
Vertex-coloring edge-weightings of graphs

Gerard J. Chang123∗ Changhong Lu4,5† Jiaojiao Wu1‡ Qinglin Yu6§

1Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan
2Institute for Mathematical Sciences, National Taiwan University, Taipei 10617, Taiwan

3National Center for Theoretical Sciences, Taipei, Taiwan
4Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China

5Institute of Theoretical Computing, ECNU, Shanghai 200062, P. R. China
6Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, Canada

Abstract

A k-edge-weighting of a graph G is a mapping w : E(G) → {1, 2, . . . , k}. An edge-
weighting w induces a vertex coloring fw : V (G) → N defined by fw(v) =

∑
v∈e w(e).

An edge-weighting w is vertex-coloring if fw(u) 6= fw(v) for any edge uv. The current
paper studies the parameter µ(G), which is the minimum k for which G has a vertex-
coloring k-edge-weighting. Exact values of µ(G) are determined for several classes of
graphs, including trees and r-regular bipartite graph with r ≥ 3.
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1 Introduction

A k-edge-weighting of a graph G is a mapping w : E(G) → {1, 2, . . . , k}. An edge-weighting

w induces a vertex coloring fw : V (G) → N defined by fw(v) =
∑

v∈e w(e). An edge-

weighting w is vertex-coloring (respectively, vertex-injective) if fw(u) 6= fw(v) for any edge

uv (respectively, every pair of distinct vertices u and v). Denote by µ(G) (respectively,

µ∗(G)) the minimum k for which G has a vertex-coloring (respectively, vertex-injective)

k-edge-weighting. We refer a graph non-trivial if it contains no single edge as a component.

Notice that µ(G) ≤ µ∗(G) for every non-trivial graph G.

An edge-weighting is adjacent vertex-distinguishing (respectively, vertex-distinguishing)

if for any edge uv (respectively, every pair of distinct vertices u and v), the multi-set of
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weights appearing on edges incident to u is distinct from the multi-set of weights appearing

on the edges incident to v. Denote by µm(G) (respectively, µ∗
m(G)) the minimum k for

which G has an adjacent vertex-distinguishing (respectively, vertex-distinguishing) k-edge-

weighting. Notice that µm(G) ≤ µ∗
m(G) for every non-trivial graph G. Then, upper bounds

for µ(G) (respectively, µ∗(G)) provide upper bounds for µm(G) (respectively, µ∗
m(G)).

It is clear that a vertex-coloring (respectively, vertex-injective) edge-weighting is ad-

jacent vertex-distinguishing (respectively, vertex-distinguishing), but the converse is not

necessarily true. Consequently, µm(G) ≤ µ(G) and µ∗
m(G) ≤ µ∗(G) for every non-trivial

graph G.

Adjacent vertex-distinguishing edge-weighting and vertex-distinguishing edge-weighting

have been studied by many researchers [4, 6, 5, 7]. Karoński, Luczak and Thomason [10]

proved that µm(G) ≤ 213 for every non-trivial graph and that µm(G) ≤ 30 for every

graph with minimum degree at least 1099. Addario-Berry et al. [1] improved the results to

µm(G) ≤ 4 for every non-trivial graph and µm(G) ≤ 3 for every graph of minimum degree

at least 1000.

For vertex-coloring edge-weighting, Karoński, Luczak and Thomason [10] posed the

following question:

Question. Does µ(G) ≤ 3 for every non-trivial graph G?

Karoński, Luczak and Thomason [10] showed that if G is a k-colorable graph with k odd

then G admits a vertex-coloring k-edge-weighting. So, for the class of 3-colorable graphs,

including bipartite graphs, the answer is affirmative. However, in general, this question is

still open. The first constant bound was obtained by Addario-Berry et al. [2], who showed

that µ(G) ≤ 30 for every non-trivial graph G. The bound is improved to µ(G) ≤ 16 in [3],

to µ(G) ≤ 13 in [11], and to µ(G) ≤ 5 in [9].

Even we are still far from providing a positive answer to the question, actually µ(G) ≤ 2

for many graphs (in fact, experiments suggest (see [10]) that µ(G) ≤ 2 for almost all graphs).

The current paper is devoted to study graphs with such a property. We determine µ(G)

for some classes of graphs with this property, including trees and r-regular bipartite graphs

with r ≥ 3.
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In the rest of this section, we fix some notation. For n ≥ 1, the n-path Pn is the graph

with vertex set {vi : 1 ≤ i ≤ n} and edge set {vivi+1 : 1 ≤ i ≤ n − 1}. For n ≥ 3, the

n-cycle Cn is the graph with vertex set {vi : 1 ≤ i ≤ n} and edge set {vivi+1 : 1 ≤ i ≤ n},

where vn+1 = v1. The complete graph Kn is the graph with vertex set {vi : 1 ≤ i ≤ n} and

edge set {vivj : 1 ≤ i < j ≤ n}. The complete bipartite graph Km,n is the graph with vertex

set {ui : 1 ≤ i ≤ m} ∪ {vj : 1 ≤ j ≤ n} and edge set {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The

neighborhood of a vertex v is the set N(v) = {u : uv ∈ E(G)}, and the closed neighborhood

is N [v] = N(v)∪{v}. The degree of a vertex v is d(v) = |N(v)|. We use δ(G) to denote the

minimum degree of a vertex in a graph G.

2 µ(G) for some classes of graphs

This section establishes values of µ(G) for some classes of graphs, including paths, cycles,

complete graphs and complete bipartite graphs.

Fact 1 For every non-trivial graph G, µ(G) = 1 if and only if G has no adjacent vertices

with the same degree.

Fact 2 µ(P3) = 1 and µ(Pn) = 2 for n ≥ 4.

Proof. This follows from Fact 1 and the fact that the following mapping w is a vertex-

coloring 2-edge-weighting: w(vivi+1) = 1 for i ≡ 1, 2 (mod 4) and w(vivi+1) = 2 for i ≡ 3, 4

(mod 4).

Proposition 3 µ(Cn) = 2 for n ≡ 0 (mod 4) and µ(Cn) = 3 for n 6≡ 0 (mod 4).

Proof. First, µ(Cn) ≥ 2 by Fact 1. For the case when n ≡ 0 (mod 4), µ(Cn) = 2 follows

from that the following mapping w is a vertex-coloring 2-edge-weighting: w(vivi+1) = 1 for

i ≡ 1, 2 (mod 4) and w(vivi+1) = 2 for i ≡ 3, 4 (mod 4).

For the case n = 4k+r, 1 ≤ r ≤ 3, µ(Cn) ≤ 3 follows from that the following mapping w

is a vertex-coloring 3-edge-weighting: w(vivi+1) = 1 for i ≡ 1, 2 (mod 4) and w(vivi+1) = 2

for i ≡ 3, 4 (mod 4) with the modifications that w(v4k+1v4k+2) = w(v4k+2v4k+3) = 3 and
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w(v4k+3v4k+4) = 2. On the other hand, we claim that µ(Cn) 6= 2. Suppose to the contrary

that Cn has a vertex-coloring 2-edge-weighting w. Then, fw(vi+1) 6= fw(vi+2) implies

w(vivi+1) 6= w(vi+2vi+3) and so w(vivi+1) = w(vi+4vi+5), where the indices are taken

modulo 4. These in turn imply that w(vivi+1) 6= w(vi+4j+2vi+4j+3). This is a contradiction

since vi = vi+n = vi+4j+2 when r = 2 with j = n−2
4 and vi = vi+2n = vi+4j+2 when r = 1, 3

with j = n−1
2 .

Proposition 4 If n ≥ 3, then µ(Kn) = 3.

Proof. We first consider the following mapping w: w(vivj) = 1 for i + j ≤ n, w(vivn) = 3

for bn+2
2 c ≤ i ≤ n − 1, and w(vivj) = 2 for all other edges. It is straightforward to check

that fw(vi) = n− 1 + i for 1 ≤ i ≤ n− 1 and fw(vn) = b5n−5
2 c. Hence, fw is vertex-coloring

and so µ(Kn) ≤ 3.

On the other hand, we claim that µ(Kn) 6= 2. Suppose to the contrary that Kn has

a vertex-coloring 2-edge-weighting w. Then, each fw(vi) is one of the n possible values in

{n−1, n, . . . , 2n−2}. So, there is exactly one vi (resp. vj) with fw(vi) = n−1 (resp. fw(vj) =

2n − 2). The first equation implies that w(vivj) = 1 while the second one implies that

v(vjvi) = 2, a contradiction. Thus, µ(Kn) = 3.

Proposition 5 µ(Km,n) = 1 when m 6= n and µ(Km,n) = 2 when m = n ≥ 2.

Proof. The former case follows from Fact 1. The latter case follows from that for m =

n ≥ 2 the following mapping w is a vertex-coloring 2-edge-weighting: w(uivj) = 1 and

w(umvj) = 2 for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n.

The theta graph θ(`1, `2, . . . , `r) is the graph obtained from r disjoint paths of lengths

`1, `2, . . . , `r, respectively, by identifying their end-vertices called the roots of the graph.

Notice that θ(`1) = P1+`1 and θ(`1, `2) = C`1+`2 . In the following we only consider the case

r ≥ 3 and assume that `1 ≤ `2 ≤ . . . ≤ `r.

Proposition 6 Let G = θ(`1, `2, . . . , `r) with r ≥ 3. Then µ(G) = 1 when `i = 2 for all i;

µ(G) = 3 when `1 = 1 and `i ≡ 1 (mod 4) for all i 6= 1; and µ(G) = 2 otherwise.
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Proof. The first equality follows from Proposition 1 and that any two adjacent vertices

have different degrees if and only if all `i = 2.

For the case when `1 = 1 with all `i ≡ 1 (mod 4), we claim that µ(G) ≥ 3. Suppose,

to the contrary that the graph admits a vertex-coloring 2-edge-weighting w. Then, in each

path the kth edge must have the different weight from the (k +2)th edge, and has the same

weight with the (k + 4)th edge. Consequently, the first edge has the same weight with the

last edge in each path of the theta graph. Then, fw(u) = fw(v) for the two roots u and v,

however, this is impossible as they are adjacent. On the other hand, the following mapping

w is a vertex-coloring 3-edge-weighting: for each path of the theta graph, assign the weights

1, 1, 2, 2 periodically except the last edge assigned with 3.

For the remaining case, we may construct a vertex-coloring 2-edge-weighting as follows.

Notice that for a periodical weight assignment . . . 1, 1, 2, 2 . . . of a path with first edge e and

last edge e′, we may properly choose the starting weight such that w(e) = w(e′) = 2 except

for the case when `i ≡ 3 (mod 4) (one of w(e) and w(e′) is 1 and the other is 2). We then

may properly arrange the weights on edges to make a vertex-coloring 2-edge-weighting even

when `1 = 1.

3 µ(G) for bipartite graphs

In this section, we consider µ(G) for a bipartite graph G. We use G = (A,B, E) to denote

a bipartite graph with vertex bipartition (A,B), and edge set E.

Theorem 7 Every non-trivial connected bipartite graph G = (A,B, E) with |A| even admits

a vertex-coloring 2-edge-weighting w such that fw(u) is odd for u ∈ A and fw(v) is even for

v ∈ B. Consequently, µ(G) ≤ 2.

Proof. Assume that A = {a1, a2, . . . , a2r}. Let Pi be a path from ai to ar+i for 1 ≤ i ≤ r.

For each edge e, denote k(e) the number of such paths containing e; and for each vertex u,

denote m(u) the sum of k(e) of all edges e incident to u. Then m(u) is odd for u ∈ A and

m(v) is even for v ∈ B. Now, let w(e) = 1 for any edge e with k(e) odd and w(e) = 2 for

any edge e with k(e) even. Since w(e) has the same parity as k(e) for each edge e, the color
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fw(u) of a vertex u satisfies fw(u) ≡ m(u) (mod 2) for u ∈ A ∪ B. Consequently, fw(u) is

odd for u ∈ A and fw(v) is even for v ∈ B. Hence, w is a vertex-coloring 2-edge-weighting

of G.

Theorem 8 µ(G) ≤ 2 for every non-trivial connected bipartite graph G = (A,B, E) with

δ(G) = 1.

Proof. By Theorem 7, we may assume that both of |A| and |B| are odd. Without loss of

generality, assume that d(x) = 1 for some vertex x in A, and that x is adjacent to a vertex

y in B. Then G − x = (A \ {x}, B, E \ {xy}) is a non-trivial connected bipartite graph

with |A− {x}| even. By Theorem 7, G− x has a 2-edge-weighting w′ so that fw′(u) is odd

for u ∈ A \ {x} and fw′(v) is even for v ∈ B. Now, extend w′ to w for G by assigning

w(xy) = 2. This gives a vertex-coloring 2-edge-weighting with fw(x) = 2, fw(u) odd for

u ∈ A \ {x}, fw(v) even for v ∈ B and fw(y) > 2.

Corollary 9 If T is a tree of at least three vertices, then µ(T ) ≤ 2.

Theorem 10 µ(G) ≤ 2 for every non-trivial connected bipartite graph G = (A,B, E) if

bd(u)/2c+ 1 6= d(v) for any edge uv ∈ E(G).

Proof. By Theorem 7, we may assume that both of |A| and |B| are odd. We need a claim

first.

Claim. There exists a vertex x, say x ∈ B, such that the vertices of G−N [x] in A are

all in a same component of G−N [x].

Choose a vertex x such that the size of a maximum component of G−N [x] becomes as

large as possible. Without loss of generality, we assume that x ∈ B. Suppose that besides

a maximum component G1 = (A1, B1, E1) the graph G − N [x] has another component

G2 = (A2, B2, E2), where A1 and A2 are nonempty subsets of A. Choose x′ ∈ A2. Since

G is connected, N(x) has a vertex adjacent to a vertex in B1. Then, G1 together with

N [x] are in a same component of G−N [x′], and then the size of a maximum component of

G−N [x′] is larger than that of x, a contradiction to the choice of x.
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From the claim, we see that G − N [x] has a component G1 = (A1, B1, E1) with A1 =

A \N(x) and all other components are isolated vertices in B. Now we consider two cases.

Case 1. d(x) is odd. In this case, |A1| is even. According to Theorem 7, G1 has a 2-

edge-weighting w′ such that fw′(u) is odd for u ∈ A1 and fw′(v) is even for v ∈ B1. We then

extend w′ to w for G by assigning the edges incident to x with weight 1 and the remaining

edges with weight 2. Then, fw(u) is odd for u ∈ A and fw(v) is even for v ∈ B \{x}. Notice

that fw(x) = d(x) and fw(u) = 2d(u)− 1 for all u ∈ N(x). These imply fw(x) 6= fw(u) by

hypothesis. Therefore, w is a vertex-coloring 2-edge-weighting of G.

Case 2. d(x) is even. In this case, |A1| is odd. Notice that there is a vertex u∗ ∈ N(x)

adjacent to some vertex v∗ ∈ B1. Let G′ be the graph obtained from G1 by adding the

vertex u∗ and the edge u∗v∗. According to Theorem 7, G′ has a 2-edge-weighting w′ so

that fw′(u) is odd for u ∈ A1 ∪ {u∗} and fw′(v) is even for v ∈ B1. We may extend w′ to

w for G by assigning the edges incident to x, except xu∗, with weight 1 and the remaining

edges with weight 2. Then, fw(u) is odd for u ∈ A and fw(v) is even for v ∈ B except x.

Notice that fw(x) = 2bd(x)/2c+ 1 for all u ∈ N(x)− u∗. Therefore, w is a vertex-coloring

2-edge-weighting of G.

Consequently, we have the following result which is in fact our first thought.

Corollary 11 µ(G) = 2 for every r-regular bipartite graph G with r ≥ 3.

Notice that the theta graph G = θ(`1, `2, . . . , `r) with `1 = 1 and all `i ≡ 1 (mod 4) is a

bipartite graph with µ(G) = 3.

We conclude the paper by posing the following problem.

Problem. Characterize bipartite graphs with vertex-coloring 2-edge-weighting.
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