid X \cap$ $V\left(G_{1} \square C_{j}\right) \mid=1$ for $j=1,2, \ldots, p$. Clearly, $p+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|=m+2 \leqslant\left|V\left(G_{1}^{v_{0}}\right)\right|$.

If $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \equiv 0(\bmod 2), G_{1}^{v_{0}}-X$ has a perfect matching M_{0}. Note that $p \leqslant 2\left|M_{0}\right|$ is even. Consider the edges $x_{1} x_{2}, \ldots, x_{p-1} x_{p}$ of M_{0}. For each $x_{i}(1 \leqslant$ $i \leqslant p$), it has at least two neighbors in $G_{1} \square C_{j}$ for all $1 \leqslant j \leqslant p$ as G_{2} is 2-edgeconnected, we can find y_{i} in $V\left(G_{1} \square C_{i}\right)-X$ such that $x_{i} y_{i} \in E\left(G_{1} \square G_{2}\right)$. Now $\left|\left(X \cup\left\{y_{1}, \ldots, y_{p}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right| \leqslant 2 \leqslant m$ and is even. Since C_{j} is 0-factor-critical and $G_{1} \square C_{j}$ is m-factor-critical for $j=1, \ldots, l$. So $G_{1} \square C_{j}-\left(X \cup\left\{y_{1}, \ldots, y_{p}\right\}\right)$ has a perfect matching M_{j} for all $j(1 \leqslant j \leqslant l)$. Then $\bigcup_{j=0}^{l} M_{j} \cup\left\{x_{1} y_{1}, \ldots, x_{p} y_{p}\right\}$ $-\left\{x_{1} x_{2}, \ldots, x_{p-1} x_{p}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

If $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \equiv 1(\bmod 2)$, we choose a vertex x_{0} from $X \cap V\left(G_{1}^{v_{0}}\right)$ and let $X-\left\{x_{0}\right\}=X_{1}$. So $\left|X_{1}\right|$ is even, $G_{1}^{v_{0}}-X_{1}$ has a perfect matching M_{0} with $\left|M_{0}\right|=\left|V\left(G_{1}^{v_{0}}\right)\right|-\left|X_{1}\right| \geqslant p+1$. Suppose x_{0} is matched with x_{1} in M_{0}. Consider the edges $x_{0} x_{1}, x_{2} x_{3}, \ldots, x_{p-1} x_{p}$ of M_{0}. For each $x_{i}(i=1,2, \ldots, p)$, it has at least two neighbors in $G_{1} \square C_{j}$ for each $j(1 \leqslant j \leqslant p)$. So we can find y_{i} in $V\left(G_{1} \square C_{i}\right)-X$ such that $x_{i} y_{i} \in E\left(G_{1} \square G_{2}\right)$. The same as before, $G_{1} \square C_{j}-\left(X \cup\left\{y_{1}, \ldots, y_{p}\right\}\right)$ has a perfect matching M_{j} for all $j(1 \leqslant j \leqslant l)$. Then $\bigcup_{j=0}^{l} M_{j} \cup\left\{x_{1} y_{1}, \ldots, x_{p} y_{p}\right\}-\left\{x_{0} x_{1}, \ldots, x_{p-1} x_{p}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Case 2. $m+1 \leqslant\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m+2$ for some $v \in V\left(G_{2}\right)$.
Let C_{1}, \ldots, C_{l} (here l allows to be 1) be connected components of $G_{2}-$ v. Since G_{2} is 1-factor-critical, each C_{j} has a perfect matching. Choose any m-vertex set $X_{1} \subseteq X \cap V\left(G_{1}^{v}\right)$, then $G_{1}^{v}-X_{1}$ has a perfect matching M_{0}. Consider edges $x_{1} y_{1}, \ldots, x_{p} y_{p}(0 \leqslant p \leqslant 2)$ of M_{0} with $x_{i} \in X-X_{1}$ and $y_{i} \in V\left(G_{1}^{v}\right)-X$. If $p=0$, then $\left|X \cap V\left(G_{1}^{v}\right)\right|=m+2$ and $\mid X \cap$ $V\left(G_{1} \square C_{j}\right) \mid=0$. If $p \geqslant 1$, for each $y_{i}(1 \leqslant i \leqslant p)$, it has at least two neighbors in $G_{1} \square C_{j}$ for any $j(1 \leqslant j \leqslant l)$ as G_{2} is 2-edge-connected. But $\left|X \cap V\left(G_{1} \square C_{j}\right)\right| \leqslant(m+2)-(m+p) \leqslant 1$, so we can find distinct vertices z_{1}, \ldots, z_{p} in $G_{1} \square\left(G_{2}-v\right)-X$ such that $\left|\left(X \cup\left\{z_{1}, \ldots, z_{p}\right\}\right) \cap V\left(G_{1} \square C_{j}\right)\right| \leqslant 2$ and is even. Thus, $G_{1} \square C_{j}-X \cup\left\{z_{1}, \ldots, z_{p}\right\}$ has a perfect matching M_{j} for all $j(1 \leqslant j \leqslant l)$. Let M_{0}^{\prime} denote the set of edges of M_{0} with both ends in X. Then $\bigcup_{i=0}^{l} M_{i} \cup\left\{y_{1} z_{1}, \ldots, y_{p} z_{p}\right\}-M_{0}^{\prime}-\left\{x_{1} y_{1}, \ldots, x_{p} y_{p}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

From now on, suppose $m \geqslant n \geqslant 2$. Set $|X|=m+n+\varepsilon$. Without loss of generality, we assume $v_{1} v_{2} \in E\left(G_{2}\right)$ satisfying:

$$
\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|=\max \left\{\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right| \mid v_{i} v_{j} \in E\left(G_{2}\right), 1 \leqslant i, j \leqslant 2 t\right\}
$$

and $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right| \geqslant\left|X \cap V\left(G_{1}^{v_{2}}\right)\right|$.
Case 1. $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|=1$.
Then, for any $v_{i} v_{j} \in E\left(G_{2}\right)$, there are only two possibilities: either $\mid X \cap$ $V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right) \mid=0$ or $\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right|=1$. Similarly, for any $u_{i} u_{j} \in E\left(G_{1}\right), \mid X \cap$ $V\left(G_{2}^{\left\{u_{i}, u_{j}\right\}}\right) \mid \leqslant 1$. Otherwise, we can apply induction hypothesis on $\left(G_{1}-\right.$ $\left.\left\{u_{i}, u_{j}\right\}\right) \square G_{2}$.

Subcase 1.1. m, n are even.
By Lemma 2.5, there exists a perfect matching in $G_{1} \square G_{2}-X$.
Subcase 1.2. m and n are odd.

Suppose $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right|=1$ and $\left|X \cap V\left(G_{1}^{v_{3}}\right)\right|=1$ and $v_{1} v_{3} \notin E\left(G_{2}\right)$. Thus $G_{1}^{v_{1}}-X$ and $G_{1}^{v_{3}}-X$ have perfect matchings M_{1} and M_{2}, respectively, by Theorem 1.1 and the fact that G_{1} is m-factor-critical.

Furthermore, G_{2} is n-factor-critical with n odd and $n \geqslant 3$, so $G_{2}-\left\{v_{1}, v_{3}\right\}$ is connected and $(n-2)$-factor-critical. By induction hypothesis, $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{3}\right\}\right)-X$ has a perfect matching M_{3} as $\left|X \cap V\left(G_{1} \square\left(G_{2}-\left\{v_{1}, v_{3}\right\}\right)\right)\right|=m+n-1$.

Therefore, $M_{1} \cup M_{2} \cup M_{3}$ is a perfect matching of $G_{1} \square G_{2}-X$.
Subcase 1.3. m and n are of different parities.
Assume m is odd and n is even. Suppose $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right|=1 \equiv m(\bmod 2)$, then $G_{1}^{v_{1}}-X$ has a perfect matching M_{1} by Theorem 1.1 (1). On the other hand, $G_{2}-v_{1}$ is $(n-1)$-factor-critical with $n-1$ odd. Thus, by induction hypothesis, $G_{1} \square\left(G_{2}-v_{1}\right)-X$ has a perfect matching M_{2} as $\left|X \cap V\left(G_{1} \square\left(G_{2}-v_{1}\right)\right)\right| \leqslant m+n$. Hence, $M_{1} \cup M_{2}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Case 2. $2 \leqslant\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \leqslant[m+1]_{2}$ and $n=2$.
Subcase 2.1. There exists a vertex $v \in V\left(G_{2}\right)$ such that $\left|X \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$.
In this case, $G_{1}^{v}-X$ has a perfect matching M_{1} as $\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant[m+1]_{2}$. On the other hand, $\left|X \cap V\left(G_{1} \square\left(G_{2}-v\right)\right)\right|=[m+3]_{2}-\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m+2$ and $\left|X \cap V\left(G_{1} \square\left(G_{2}-v\right)\right)\right| \equiv m+2(\bmod 2)$. Since G_{2} is bicritical, $G_{2}-v$ is 1-factor-critical, and by induction hypothesis, then $G_{1} \square\left(G_{2}-v\right)-X$ has a perfect matching M_{2}. Therefore, $M_{1} \cup M_{2}$ is the desired perfect matching of $G_{1} \square G_{2}-X$.

Subcase 2.2. For any $v \in V\left(G_{2}\right)$, we have $\left|X \cap V\left(G_{1}^{v}\right)\right| \equiv m+1(\bmod 2)$.
Since $\left|V\left(G_{2}\right)\right| \geqslant n+2=4$ and $|X|=[m+3]_{2}$, there exists a vertex $v \in V\left(G_{2}\right)$ such that $1 \leqslant\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m-1$ by the maximality of $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \leqslant[m+1]_{2}$. Let $Y=V\left(G_{1}^{v}\right)-X$. Then $\left|N_{G_{1} \square\left(G_{2}-v\right)}(Y)\right| \geqslant 3|Y| \geqslant 3\left(\left|V\left(G_{1}\right)\right|-\left|X \cap V\left(G_{1}^{v}\right)\right|\right) \geqslant$ $3\left(m+2-\left|X \cap V\left(G_{1}^{v}\right)\right|\right)$ as $\delta\left(G_{2}\right) \geqslant 3$. On the other hand, $\left|X \cap V\left(G_{1} \square\left(G_{2}-v\right)\right)\right|=$ $[m+3]_{2}-\left|X \cap V\left(G_{1}^{v}\right)\right|<3\left(m+2-\left|X \cap V\left(G_{1}^{v}\right)\right|\right)$. Hence we can find a vertical edge $e=w w^{\prime}$ such that $w \in G_{1}^{v}-X$ and $w^{\prime} \in G_{1} \square\left(G_{2}-v\right)-X$. Similarly, $G_{1}^{v}-\left(X \cup\left\{w, w^{\prime}\right\}\right)$ has a perfect matching M_{1} and by induction hypothesis, $G_{1} \square\left(G_{2}-\right.$ $v)-\left(X \cup\left\{w, w^{\prime}\right\}\right)$ has a perfect matching M_{2} as $\left|\left(X \cup\left\{w, w^{\prime}\right\}\right) \cap V\left(G_{1} \square\left(G_{2}-v\right)\right)\right|=$ $[m+3]_{2}-\left|X \cap V\left(G_{1}^{v}\right)\right|+1 \leqslant m+2$ and $\left|\left(X \cup\left\{w, w^{\prime}\right\}\right) \cap V\left(G_{1} \square\left(G_{2}-v\right)\right)\right| \equiv m+2$ $(\bmod 2)$. Therefore, $M_{1} \cup M_{2} \cup\left\{w w^{\prime}\right\}$ is a perfect matching of $G_{1} \square G_{2}-X$.

Case 3. $2 \leqslant\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \leqslant[m+1]_{2}$ and $n \geqslant 3$.
Subcase 3.1. $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|$ is odd.
Let $k=\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|, Y=V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)-X$ and $H=G_{2}-\left\{v_{1}, v_{2}\right\}$. Then $k \leqslant[m+1]_{2}-1$ and H is connected. Note that each vertex of Y has more than n neighbors in $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$. Hence $\left|N_{G_{1} \square H}(Y)\right| \geqslant n(m+2-k)$. Moreover, $\left|X \cap V\left(G_{1} \square H\right)\right|=m+n+1-k<n(m+2-k)$, as $m \geqslant n \geqslant 2$. So, there exists a vertical edge $u u^{\prime}$ with $u \in V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)-X$ and $u^{\prime} \in V\left(G_{1} \square H\right)-X$. Since $\left|\left(X \cup\left\{u, u^{\prime}\right\}\right) \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \leqslant[m+1]_{2}$ and is even, then $G_{1}^{\left\{v_{1}, v_{2}\right\}}-(X \cup\{u\})$ has a perfect matching M_{1}.

By induction hypothesis, $G_{1} \square H-\left(X \cup\left\{u^{\prime}\right\}\right)$ has a perfect matching M_{2} because $\left|\left(X \cup\left\{u, u^{\prime}\right\}\right) \cap V\left(G_{1} \square H\right)\right| \leqslant m+n+\varepsilon-2$ and it has the same parity with $m n$. Therefore, $G_{1} \square G_{2}-X$ has a perfect matching $M_{1} \cup M_{2} \cup\left\{u u^{\prime}\right\}$.

Subcase 3.2. $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|$ is even.

Then $G_{1}^{\left\{v_{1}, v_{2}\right\}}-X$ has a perfect matching M_{1} and $\left|X \cap V\left(G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)\right)\right|$ has the same parity with $m n$. Since $G_{2}-\left\{v_{1}, v_{2}\right\}$ is ($n-2$)-factor-critical by Theorem 1.1, by induction hypothesis, $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)-X$ has a perfect matching M_{2}.

Therefore, $G_{1} \square G_{2}-X$ has a perfect matching $M_{1} \cup M_{2}$.
Case 4. $[m+1]_{2}+1 \leqslant\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \leqslant m+n+\varepsilon$.
Subcase 4.1. $m n$ is even, say n even.
Then $G_{2}-\left\{v_{1}, v_{2}\right\}$ is $(n-2)$-factor-critical by Theorem 1.1. Set $k=\mid X \cap$ $V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right) \mid$. By induction hypothesis, each component of $G_{1} \square\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ is ($m+n-2$)-factor-critical and thus $G_{1} \square G_{2}-X$ has a perfect matching by Lemma 2.3.

Subcase 4.2. $m n$ is odd.
Similarly, we obtain a perfect matching of $G_{1} \square G_{2}-X$ by Lemma 2.4.
Remark 1 The conclusion in Theorem 2.2 is sharp. From Theorem 1.1 (3), there exists an m-factor-critical graph, say G, with minimum degree $m+1$. Then $\delta\left(G \square K_{2}\right)=$ $m+2$. Assume $d_{G \square K_{2}}(u)=m+2$, then the deletion of all neighbors of u in G results in an isolated vertex. Similarly, by sharpness of m-connectivity, we can construct a family of infinite graphs to attain the bound in Theorem 2.1.

Acknowledgments The authors would like to express sincere thank to our colleague Dr. Hongliang Lu for his constructive comments. The authors are indebted to the anonymous referees for their detailed valuable suggestions.

References

1. Bondy J.A., Murty U.S.R.: Graph Theory, GTM-244, Springer, Berlin (2008)
2. Favaron, O.: On k-factor-critical graphs. Discuss. Math. Graph Theory 16, 41-51 (1996)
3. Győri, E., Plummer, M.D.: The Cartesian Product of a k-extendable and an l-extendable graph is $(k+l+1)$-extendable. Discret. Math. 101, 87-96 (1992)
4. Győri, E., Imrich, W.: On the strong product of a k-extendable and an l-extendable graph. Graphs Combin. 17, 245-253 (2001)
5. Imrich W., Klavžar S.: Product Graphs, Structure and Recognition. Wiley, New York
6. Liu, J.P., Yu, Q.L.: Matching extensions and products of graphs. Ann. Discret. Math. 55, 191-200 (1993)
7. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland Inc., Amsterdam (1986)
8. Yu, Q.L.: Characterizations of various matching extensions in graphs. Australas. J. Combin. 7, 55-64 (1993)

[^0]: This work is supported by Discovery Grant (114073) of Natural Sciences and Engineering Research Council of Canada.
 Z. Wu $\cdot \mathrm{X}$. Yang

 Center for Combinatorics, LPMC, Nankai University, Tianjin, China
 Q. Yu (\boxtimes)

 Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada e-mail: yu@tru.ca

