On Strong Product of Factor-Critical Graphs

Zefang $\mathrm{Wu}^{1 *}$, Xu Yang ${ }^{1}$ and Qinglin Yu^{2}
1. Center for Combinatorics, LPMC
Nankai University, Tianjin, China
2. Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

Strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent whenever $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2}, or u_{1} is adjacent to u_{2} and $v_{1}=v_{2}$, or u_{1} is adjacent to u_{2} and v_{1} is adjacent to v_{2}. We investigate the factor-criticality of $G_{1} \boxtimes G_{2}$ and obtain the following:

Let G_{1} and G_{2} be connected m-factor-critical and n-factor-critical graphs, respectively. Then (i) if $m \geqslant 0, n=0,\left|V\left(G_{1}\right)\right| \geqslant 2 m+2$ and $\left|V\left(G_{2}\right)\right| \geqslant 4$, then $G_{1} \boxtimes G_{2}$ is $(2 m+2)$ -factor-critical; (ii) if $n=1,\left|V\left(G_{1}\right)\right| \geqslant 2 m+3$ and either $m \geqslant 3$ or $\left|V\left(G_{2}\right)\right| \geqslant 5$, then $G_{1} \boxtimes G_{2}$ is ($2 m+4-\varepsilon$)-factor-critical, where $\varepsilon=0$ if m is even, otherwise $\varepsilon=1$; (iii) if $m+2 \leqslant\left|V\left(G_{1}\right)\right| \leqslant 2 m+2$, or $n+2 \leqslant\left|V\left(G_{2}\right)\right| \leqslant 2 n+2$, then $G_{1} \boxtimes G_{2}$ is $m n$-factor-critical; (iv) if $\left|V\left(G_{1}\right)\right| \geqslant 2 m+3$ and $\left|V\left(G_{2}\right)\right| \geqslant 2 n+3$, then $G_{1} \boxtimes G_{2}$ is $\left(m n-\min \left\{\left[\frac{3 m}{2}\right]_{2},\left[\frac{3 n}{2}\right]_{2}\right\}\right)$ -factor-critical.

Keywords: Factor-criticality, product graph, strong product, perfect matching, T-join.

AMS Classification: 05C70, 05C76

1 Introduction and Notation

The graphs considered in this paper will be finite, undirected, simple and connected. Let G be a graph with vertex set $V(G)$ and m be an integer such that $0 \leqslant m \leqslant|V(G)|-2$. A graph G is m-factor-critical (hereafter ' m-fc') if

- (i) $|V(G)| \equiv m(\bmod 2)$;
- (ii) for any $S \subseteq V(G)$, if $|S|=m$, then $G-S$ has a perfect matching (i.e., a 1-factor).

[^0]In particular, a graph G is said to be factor-critical if $G-u$ has a 1-factor for every $u \in V(G)$ and to be bicritical if for every pair of distinct vertices u and $v, G-\{u, v\}$ has a 1-factor. The factor-critical graphs are used as essential "building blocks" for the so-called GallaiEdmonds matching structure of general graphs and bicritical graphs are studied by Lovász to develop brick-decomposition as powerful tool to determine the dimension of matching lattice (see [7]). A graph G is called m-extendable if every matching of size m can be extended to a perfect matching of G. Clearly, a $2 m$-fc graph is m-extendable.

Favaron [3] and Yu [9] introduced the concept of m-fc and studied the basic properties of m-fc graphs, independently. Several properties of m-fc graphs will be used in our proofs, so we summarize them as follows.

Theorem 1.1 ([3], [9]) Let G be an m-fc graph with $m \geqslant 1$. Then
(a) G is also $(m-2)-f c$, if $m \geqslant 2$;
(b) G is m-connected;
(c) G is $(m+1)$-edge-connected. In particular, $\delta(G) \geqslant m+1$.

Let $c_{o}(G)$ denote the number of odd components of G. Favaron [3] and $\mathrm{Yu}[9]$ also gave a sufficient and necessary condition on m - fc graphs, independently.

Theorem 1.2 ([3], [9]) A graph G is m-fc if and only if $c_{o}(G-S) \leqslant|S|-m$, for all $S \subseteq V(G)$ and $|S| \geqslant m$.

It is natural to study the factor criticality and matching extendability of different types of graph products, since such products contain a large number of 1 -factors and they often form a 'skeleton' of Cayley graphs. Some interesting properties of product graphs can be found in [4] and [5]. Here, we investigate the factor-criticality of the strong product of an m-fc and an n-fc graphs.

Strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if either $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2}, or u_{1} is adjacent to u_{2} and $v_{1}=v_{2}$, or u_{1} is adjacent to u_{2} and v_{1} is adjacent to v_{2}. For example, $K_{2} \boxtimes K_{2}=K_{4}$.

The "projection" subgraph of $G_{1} \boxtimes G_{2}$ induced by the vertex set $\left\{\left(u, v_{0}\right) \mid u \in V\left(G_{1}\right), v_{0} \in\right.$ $\left.V\left(G_{2}\right)\right\}$ will be denoted by $G_{1}^{v_{0}}$. It is called a row of $G_{1} \boxtimes G_{2}$. $G_{1}^{V_{0}}$ denotes the subgraph of $G_{1} \boxtimes G_{2}$ induced by the vertex set $\left\{(u, v) \mid u \in V\left(G_{1}\right), v \in V_{0} \subseteq V\left(G_{2}\right)\right\}$. Similarly, we define the notation $G_{2}^{u_{0}}$ (a column of $G_{1} \boxtimes G_{2}$) and $G_{2}^{U_{0}}$. Clearly, $G_{1}^{v} \cong G_{1}$ and $G_{2}^{u} \cong G_{2}$.

One of the important technique throughout the proof is T-join. Let $T \subseteq V(G)$ with $|T|$ even. Let H be a spanning subgraph of G and $d_{H}(x)$ denote the degree of x in H. Then H is called a T-join, if

$$
d_{H}(x) \equiv\left\{\begin{array}{lll}
1 & (\bmod 2), & \text { if } x \in T \\
0 & (\bmod 2), & \text { if } x \in V(G)-T
\end{array}\right.
$$

Note that for a T-join H, any vertex of T is of odd degree in H and other vertices are of even degree in H. Given a connected graph G and a subset $T \subseteq V(G)$ with $|T|$ even,
there always exists a T-join. A common way to construct a T-join is as follows: pairing up vertices of T and finding a path connecting them in G for each pair, and then the symmetric difference of these paths are the desired T-join. If we delete all the edges of the Eulerian cycles of a T-join, the new subgraph F becomes a forest and it remains a T-join; moreover, for every $u v \in E(G), d_{F}(u)+d_{F}(v) \leqslant|T|+2$.

In fact, T-joins associate with several well-known optimization problems: shortest paths problem instances with negative length edges, the Chinese postman problem, the 1-matching problem, and so on. In [2], Edmonds and Johnson showed that the T-join problem can be reduced to the weighted matching problem. The idea of this reduction is as follows: for every pair of vertices u, v in T, compute the distance $d(u, v)$ in G. Consider the complete graph H with vertex set T, with the edges of H weighted by the corresponding $d(u, v)$. Let M be a minimum weight perfect matching in H and, for each edge $u v \in M$, let $P_{u v}$ be a $u-v$ path of the minimum length in G. It is not hard to show that the $P_{u v}$'s are mutually edge-disjoint and hence that $\cup_{u v \in M} P_{u v}$ is a minimum T-join. Edmonds [1] proved that the weighted matching problem can be solved in polynomial time. Later, Wattenhofer and Wattenhofer [8] presented an algorithm for constructing a minimum weighted perfect matching on complete graphs whose cost functions satisfy the triangular inequality, and this improved the running time to $O\left(n^{2} \log n\right)$. So from algorithm complexity point of view, finding a T-join is a P-problem.

We use the notation $[x]_{2}=2\lfloor x / 2\rfloor$, i.e., $[x]_{2}$ denotes the maximum even number no more than x. And $[n]=\{1,2, \ldots, n\}$. For terminology and notation not defined here, readers are referred to [7].

2 Main results

The main result presented in this paper is the following theorem.

Theorem 2.1 Let G_{1} be a connected m-fc graph and G_{2} be a connected n-fc graph.
(i) If $m \geqslant 0, n=0,\left|V\left(G_{1}\right)\right| \geqslant 2 m+2$, and $\left|V\left(G_{2}\right)\right| \geqslant 4$, then $G_{1} \boxtimes G_{2}$ is $(2 m+2)-f c$;
(ii) if $n=1,\left|V\left(G_{1}\right)\right| \geqslant 2 m+3$, either $m \geqslant 3$ or $\left|V\left(G_{2}\right)\right| \geqslant 5$, then $G_{1} \boxtimes G_{2}$ is $(2 m+4-\varepsilon)-f c$, where $\varepsilon=0$ if m is even, otherwise $\varepsilon=1$;
(iii) if $m+2 \leqslant\left|V\left(G_{1}\right)\right| \leqslant 2 m+2$, or $n+2 \leqslant\left|V\left(G_{2}\right)\right| \leqslant 2 n+2$, then $G_{1} \boxtimes G_{2}$ is $m n-f c$;
(iv) if $\left|V\left(G_{1}\right)\right| \geqslant 2 m+3$ and $\left|V\left(G_{2}\right)\right| \geqslant 2 n+3$, then $G_{1} \boxtimes G_{2}$ is $\left(m n-\min \left\{\left[\frac{3 m}{2}\right]_{2},\left[\frac{3 n}{2}\right]_{2}\right\}\right)$ $f c$.

Remark. In [5], Györi and Imrich conjectured that the strong product of an m-extendable graph and an n-extendable graph is $\left([(m+2)(n+2)]_{2}-2\right)$-factor-critical. This conjecture is still open. In the above theorem, we use a stronger condition to obtain better results. For example, (iv) if G_{1} and G_{2} are $2 m$-fc and $2 n$-fc (which imply m-extendability and n extendability), then $G_{1} \boxtimes G_{2}$ is at least $\left(4 m n-\min \left\{[3 m]_{2},[3 n]_{2}\right\}\right)-\mathrm{fc}$, which is stronger than the conclusion in the conjecture when $m, n \geqslant 3$.

An important special case of the main theorem is the following, which is used many times in the proof of Theorem 2.1.

Theorem 2.2 If G is an m-fc graph, then $G \boxtimes K_{2}$ is $2 m-f c$.
In addition, we need the following lemmas.
Lemma 2.3 Let G_{1} be m-fc and G_{2} be $n-f c(n \geqslant 2)$ such that $G_{1} \boxtimes\left(G_{2}-v\right)$ is $m(n-1)$ $f c$, for any $v \in V\left(G_{2}\right)$. Suppose X is a subset of $V\left(G_{1} \boxtimes G_{2}\right)$ with $|X|=m n$. If there exists a vertex $v \in V\left(G_{2}\right)$ such that $\left|X \cap V\left(G_{1}^{v}\right)\right| \geqslant m$, then there is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

Proof. Let $X_{0}=\left\{x_{1}, \ldots, x_{m}\right\}$ be any m vertices of $X \cap V\left(G_{1}^{v}\right)$. Then $G_{1}^{v}-X_{0}$ contains a perfect matching M as G_{1} is m-fc. Consider the edges $y_{1} z_{1}, \ldots, y_{p} z_{p}$ of M such that $z_{i} \in X-X_{0}$ and $y_{i} \notin X-X_{0}$. As G_{1} is m-fc, by Theorem 1.1, $\delta\left(G_{1}\right) \geqslant m+1$. Thus, for $v^{\prime} \in V\left(G_{2}\right)-v$, if $v v^{\prime} \in E\left(G_{2}\right), y_{i}$ has at least $m+2$ neighbors in $G_{1}^{v^{\prime}}$, by the definition of strong product. Moreover, v has at least $n+1$ neighbors in G_{2} as G_{2} is n-fc. Thus every vertex y_{i} has at least $(n+1)(m+2)$ neighbors in $G_{1} \boxtimes\left(G_{2}-v\right)$. Since G_{1}^{v} contains at least $m+p$ elements of X, we infer that $G_{1} \boxtimes\left(G_{2}-v\right)-X$ contains at least $(n+1)(m+2)-(n m-m-p)>$ p neighbors of any y_{i}. Thus there exist vertices $w_{1}, \ldots, w_{p} \in V\left(G_{1} \boxtimes\left(G_{2}-v\right)\right)$ such that $w_{i} \notin X, y_{i} w_{i} \in E\left(G_{1} \boxtimes G_{2}\right)$ for $i=1, \ldots, p$. Let $X_{1}=\left(X-V\left(G_{1}^{v}\right)\right) \cup\left\{w_{1}, \ldots, w_{p}\right\}$. Then $\left|X_{1}\right| \equiv m(n-1)(\bmod 2)$ and $\left|X_{1}\right| \leqslant m(n-1)$. So, there exists a perfect matching M_{1} in $G_{1} \boxtimes\left(G_{2}-v\right)-X_{1}$ by the assumption. Let M_{0} be the set of edges of M with both end-vertices in X. Then $M_{1} \cup\left(M-M_{0}\right) \cup\left\{y_{1} w_{1}, \ldots, y_{p} w_{p}\right\}-\left\{y_{1} z_{1}, \ldots, y_{p} z_{p}\right\}$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

In the case of $n=1$, we can deduce the following lemma by the same technique.
Lemma 2.4 Let G_{1}, G_{2} be m-fc and 1-fc, respectively, and let X be a subset of $V\left(G_{1} \boxtimes G_{2}\right)$ with $|X|=2 m+4$ when m is even (resp. $|X|=2 m+3$ when m is odd). Suppose that v is a vertex of G_{2} such that $G_{1} \boxtimes\left(G_{2}-v\right)$ is $(2 m+2)$-fc. Then there is a perfect matching in $G_{1} \boxtimes G_{2}-X$ if
(1) m is odd; or
(2) m is even and $\left|X \cap V\left(G_{1}^{v}\right)\right| \geqslant 2$.

Although the next lemma is weaker than some of the main results, we state it for the convenience of the induction hypothesis in the proof of Theorem 2.1(iv).

Lemma 2.5 Suppose G_{1} is $m-f c$ and G_{2} is $n-f c$ with $n \leqslant 2$. Then $G_{1} \boxtimes G_{2}$ is $m n-f c$.
Proof. It is trivial when $n=0$. From now on, assume $n=1$ or 2 . Suppose X is a subset of $V\left(G_{1} \boxtimes G_{2}\right)$ with $|X|=m n$.

Case 1. $\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m$ for all $v \in V\left(G_{2}\right)$.
Subcase $1.1\left|X \cap V\left(G_{1}^{v}\right)\right| \equiv m(\bmod 2)$ for each $v \in V\left(G_{2}\right)$.

Then $G_{1}^{v}-X$ has a perfect matching as G_{1} is m-fc, and hence the union of these perfect matchings is a desired perfect matching.

Subcase 1.2. $\left|X \cap V\left(G_{1}^{v}\right)\right| \equiv m+1 \quad(\bmod 2)$ for some $v \in V\left(G_{2}\right)$.
When G_{2} is 1-fc, $\left|V\left(G_{2}\right)\right|$ is odd. By parity, there is a vertex in G_{2}, say v_{0}, such that $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \equiv m(\bmod 2)$. Then $\left|X \cap V\left(G_{1} \boxtimes\left(G_{2}-v_{0}\right)\right)\right|\left(\right.$ resp. $\left.\left|X \cap V\left(G_{1} \boxtimes G_{2}\right)\right|\right)$ is even if $n=1$ (resp. $n=2$). Suppose $\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$ is a perfect matching of $G_{2}-v_{0}$ (resp. G_{2}) when $n=1$ (resp. $n=2$).

Let T denote the set of vertices $v_{i}(1 \leqslant i \leqslant 2 t)$ satisfying $\left|X \cap V\left(G_{1}^{v_{i}}\right)\right| \equiv 1(\bmod 2)$. Clearly, $|T|$ is even. Let F be a minimum T-join in G_{2} such that $d_{F}\left(v_{0}\right)$ is as small as possible if v_{0} exists. By the definition of T-join, $d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \equiv 0$ $(\bmod 2)$ and $d_{F}\left(v_{0}\right)+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \equiv m(\bmod 2)$ if v_{0} exists. Here we construct a matching M in $G_{1} \boxtimes G_{2}-X$ by considering edges of F step by step, such that one and only one edge joins $V\left(G_{1}^{v_{i}}\right)$ and $V\left(G_{1}^{v_{j}}\right)$ if $v_{i} v_{j} \in E(F)-\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$. If such a matching M exists, we have $\left|(X \cup V(M)) \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|(i=1,2, \ldots, t)$ is even and is at most $2 m$, and so $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-X-V(M)$ has a perfect matching M_{i} by Theorem 2.2. For the vertex v_{0}, $G_{1}^{v_{0}}-X-V(M)$ has a perfect matching M_{0} because $\left|(X \cup V(M)) \cap V\left(G_{1}^{v_{0}}\right)\right| \equiv m(\bmod 2)$ and is less than m. Thus $\bigcup_{i=0}^{t} M_{i} \cup M$ (resp. $\bigcup_{i=1}^{t} M_{i} \cup M$) is a desired perfect matching in $G_{1} \boxtimes G_{2}-X$ when $n=1$ (resp. $n=2$).

So we only need to prove the existence of M. If for every $v_{i} v_{j} \in E(F)-\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$, there is an edge connecting $G_{1}^{v_{i}}$ and $G_{1}^{v_{j}}$ avoiding vertices in X and M constructed so far, we are done. Suppose $v_{i} v_{j}$ is the next edge we consider. By the minimality of F, M together with X cover no more than $2 m$ vertices of $G_{1}^{\left\{v_{i}, v_{j}\right\}}$, i.e., $\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right|+\mid V(M) \cap$ $V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right) \mid \leqslant 2 m$. Therefore, it follows from the fact that $\left|V\left(G_{1}\right)\right| \geqslant m+2, G_{1}$ is m connected and the definition of strong product that there is an edge between $G_{1}^{v_{i}}-X-V(M)$ and $G_{1}^{v_{j}}-X-V(M)$.

Case 2. $\left|X \cap V\left(G_{1}^{v}\right)\right|>m$ for some $v \in V\left(G_{2}\right)$.
In this case, $n=2$, because Case 1 implies that $G_{1} \boxtimes G_{2}$ is m - fc when $n=1$. By Lemma 2.3 and above proof, there is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

3 Proofs of the Main Theorems

3.1 Proof of Theorem 2.2

Proof. Suppose $V\left(K_{2}\right)=\left\{v_{1}, v_{2}\right\}$, and $G \boxtimes K_{2}$ is not $2 m$-fc. Then, by Theorem 1.2, there exists a set $S \subseteq V\left(G \boxtimes K_{2}\right)$ with $|S| \geqslant 2 m$ such that

$$
c_{o}\left(G \boxtimes K_{2}-S\right)>|S|-2 m
$$

By parity, $c_{o}\left(G \boxtimes K_{2}-S\right) \geqslant|S|-2 m+2$. Note that for any vertex $u \in V(G)$, the vertices $\left(u, v_{1}\right)$ and $\left(u, v_{2}\right)$ have the same neighbors apart from each other and so they belong to the same component, unless we delete at least one of them. Thus, each odd component of
$G \boxtimes K_{2}-S$ contains a vertex $\left(u, v_{i}\right)(i=1,2)$ with $\left(u, v_{3-i}\right) \in S$. We call $\left(u, v_{1}\right)$ and $\left(u, v_{2}\right)$ a full vertex pair.

Since there are at least $|S|-2 m+2$ odd components, S contains at most $m-1$ full vertex pairs, denoted by $S_{1}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots\right\}$. Then $\left|V\left(G^{v_{i}}\right) \cap S\right| \leqslant m-1$ for $i=1,2$. Moreover, since G is m-fc and thus m-connected, $G^{v_{i}}-S_{1}(i=1,2)$ is connected. Hence $G \boxtimes K_{2}-S_{1}$ is connected. Let $S_{2}=S-S_{1}$. We claim that $\left(G \boxtimes K_{2}-S_{1}\right)-S_{2}(=$ $\left.G \boxtimes K_{2}-S\right)$ is connected, which yields a contradiction.

Claim. $\quad\left(G \boxtimes K_{2}-S_{1}\right)-S_{2}$ is connected.
Pick two vertices in $\left(G \boxtimes K_{2}-S_{1}\right)-S_{2}$ arbitrarily. Suppose they are $\left(x, v_{1}\right)$ and $\left(x^{\prime}, v_{2}\right)$. It is the same when $x=x^{\prime}$ or $v_{1}=v_{2}$. Since $G \boxtimes K_{2}-S_{1}$ is connected, there is a path connecting the two vertices, say $P=\left(x, v_{1}\right)\left(x_{1}, v_{i_{1}}\right)\left(x_{2}, v_{i_{2}}\right) \ldots\left(x^{\prime}, v_{2}\right)$. If P contains some vertex $\left(x_{j}, v_{i_{j}}\right) \in S_{2}, i_{j}=1,2$, we know that $\left(x_{j}, v_{3-i_{j}}\right) \notin S_{2}$, and ($\left.x_{j}, v_{3-i_{j}}\right)$ is adjacent to vertices $\left(x_{j-1}, v_{i_{j-1}}\right)$ and $\left(x_{j+1}, v_{i_{j+1}}\right), i_{j \pm 1}=1,2$. So we can replace the vertex $\left(x_{j}, v_{i_{j}}\right)$ by $\left(x_{j}, v_{3-i_{j}}\right)$. It completes the proof.

3.2 Proof of Theorem 2.1(iii)

Proof. We prove it by induction on $m+n$. When $n=0,1,2$, the statement holds by Lemma 2.5. Assume it holds for smaller $m+n$. By symmetry of m and n, we assume that $m, n \geqslant 3$, and $\left|V\left(G_{2}\right)\right| \leqslant 2 n+2$.

Consider the strong product $G_{1} \boxtimes G_{2}$ of an m-fc graph G_{1} and an n-fc graph G_{2}. Let $X=\left\{x_{1}, \ldots, x_{m n}\right\}$ be an arbitrary set of vertices in $G_{1} \boxtimes G_{2}$. We distinguish two cases with respect to $\left|X \cap V\left(G_{1}^{v}\right)\right|$.

Case 1. There exists a vertex v in G_{2} such that $\left|X \cap V\left(G_{1}^{v}\right)\right| \geqslant m$.
By Lemma 2.3 and induction hypothesis, there is a perfect matching in $G_{1} \boxtimes G_{2}-X$.
Case 2. For every vertex v in $G_{2},\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m-1$.
We only prove the subcase that both m and n are even. When m, n are odd or one of them is odd, the proofs go along the same lines.

Since G_{2} is n-fc and $\delta\left(G_{2}\right) \geqslant n+1 \geqslant \frac{\left|V\left(G_{2}\right)\right|}{2}$, by Dirac's Theorem, G_{2} has a Hamilton cycle. We can pick several paths in the cycle. Every path begins with a vertex v such that $\left|V\left(G_{1}^{v}\right) \cap X\right|$ is odd and ends with another vertex v^{\prime} with $\left|V\left(G_{1}^{v^{\prime}}\right) \cap X\right|$ odd along the cycle. Let P denote the spanning subgraph of G_{2} induced by the union of the edge sets of these paths. Then for every vertex v with $\left|V\left(G_{1}^{v}\right) \cap X\right|$ odd, $d_{P}(v)$ is 1 . For every vertex v with $\left|V\left(G_{1}^{v}\right) \cap X\right|$ even, $d_{P}(v)$ is 0 (i.e., it is not in any path) or 2 (i.e., it is in a path). So $d_{P}(v)+\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant m$.

Next, construct a matching M of $|E(P)|$ edges in $G_{1} \boxtimes G_{2}-X$ such that one and only one edge joins $V\left(G_{1}^{v_{i}}\right)$ and $V\left(G_{1}^{v_{j}}\right)$ if $v_{i} v_{j} \in E(P)$ is the next edge to choose. Such an edge exists, otherwise $G_{1}^{\left\{v_{i}, v_{j}\right\}}-(X \cup V(M))$ is disconnected. Since M constructed so far together with X cover at most $2 m-2$ vertices of $G_{1}^{\left\{v_{i}, v_{j}\right\}}$, and at most $m-1$ pair vertices like $\left\{\left(u, v_{i}\right),\left(u, v_{j}\right)\right\}$, then G_{1} is disconnected after deleting at most $m-1$ vertices,
a contradiction to the fact that G_{1} is m-connected by Theorem 1.1.
Then, for arbitrary $v_{i} \in G_{2}, G_{1}^{v_{i}}-X-V(M)$ has a perfect matching M_{i}, since G_{1} is m-fc. So $\bigcup_{i=1}^{2 t} M_{i} \cup M$, where $2 t=\left|V\left(G_{2}\right)\right|$, is a perfect matching of $G_{1} \boxtimes G_{2}-X$.

3.3 Proof of Theorem 2.1(iv)

Proof. Suppose G_{1} is m-fc and G_{2} is n-fc, and $\left|V\left(G_{1}\right)\right| \geqslant 2 m+3$ and $\left|V\left(G_{2}\right)\right| \geqslant 2 n+3$. Let X be an arbitrary subset of $V\left(G_{1} \boxtimes G_{2}\right)$ with $|X|=m n-\min \left\{\left[\frac{3 m}{2}\right]_{2},\left[\frac{3 n}{2}\right]_{2}\right\}$. If there is a vertex $v \in V\left(G_{2}\right)$ (or $u \in V\left(G_{1}\right)$) such that $\left|X \cap V\left(G_{1}^{v}\right)\right| \geqslant m$ (or $\left|X \cap V\left(G_{2}^{u}\right)\right| \geqslant n$), then it is easy to apply induction and Lemma 2.3 to complete the proof as before. So assume $\left|X \cap V\left(G_{1}^{v}\right)\right|<m$ and $\left|X \cap V\left(G_{2}^{u}\right)\right|<n$, for any $v \in V\left(G_{2}\right), u \in V\left(G_{1}\right)$.

Without loss of generality, we may assume $m \geqslant n$, and m is odd, n is even if m and n have different parities. Thus, $|X|=m n-\left[\frac{3 n}{2}\right]_{2}$. Since G_{2} is n-fc, if n is even, it has a perfect matching $M\left(G_{2}\right)=\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$; if n is odd, there is a vertex $v_{0} \in V\left(G_{2}\right)$ such that $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \equiv m(\bmod 2),\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \leqslant m-2$, and $G_{2}-v_{0}$ has a perfect matching $M\left(G_{2}-v_{0}\right)=\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$. If $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \equiv 1(\bmod 2)$ for some i, put i into I_{0}. Clearly, $\left|I_{0}\right|$ is even as $|X|$ (or $\left.\left|X-V\left(G_{1}^{v_{0}}\right)\right|\right)$ is even.

Claim. For each $i \in I_{0}$, put either $v_{2 i-1}$ or $v_{2 i}$ into T, and so $|T|=\left|I_{0}\right|$ is even. There exists a minimum T-join (T is selected over all choices of $\left\{v_{2 i-1}, v_{2 i}\right\}$) F of G_{2} such that if $d_{F}(x)$ denotes the degree of x in F, then
(1) $d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant 2 m$ for $i=1, \ldots, t$;
(2) $d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is even;
(3) $d_{F}\left(v_{i}\right)+d_{F}\left(v_{j}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right| \leqslant\left|V\left(G_{1}\right)\right|+m$ for $v_{i} v_{j} \in E\left(G_{2}\right)$;
(4) if $m n$ is odd, $d_{F}\left(v_{0}\right)+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|$ is odd and no more than m.

We show the claim by constructing F inductively. Set $I:=I_{0}, F=\emptyset$ and $T=\left\{v_{2 i-1}, i \in\right.$ $I\}$ at first. Obviously, it satisfies conditions (1), (3) and (4). Starting with $F=\emptyset$, we change F step by step so that $|I|$ decreases by two in each step. Suppose that some F has been constructed already. If $I=\emptyset$, we are done, i.e., F is the T-join required. Otherwise, select $i_{0}, j_{0} \in I$, and set $I:=I \backslash\left\{i_{0}, j_{0}\right\}$. We next show that there is a path P from $v_{2 i_{0}-1}$ to $v_{2 j_{0}-1}$. Then, the symmetric difference of $E(P)$ and $E(F)$, maybe after deletion of some edges, is a new graph still satisfying (1), (3), (4), and at least two more indices in (2).

Obviously, the path cannot use any vertex of $\left\{v_{2 l-1}, v_{2 l}\right\}$ if $d_{F}\left(v_{2 l-1}\right)+d_{F}\left(v_{2 l}\right)+\mid X \cap$ $V\left(G_{1}^{\left\{v_{2 l-1}, v_{2 l}\right\}}\right) \mid \geqslant 2 m-1$ unless we join this pair to another pair when this sum is odd, and so precisely $2 m-1$. But as we shall see, it is all right when we use both vertices of $\left\{v_{2 l-1}, v_{2 l}\right\}$ with $2 m-3 \leqslant d_{F}\left(v_{2 l-1}\right)+d_{F}\left(v_{2 l}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 l-1}, v_{2 l}\right\}}\right)\right| \leqslant 2 m-2$. Similarly, the path cannot use both vertices of $\left\{v_{i}, v_{j}\right\}$ if $d_{F}\left(v_{i}\right)+d_{F}\left(v_{j}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right| \geqslant\left|V\left(G_{1}\right)\right|+m-3$ and $v_{i} v_{j} \in E\left(G_{2}\right)$.

Set

$$
A:=\left\{v_{2 i-1}, v_{2 i}\left|2 m-1 \leqslant d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant 2 m\right\}\right.
$$

and

$$
B:=\left\{v_{i}\left|d_{F}\left(v_{i}\right)+\left|X \cap V\left(G_{1}^{v_{i}}\right)\right|>m+2-\varepsilon, v_{i} \in V\left(G_{2}\right)-A\right\},\right.
$$

where $\varepsilon=1$ if $m n$ is odd; $\varepsilon=0$, otherwise.
Furthermore, when $m n$ is odd, and if $d_{F}\left(v_{0}\right)+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|=m$, set $A=A \cup\left\{v_{0}\right\}$. Let $|A|=2 a$ (resp. $|A|=2 a+1$) if $v_{0} \notin A$ (resp. $v_{0} \in A$) and $|B|=b$. We consider two cases.

Case 1. $|A|+|B| \leqslant n-1$.
Since G_{2} is n-fc, it is n-connected. So $G_{2}-A-B$ is connected. Thus, there is a path from $\left\{v_{2 i_{0}-1}, v_{2 i_{0}}\right\}$ to $\left\{v_{2 j_{0}-1}, v_{2 j_{0}}\right\}$ avoiding $A \cup B$. Suppose P uses both vertices of some d vertex pairs $\left\{v_{2 l-1}, v_{2 l}\right\}$ with $2 m-3 \leqslant d_{F}\left(v_{2 l-1}\right)+d_{F}\left(v_{2 l}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 l-1}, v_{2 l}\right\}}\right)\right| \leqslant 2 m-2$. Then these $2 d$ vertices divide the path P into $2 d+1$ segments. Delete the edge set of the $2^{\text {nd }}, 4^{\text {th }}, \ldots, 2 d^{\text {th }}$ segments of P. Simultaneously, if $v_{2 i_{0}-1} v_{2 i_{0}} \in E(P)$, replace $v_{2 i_{0}-1}$ in T by $v_{2 i_{0}}$; if $v_{2 j_{0}} v_{2 j_{0}-1} \in E(P)$, replace $v_{2 j_{0}-1}$ in T by $v_{2 j_{0}}$. The smaller edge set $E(P)$ obtained still satisfies the conditions as before and the sum of the F-degrees of the vertices $v_{2 l-1}, v_{2 l}$ increases by two.

Consider the symmetric difference F_{0} of the edge sets $E(P)$ and $E(F)$. If F_{0} contains an Eulerian graph, then delete its edges. Trivially, F_{0} defines a forest. Furthermore, F_{0} remains acyclic if we add the edges $v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}$ by the minimality of T-join. We only need to check (3) and (4) from now on.

For any $v_{i} v_{j} \in E\left(G_{2}\right)$, if $\left\{v_{i}, v_{j}\right\} \subseteq A \cup B$, then nothing changed; if $\left\{v_{i}, v_{j}\right\} \cap(A \cup B)=\emptyset$, then $d_{F}\left(v_{i}\right)+d_{F}\left(v_{j}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right| \leqslant 2(m+2-\varepsilon) \leqslant\left|V\left(G_{1}\right)\right|+m-4$, and hence, $d_{F_{0}}\left(v_{i}\right)+d_{F_{0}}\left(v_{j}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\right| \leqslant\left|V\left(G_{1}\right)\right|+m-4+4 \leqslant\left|V\left(G_{1}\right)\right|+m$; otherwise, suppose $\left\{v_{i}, v_{j}\right\} \cap(A \cup B)=\left\{v_{i}\right\}$, then we have $d_{F}\left(v_{i}\right)+\left|X \cap V\left(G_{1}^{v_{i}}\right)\right| \leqslant 2 m$ by (1) and $d_{F}\left(v_{j}\right)+\left|X \cap V\left(G_{1}^{v_{j}}\right)\right| \leqslant m+2-\varepsilon$ by the choice of B, and hence $d_{F_{0}}\left(v_{i}\right)+d_{F_{0}}\left(v_{j}\right)+\mid X \cap$ $V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)\left|\leqslant 2 m+m+2-\varepsilon+2 \leqslant\left|V\left(G_{1}\right)\right|+m\right.$. So (3) still holds.

Suppose $m n$ is odd. If $v_{0} \in A$, then nothing is changed; if $v_{0} \notin A$, since $d_{F}\left(v_{0}\right)+\mid X \cap$ $V\left(G_{1}^{v_{0}}\right) \mid \equiv m(\bmod 2)$, then $d_{F_{0}}\left(v_{0}\right)+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \leqslant m-2+2=m$ and $d_{F_{0}}\left(v_{0}\right)+\mid X \cap$ $V\left(G_{1}^{v_{0}}\right) \mid \equiv m(\bmod 2)$. In other words, (4) holds.

Case 2. $|A|+|B| \geqslant n$.
Assume first that $v_{0} \notin A$. Contracting each edge $v_{2 i-1} v_{2 i}$ of G_{2} to a vertex w_{i}, G_{2} is transformed into a graph H on $t+\varepsilon$ vertices, and F is transformed into F^{\prime}. Note that $v_{2 i-1} v_{2 i} \notin E(F)$, so $d_{F^{\prime}}\left(w_{i}\right)=d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)$. Set $A^{\prime}:=\left\{w_{i} \mid\left\{v_{2 i-1}, v_{2 i}\right\} \subseteq A\right\}$, $B^{\prime}:=\left\{w_{i} \mid v_{2 i-1} \in B\right.$ or $\left.v_{2 i} \in B\right\}$. Then, $d_{F^{\prime}}\left(w_{i}\right) \geqslant 2$, for $w_{i} \in A^{\prime} \cup B^{\prime}$ because of the definition of A^{\prime} and B^{\prime}, the construction of F and the fact that $\left|X \cap V\left(G_{1}^{v_{i}}\right)\right| \leqslant m-1$.

Let z denote the number of indices i such that $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is odd. Then, $z \leqslant$ $m n-\left[\frac{3 n}{2}\right]_{2}$ and the number of leaves in F^{\prime} is at most $z-2-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ by the construction of F.

On the other hand, we have

$$
\begin{aligned}
& \sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left(d_{F^{\prime}}\left(w_{i}\right)-2\right) \quad(*) \\
\geqslant & \left.a(2 m-3)+b(m+1-\varepsilon)-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}} \mid X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right) \mid \\
= & (2 a+b) m-3 a+b(1-\varepsilon)-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| .
\end{aligned}
$$

If $2 a \leqslant n$, then $(*) \geqslant m n-\left[\frac{3 n}{2}\right]_{2}-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$; otherwise, let $2 a=$ $[n+2 k]_{2}(k \geqslant 1)$, then $(*) \geqslant m n-\left[\frac{3 n}{2}\right]_{2}+(2 m-3) k-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$, a contradiction (note that for any forest F with at least one edge, the number of leaves is at least $\left.\sum_{d(x) \geqslant 2, x \in F}(d(x)-2)+2\right)$.

If $m n$ is odd, $v_{0} \in A$ and $2 a+b+1 \geqslant n$, we derive the same contradiction similarly.
Contracting each edge $v_{2 i-1} v_{2 i}$ of G_{2} to a vertex w_{i}, G_{2} is transformed into a graph H (v_{0} is unchanged and named w_{0} in H) of $t+1$ vertices and F is transformed into F^{\prime}. Set $A^{\prime}:=\left\{w_{i} \mid\left\{v_{2 i-1}, v_{2 i}\right\} \subseteq A\right\} \cup\left\{w_{0}\right\}, B^{\prime}:=\left\{w_{i} \mid v_{2 i-1} \in B\right.$ or $\left.v_{2 i} \in B\right\}$. Then $d_{F^{\prime}}\left(w_{i}\right) \geqslant 2$ for $w_{i} \in A^{\prime} \cup B^{\prime}$. Similarly, F^{\prime} has at most $m n-\left[\frac{3 n}{2}\right]_{2}-2-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{w_{i}}\right)\right|$ leaves, where $G_{1}^{w_{i}}$ denotes $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}$ when $i \neq 0$ or $G_{1}^{v_{0}}$ when $i=0$.

On the other hand, we have

$$
\begin{aligned}
& \sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left(d_{F^{\prime}}\left(w_{i}\right)-2\right) \\
\geqslant & a(2 m-3)+(m-2)+b m-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{w_{i}}\right)\right| \\
= & (2 a+1+b) m-3 a-2-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{w_{i}}\right)\right| \\
\geqslant & m n-\left[\frac{3 n}{2}\right]_{2}+2-\sum_{w_{i} \in A^{\prime} \cup B^{\prime}}\left|X \cap V\left(G_{1}^{w_{i}}\right)\right|,
\end{aligned}
$$

a contradiction and we complete the proof of Claim.

Now, we go back to the proof of Theorem 2.1 (iv). Our aim is to construct an edge set M of $|E(F)|$ independent edges in $G_{1} \boxtimes G_{2}-X$ step by step. For any edge $v_{i} v_{j} \in E(F)$ (we take the edges one by one), find one and only one edge e between $V\left(G_{1}^{v_{i}}\right)$ and $V\left(G_{1}^{v_{j}}\right)$ such that e is not covered by X and M constructed so far, and add e into M. Suppose $v_{i} v_{j} \in E(F) \subseteq E\left(G_{2}\right)$ is the next edge. The vertex set $X \cap V\left(G_{1}^{\left\{v_{i}, v_{j}\right\}}\right)$ together with the chosen edges of M cover a set Y of no more than $\left|V\left(G_{1}\right)\right|+m-2$ vertices by (3). If there is a vertex $u \in V\left(G_{1}\right)$ such that $\left(u, v_{i}\right),\left(u, v_{j}\right) \notin Y$, then add the edge $\left(u, v_{i}\right)\left(u, v_{j}\right)$ to M. Otherwise, it follows from the fact $|Y| \leqslant\left|V\left(G_{1}\right)\right|+m-2$ that the set Y_{0} of vertices u such that both $\left(u, v_{i}\right),\left(u, v_{j}\right) \in Y$ have cardinality at most $m-2$. Set $Y_{i}:=V\left(G_{1}^{v_{i}}\right)-Y$, $Y_{j}:=V\left(G_{1}^{v_{j}}\right)-Y$. Condition (1) and $\left|V\left(G_{1}\right)\right| \geqslant 2 m+3$ imply $Y_{i} \neq \emptyset$ and $Y_{j} \neq \emptyset$. Since G_{1} is m-fc and hence m-connected, then there is an edge $u_{1} u_{2} \in E\left(G_{1}\right)$ such that $\left(u_{1}, v_{i}\right) \in Y_{i}$ and $\left(u_{2}, v_{j}\right) \in Y_{j}$. Then add the edge $\left(u_{1}, v_{i}\right)\left(u_{2}, v_{j}\right)$ to M. Proceed similarly for other edges of F. Thus, by Claim, $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|+\left|V(M) \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right|$ is even and at most $2 m$. Therefore, $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-(X \cup V(M))$ has a perfect matching M_{i} as $G_{1} \boxtimes K_{2}$ is $2 m$-fc, $G_{1}^{v_{0}}-(X \cup V(M))$ has a perfect matching M_{0} (when $m n$ is odd) and hence, $M \cup \bigcup_{i=1}^{t} M_{i}$ (or $M \cup \bigcup_{i=0}^{t} M_{i}$) is a desired perfect matching of $G_{1} \boxtimes G_{2}-X$. This completes the proof of Theorem 2.1(iv).

Lemma 3.1 Given a connected 0 -fc graph G, then $G \boxtimes K_{2}$ is bicritical.

Proof. The proof is similar to that of Theorem 2.2.

Theorem 3.2 Let G_{1}, G_{2} be two connected nontrivial graphs. If G_{1} is 0 -fc, then $G_{1} \boxtimes G_{2}$ is bicritical.

Proof. Let $X=\left\{x_{1}, x_{2}\right\}$ be an arbitrary subset of $V\left(G_{1} \boxtimes G_{2}\right)$. There are two cases to discuss.

Case 1. $X \subseteq V\left(G_{1}^{\left\{v, v^{\prime}\right\}}\right), v v^{\prime} \in E\left(G_{2}\right)$.
By Lemma 3.1, $G_{1}^{\left\{v, v^{\prime}\right\}}-X$ has a perfect matching M_{0}. Since G_{1} is 0 -fc, G_{1}^{w} has a perfect matching for any $w \in V\left(G_{2}\right)-\left\{v, v^{\prime}\right\}$, and so the union of these perfect matchings together with M_{0} is a perfect matching of $G_{1} \boxtimes G_{2}-X$.

Case 2. $x_{1} \in G_{1}^{v}, x_{2} \in G_{1}^{v^{\prime}}, v v^{\prime} \notin E\left(G_{2}\right)$.
Suppose $x_{1}=(u, v), x_{2}=\left(u^{\prime}, v^{\prime}\right)$. Since G_{2} is connected, there is a $v-v^{\prime}$ path in G_{2}, denoted by $P:=v_{1} v_{2} \ldots v_{k}$, where $v_{1}=v, v_{k}=v^{\prime}$. Moreover, as $\left|X \cap V\left(G_{1}^{w}\right)\right|=0, G_{1}^{w}-X$ has a perfect matching for any $v \in V\left(G_{2}\right)-\left\{v_{1}, \ldots, v_{k}\right\}$. So, if we can find a perfect matching of $H=G_{1} \boxtimes P-X$, we are done.

Subcase 2.1. k is even.
Set $M^{*}=\left\{\left(u, v_{2 i}\right)\left(u, v_{2 i+1}\right) \left\lvert\, 1 \leqslant i \leqslant \frac{k}{2}-1\right.\right\}$. It is easy to prove that $\mid\left(X \cup V\left(M^{*}\right)\right) \cap$ $V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right) \mid=2$ for all $1 \leqslant i \leqslant \frac{k}{2}$. Then, by Lemma 3.1, $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-\left(X \cup V\left(M^{*}\right)\right)$ has a perfect matching M_{i}. Hence, $\bigcup_{i=1}^{\frac{k}{2}} M_{i} \cup M^{*}$ is a perfect matching of H.

Subcase 2.2. k is odd.
Suppose $M\left(G_{1}^{v_{1}}\right)$ is a perfect matching of $G_{1}^{v_{1}}$ and $\left(u, v_{1}\right)\left(u^{\prime \prime}, v_{1}\right) \in M\left(G_{1}^{v_{1}}\right)$. Set $M^{*}=\left\{\left(u^{\prime \prime}, v_{1}\right)\left(u^{\prime \prime}, v_{2}\right)\right\} \cup\left\{\left(u, v_{2 i-1}\right)\left(u, v_{2 i}\right) \left\lvert\, 2 \leqslant i \leqslant \frac{k-1}{2}\right.\right\}$. Similarly, $\mid\left(X \cup V\left(M^{*}\right)\right) \cap$ $V\left(G_{1}^{\left\{v_{2 i}, v_{2 i+1}\right\}}\right) \mid=2$ for all $1 \leqslant i \leqslant \frac{k-1}{2}$, and then by Lemma 3.1, $G_{1}^{\left\{v_{2 i}, v_{2 i+1}\right\}}-\left(X \cup V\left(M^{*}\right)\right)$ has a perfect matching M_{i}. If $M\left(G_{1}^{v_{1}}\right) \cong M\left(G_{1}\right)$ denotes a perfect matching of $G_{1}^{v_{1}}$, then $\bigcup_{i=1}^{\frac{k-1}{2}} M_{i} \cup M\left(G_{1}^{v_{1}}\right) \cup M^{*}-\left\{\left(u, v_{1}\right)\left(u^{\prime \prime}, v_{1}\right)\right\}$ is the desired perfect matching of H.

This completes the proof.

3.4 Proof of Theorem 2.1(i)

Proof. If both G_{1} and G_{2} are 0 -fc (connected), it follows directly from Theorem 3.2 that $G_{1} \boxtimes G_{2}$ is 2-fc. Next we consider when G_{1} is m-fc, $m \geqslant 1$ and $\left|V\left(G_{1}\right)\right| \geqslant 2 m+2$.

We use induction on $\left|V\left(G_{2}\right)\right|$. Let X be a subset of $2 m+2$ vertices in $G_{1} \boxtimes G_{2}$.
If $\left|V\left(G_{2}\right)\right|=4$, then $P_{4} \subseteq G_{2}$, and there is a perfect matching in $G_{1} \boxtimes P_{4}-X$, so is in $G_{1} \boxtimes$ $G_{2}-X$. Now suppose the assertion is true for smaller $\left|V\left(G_{2}\right)\right|$. Since G_{2} is connected and 0 -fc, we may assume that G_{2} has a perfect matching $M\left(G_{2}\right)=\left\{v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}\right\}$. Extend it to a spanning tree T of G_{2} and contract the edges $v_{1} v_{2}, \ldots, v_{2 t-1} v_{2 t}$ of the matching. Then T is transformed into a spanning tree of the contracted graph. Consider one of the leaves, say the vertex obtained from the contraction of $v_{1} v_{2}$, and v_{1} has a neighbor in $\left\{v_{3}, v_{4}, \ldots, v_{2 t}\right\}$, say v_{3}. Let $X_{1} \subseteq X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$, where $\left|X_{1}\right|=2 m$ if $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \geqslant$ $2 m ;\left|X_{1}\right|=\left[\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|\right]_{2}$ otherwise.

Case 1. $\left|X_{1}\right|=2 m$.
There exists a perfect matching M_{1} in $G_{1}^{\left\{v_{1}, v_{2}\right\}}-X_{1}$. Note that we can always find a matching M_{1} such that the vertices in $G_{1}^{v_{2}}-X$ are matched with vertices not in $X-X_{1}$.

Suppose there are edges $x_{1} y_{1}, \ldots, x_{p} y_{p} \in M$, where $x_{i} \in X-X_{1}, y_{i} \notin X-X_{1}$, and $y_{i} \in G_{1}^{v_{1}}$. By the definition of strong product and $\delta\left(G_{2}\right) \geqslant m+1, y_{i}$ has at least $m+2$ neighbors in $G_{1}^{v_{3}}$ for $i=1, \ldots, p$. Since $\left|X \cap V\left(G_{1}^{v_{3}}\right)\right| \leqslant 2-p$, we can find $z_{1}, \ldots, z_{p} \in V\left(G_{1}^{v_{3}}\right)-X$ such that $y_{1} z_{1}, \ldots, y_{p} z_{p} \in E\left(G_{1} \boxtimes G_{2}-X\right)$. Let $X_{2}=X \cap V\left(G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)\right)$. Then it is obvious that $\left|X_{2} \cup\left\{z_{1}, \ldots, z_{p}\right\}\right| \leqslant 2 m+2$. Now $G_{2}-\left\{v_{1}, v_{2}\right\}$ is 0 -fc and connected. So, by induction hypothesis, $G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$ is $(2 m+2)$-fc, and there is a perfect matching M_{2} in $G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)-\left(X_{2} \cup\left\{z_{1}, \ldots, z_{p}\right\}\right)$. Let M_{1}^{\prime} denote the set of edges of M_{1} whose both ends are covered by X. Then $M_{1} \cup M_{2} \cup\left\{y_{1} z_{1}, \ldots, y_{p} z_{p}\right\}-\left\{x_{1} y_{1}, \ldots, x_{p} y_{p}\right\}-M_{1}^{\prime}$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

Case 2. $\left|X_{1}\right|<2 m$.
If $\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right|$ is odd, we just have to choose an edge $a b$, where $a \in V\left(G_{1}^{v_{1}}\right)-X$ and $b \in V\left(G_{1}^{v_{3}}\right)-X$. Clearly, $G_{1}^{\left\{v_{1}, v_{2}\right\}}-\left(X_{1} \cup\{a\}\right)$ has a perfect matching M_{1}. Now the graph $G_{2}-\left\{v_{1}, v_{2}\right\}$ is still 0 -fc and connected. Let $X_{2}=X \cap V\left(G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)\right)$, by induction hypothesis, there is a perfect matching M_{2} in $G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)-\left(X_{2} \cup\{b\}\right)$, and thus $M_{1} \cup M_{2} \cup\{a b\}$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$. If $\left|X \cap G_{1}^{\left\{v_{1}, v_{2}\right\}}\right|$ is even, there is a perfect matching M_{1} in $G_{1}^{\left\{v_{1}, v_{2}\right\}}-X_{1}$. Moreover, by induction hypothesis, there is a perfect matching M_{2} in $G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)-X$. So $M_{1} \cup M_{2}$ is a desired perfect matching in $G_{1} \boxtimes G_{2}$.

An immediate corollary of Theorem 2.2 and Theorem 2.1(i) is the following.
Corollary 3.3 If G_{1} is $m-f c$ with $\left|V\left(G_{1}\right)\right| \geqslant 2 m$ and G_{2} is $0-f c$, then $G_{1} \boxtimes G_{2}$ is $2 m$-fc.

3.5 Proof of Theorem 2.1(ii)

Proof. Let X be an arbitrary subset of $V\left(G_{1} \boxtimes G_{2}\right)$ with $|X|=2 m+4-\varepsilon$, where $\varepsilon=1$ if m is odd; $\varepsilon=0$ otherwise. Here, we assume $m \geqslant 1$ and $\left|V\left(G_{2}\right)\right| \geqslant 5$ first.

Case 1. There exists a vertex, say $v_{0} \in V\left(G_{2}\right)$, such that $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right| \geqslant 2-\varepsilon$.
Without loss of generality, we may assume C_{1}, \ldots, C_{l} are the components of $G_{2}-v_{0}$, $l \geqslant 1$. Clearly, C_{i} has a perfect matching and $\left|X \cap V\left(G_{1} \boxtimes C_{i}\right)\right| \leqslant 2 m+2$ for all $1 \leqslant i \leqslant l$. If $\left|X \cap V\left(G_{1} \boxtimes C_{i}\right)\right|$ is odd, we can join an edge between $G_{1}^{v_{0}}$ and $G_{1} \boxtimes C_{i}$. Call such an edge set P. (It is possible that $P=\emptyset$.) Since every vertex in $G_{1}^{v_{0}}$ has at least $2(m+2)$ neighbors in each component, we can choose the endvertex of the edges of P in $G_{1}^{v_{0}}$ freely so that $G_{1}^{v_{0}}-X-V(P)$ has a perfect matching M_{0}. Then $\left|(X \cup V(P)) \cap V\left(G_{1} \boxtimes C_{i}\right)\right| \leqslant 2 m+2$ and is even. If $\left|(X \cup V(P)) \cap V\left(G_{1} \boxtimes C_{i}\right)\right| \leqslant 2 m$ for each $i, G_{1} \boxtimes C_{i}-(X \cup V(P))$ has a perfect matching M_{i}, and therefore, $\bigcup_{i=0}^{l} M_{i} \cup P$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$. Assume $\left|X \cap V\left(G_{1} \boxtimes C_{i_{0}}\right)\right| \geqslant 2 m+1$. Note that $\left|(X \cup V(P)) \cap V\left(G_{1} \boxtimes C_{i}\right)\right| \leqslant 2 m$ for all $i \neq i_{0}$. If $\left|V\left(C_{i_{0}}\right)\right| \geqslant 4$, by Theorem 2.1 (i), $G_{1} \boxtimes C_{i_{0}}$ is $(2 m+2)$-fc, and hence $G_{1} \boxtimes C_{i_{0}}-X-V(P)$ has a perfect matching. If $\left|V\left(C_{i_{0}}\right)\right|=2$, we can reselect v_{0} from $C_{i_{0}}$ such that $\left|(X \cup V(P)) \cap V\left(G_{1} \boxtimes C_{i}\right)\right| \leqslant 2 m$ for every component C_{i} of $G_{2}-v_{0}$. Therefore $\bigcup_{i=0}^{l} M_{i} \cup P$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

Case 2. $\left|X \cap V\left(G_{1}^{v}\right)\right| \leqslant 1-\varepsilon$ for all $v \in V\left(G_{2}\right)$.
It is easy to see that we only have to deal with the case of m even. So $m \geqslant 2$ and
$\left|V\left(G_{1}\right)\right| \geqslant 2 m+4$.
By parity, there is at least one vertex, say $v_{0} \in V\left(G_{2}\right)$, satisfying $\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|=0$. Let C_{1}, \ldots, C_{l} be the components of $G_{2}-v_{0}(l \geqslant 1)$.

Subcase 2.1. $\left|V\left(G_{1} \boxtimes C_{i}\right) \cap X\right| \leqslant 2 m+2$ for $i=1, \ldots, l$.
If $\left|X \cap V\left(G_{1} \boxtimes C_{i}\right)\right|$ is odd for $1 \leqslant i \leqslant l$, we can join an edge between $G_{1}^{v_{0}}$ and $G_{1} \boxtimes C_{i}$. Call such an edge set P. (It is possible that $P=\emptyset$.) Since every vertex in $G_{1}^{v_{0}}$ has at least $2(m+2)$ neighbors in each component, we can choose the endvertex of P in $G_{1}^{v_{0}}$ freely so that $G_{1}^{v_{0}}-X-V(P)$ has a perfect matching M_{0}. Note that $\left|(X \cup V(P)) \cap V\left(G_{1} \boxtimes C_{i}\right)\right| \leqslant 2 m+2$. Moreover, if $\left|V\left(G_{1} \boxtimes C_{i}\right) \cap(X \cup V(P))\right|=2 m+2$, then by assumption, $\left|V\left(C_{i}\right)\right| \geqslant 2 m+2-1 \geqslant$ 3 and $\left|V\left(C_{i}\right)\right| \geqslant 4$ by parity. By Theorem 2.1(i) and Corollary 3.3, $G_{1} \boxtimes C_{i}-X$ has a perfect matching M_{i}. Thus, $\bigcup_{i=0}^{l} M_{i} \cup P$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

Subcase 2.2. There is a component C_{1} such that $\left|V\left(G_{1} \boxtimes C_{1}\right) \cap X\right| \geqslant 2 m+3$.
There is at most one vertex of X lying in some $G_{1} \boxtimes C_{i}(i \neq 1)$. Let $\left\{v_{1} v_{2}, \ldots, v_{2 k-1} v_{2 k}\right\}$ be a perfect matching of $G_{2}-v_{0}$. As in the proof of Theorem 2.1(iv), we have the following Claim.

Claim. Let I_{0} denote the set of indices i with $\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \equiv 1(\bmod 2)$. For each $i \in I_{0}$ put $v_{2 i-1}$ or $v_{2 i}$ into T. There exists a minimum T-join (T is selected over all choices of $\left.\left\{v_{2 i-1}, v_{2 i}\right\}\right) F$ of G_{2} such that
(1) $d_{F}\left(v_{0}\right)+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|$ is even and no more than m;
(2) Either there exists v_{1} and v_{2} such that $d_{F}\left(v_{1}\right)+d_{F}\left(v_{2}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \geqslant 2 m+2$ and for $i \neq 1, d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant m+2 \leqslant 2 m$; or $d_{F}\left(v_{2 i-1}\right)+$ $d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant 2 m$ for all $1 \leqslant i \leqslant k$.
(3) For all $1 \leqslant i \leqslant k, d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \equiv 0(\bmod 2)$.

We show the claim by constructing F inductively. Set $I:=I_{0}, F=\emptyset$ and $T=\left\{v_{2 i-1}, i \in\right.$ $I\}$ at first. Obviously, it satisfies conditions (1) and (2). Starting with $F=\emptyset$, we change F step by step so that $|I|$ decreases by two in each step. Suppose that some F has been constructed already. If $I=\emptyset$, we are done, i.e., F is the T-join required. Otherwise, select $i_{0}, j_{0} \in I$, and set $I:=I \backslash\left\{i_{0}, j_{0}\right\}$. Let P be a path from $v_{2 i_{0}-1}$ to $v_{2 j_{0}-1}$ in G_{2}. Moreover, if $d_{F}\left(v_{0}\right)+\left|X \cap V\left(G_{1}^{v_{0}}\right)\right|=m, P$ must avoid v_{0}; it is feasible because we can make sure that vertices $v_{2 i_{0}-1}, v_{2 i_{0}}, v_{2 j_{0}-1}, v_{2 j_{0}}$ lie in a connected component C_{1} of $G_{2}-v_{0}$. Suppose P uses both vertices of some d vertex pairs $\left\{v_{2 i-1}, v_{2 i}\right\}$. These $2 d$ vertices divide the path into $2 d+1$ segments. Delete the edge set of $2^{\text {nd }}, 4^{\text {th }}, \ldots, 2 d^{\text {th }}$ segments of P. At the same time, if $v_{2 i_{0}-1} v_{2 i_{0}} \in E(P)$, replace $v_{2 i_{0}-1}$ in T by $v_{2 i_{0}}$; if $v_{2 j_{0}} v_{2 j_{0}-1} \in E(P)$, replace $v_{2 j_{0}-1}$ in T by $v_{2 j_{0}}$. We then obtain a smaller edge set $E(P)$. Consider the symmetric difference F_{0} of $E(P)$ and $E(F)$. If F_{0} contains an Eulerian graph, then delete its edges. Moreover, F_{0} remains acyclic if we add the edges $v_{1} v_{2}, \ldots, v_{2 k-1} v_{2 k}$ by minimality of T-join.

Then the T-join F we obtained satisfies (1) and (3). We only need to check (2).

$$
\text { If } d_{F}\left(v_{1}\right)+d_{F}\left(v_{2}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \geqslant 2 m+2 \text { and } d_{F}\left(v_{3}\right)+d_{F}\left(v_{4}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{3}, v_{4}\right\}}\right)\right| \geqslant
$$ $m+4$, then by construction of F, easy to show that there are $(2 m+2-1)+(m+4-1)>2 m+4$ in X, a contradiction. So, (2) is true, and this completes the proof of the above claim.

Now assume $d_{F}\left(v_{1}\right)+d_{F}\left(v_{2}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)\right| \geqslant 2 m+2$. It is not difficult to find a vertex set $X^{\prime} \subseteq V\left(G_{1}^{\left\{v_{1}, v_{2}\right\}}\right)$ satisfying
(i) $X \cap V\left(G_{1}^{v_{i}}\right) \subseteq X^{\prime} \cap V\left(G_{1}^{v_{i}}\right)$ and $\left|\left(X^{\prime}-X\right) \cap V\left(G_{1}^{v_{i}}\right)\right|=d_{F}\left(v_{i}\right)$, for $i=1,2$;
(ii) $G_{1}^{\left\{v_{1}, v_{2}\right\}}-X^{\prime}$ has a perfect matchings.

As before, we construct a matching set M according to F. During the construction, when we take an edge with one endvertex in $G_{1}^{\left\{v_{1}, v_{2}\right\}}$, we choose the endvertex from $X^{\prime}-X$ and pick an edge in $E\left(G_{1} \boxtimes G_{2}-X\right)$. It is possible because for any vertex $\left(u, v_{i}\right) \in X^{\prime}$, it has at least $(m+2) d_{F}\left(v_{i}\right)>m+1$ neighbors in $G_{1} \boxtimes\left(G_{2}-\left\{v_{1}, v_{2}\right\}\right)$.

Then $G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}-X-V(M)$ has a perfect matching M_{i} for $1 \leqslant i \leqslant k$ and $G_{1}^{v_{0}}$ have a perfect matching M_{0}. Thus $\bigcup_{i=0}^{k} M_{i} \cup M$ is a perfect matching in $G_{1} \boxtimes G_{2}-X$.

The case that $d_{F}\left(v_{2 i-1}\right)+d_{F}\left(v_{2 i}\right)+\left|X \cap V\left(G_{1}^{\left\{v_{2 i-1}, v_{2 i}\right\}}\right)\right| \leqslant 2 m$ for every $1 \leqslant i \leqslant k$ can be dealt in the same way.

Next, we consider the remaining case that $m \geqslant 3$ and $\left|V\left(G_{2}\right)\right|=3$. Thus, G_{2} is K_{3} as G_{2} is 1-fc. Let $V\left(G_{2}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$.

If there exists v_{i}, say v_{1}, such that $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right| \geqslant m$, then we can apply induction hypothesis on $\left|V\left(G_{2}\right)\right|$ as in Lemma 2.4 and thus obtain a perfect matching of $G_{1} \boxtimes G_{2}-X$. So, suppose $\left|X \cap V\left(G_{1}^{v}\right)\right|<m$ for any $v \in V\left(G_{2}\right)$. By parity, we may assume $\left|X \cap V\left(G_{1}^{v_{1}}\right)\right| \equiv$ $m(\bmod 2)$, and thus, $G_{1}^{v_{1}}-X$ has a perfect matching M_{1}. So $\left|X \cap V\left(G_{1}^{\left\{v_{2}, v_{3}\right\}}\right)\right| \leqslant 2 m$, and $G_{1}^{\left\{v_{2}, v_{3}\right\}}-X$ has a perfect matching M. Hence, $G_{1} \boxtimes G_{2}-X$ has a perfect matching $M_{1} \cup M$. It completes the proof.

Acknowledgments

The third author is supported by the Discovery Grant (144073) of Natural Sciences and Engineering Research Council of Canada. The authors are indebted to the anonymous referees for their valuable comments and suggestions.

References

[1] I. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics, 17 (1965), 449-467.
[2] J. Edmonds, E. L. Johnson, Matching, Euler tours and the Chinese postman, Mathematical Programming, 5 (1973), 233-236.
[3] O. Favaron, On k-factor-critical graphs, Discussiones Mathematicae Graph Theory, 16 (1996), 41-51.
[4] E. Györi, M. D. Plummer, The Cartesian product of a k-extendable and an l-extendable graph is $(k+l+1)$-extendable, Discrete Mathematics, 101 (1992), 87-96.
[5] E. Györi, W. Imrich, On the strong product of a k-extendable and an l-extendable graph, Graphs and Combinatorics, 17 (2001), 245-253.
[6] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley \& Sons, New York, 2000.
[7] L. Lovász, M. D. Plummer, Matching Theory, North-Holland Inc., Amsterdam, 1986.
[8] M. Wattenhofer, R. Wattenhofer, Fast and simple algorithms for weighted perfect matching, Electronic Notes in Discrete Mathematics, 17 (2004), 285-291.
[9] Q. L. Yu, Characterizations of various matching extensions in graphs, The Australasian Journal of Combinatorics, 7 (1993), 55-64.

[^0]: *Corresponding email: wzfapril@mail.nankai.edu.cn (Z.Wu)

