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Abstract

Strong product G1 £ G2 of two graphs G1 and G2 has vertex set V (G1) × V (G2)
and two vertices (u1, v1) and (u2, v2) are adjacent whenever u1 = u2 and v1 is adjacent
to v2, or u1 is adjacent to u2 and v1 = v2, or u1 is adjacent to u2 and v1 is adjacent to
v2. We investigate the factor-criticality of G1 £ G2 and obtain the following:

Let G1 and G2 be connected m-factor-critical and n-factor-critical graphs, respec-
tively. Then

(i) if m > 0, n = 0, |V (G1)| > 2m + 2 and |V (G2)| > 4, then G1 £ G2 is (2m + 2)-
factor-critical;

(ii) if n = 1, |V (G1)| > 2m + 3 and either m > 3 or |V (G2)| > 5, then G1 £ G2 is
(2m + 4− ε)-factor-critical, where ε = 0 if m is even, otherwise ε = 1;

(iii) if m + 2 6 |V (G1)| 6 2m + 2, or n + 2 6 |V (G2)| 6 2n + 2, then G1 £ G2 is
mn-factor-critical;

(iv) if |V (G1)| > 2m+3 and |V (G2)| > 2n+3, then G1£G2 is (mn−min{[ 3m
2 ]2, [ 3n

2 ]2})-
factor-critical.
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1 Introduction and Notation

The graphs considered in this paper will be finite, undirected, simple and connected. Let
G be a graph with vertex set V (G) and m be an integer such that 0 6 m 6 |V (G)| − 2. A
graph G is m-factor-critical (hereafter ‘m-fc’) if

• (i) |V (G)| ≡ m (mod 2);

• (ii) for any S ⊆ V (G), if |S| = m, then G−S has a perfect matching (i.e., a 1-factor).
∗Corresponding email: wzfapril@mail.nankai.edu.cn (Z. Wu)
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In particular, a graph G is said to be factor-critical if G−u has a 1-factor for every u ∈ V (G)
and to be bicritical if for every pair of distinct vertices u and v, G − {u, v} has a 1-factor.
The factor-critical graphs are used as essential “building blocks” for the so-called Gallai-
Edmonds matching structure of general graphs and bicritical graphs are studied by Lovász
to develop brick-decomposition as powerful tool to determine the dimension of matching
lattice (see [7]). A graph G is called m-extendable if every matching of size m can be
extended to a perfect matching of G. Clearly, a 2m-fc graph is m-extendable.

Favaron [3] and Yu [9] introduced the concept of m-fc and studied the basic properties
of m-fc graphs, independently. Several properties of m-fc graphs will be used in our proofs,
so we summarize them as follows.

Theorem 1.1 ( [3], [9]) Let G be an m-fc graph with m > 1. Then

(a) G is also (m− 2)-fc, if m > 2;

(b) G is m-connected;

(c) G is (m + 1)-edge-connected. In particular, δ(G) > m + 1.

Let co(G) denote the number of odd components of G. Favaron [3] and Yu [9] also gave
a sufficient and necessary condition on m-fc graphs, independently.

Theorem 1.2 ( [3], [9]) A graph G is m-fc if and only if co(G − S) 6 |S| − m, for all
S ⊆ V (G) and |S| > m.

It is natural to study the factor criticality and matching extendability of different types
of graph products, since such products contain a large number of 1-factors and they often
form a ‘skeleton’ of Cayley graphs. Some interesting properties of product graphs can be
found in [4] and [5]. Here, we investigate the factor-criticality of the strong product of an
m-fc and an n-fc graphs.

Strong product G1 £G2 of two graphs G1 and G2 has vertex set V (G1)×V (G2) and two
vertices (u1, v1) and (u2, v2) are adjacent if either u1 = u2 and v1 is adjacent to v2, or u1 is
adjacent to u2 and v1 = v2, or u1 is adjacent to u2 and v1 is adjacent to v2. For example,
K2 £ K2 = K4.

The “projection” subgraph of G1£G2 induced by the vertex set {(u, v0) | u ∈ V (G1), v0 ∈
V (G2)} will be denoted by Gv0

1 . It is called a row of G1 £ G2. GV0
1 denotes the subgraph

of G1 £ G2 induced by the vertex set {(u, v) | u ∈ V (G1), v ∈ V0 ⊆ V (G2)}. Similarly, we
define the notation Gu0

2 (a column of G1 £ G2) and GU0
2 . Clearly, Gv

1
∼= G1 and Gu

2
∼= G2.

One of the important technique throughout the proof is T -join. Let T ⊆ V (G) with |T |
even. Let H be a spanning subgraph of G and dH(x) denote the degree of x in H. Then H
is called a T -join, if

dH(x) ≡
{

1 (mod 2), if x ∈ T

0 (mod 2), if x ∈ V (G)− T .

Note that for a T -join H, any vertex of T is of odd degree in H and other vertices are
of even degree in H. Given a connected graph G and a subset T ⊆ V (G) with |T | even,
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there always exists a T -join. A common way to construct a T -join is as follows: pairing up
vertices of T and finding a path connecting them in G for each pair, and then the symmetric
difference of these paths are the desired T -join. If we delete all the edges of the Eulerian
cycles of a T -join, the new subgraph F becomes a forest and it remains a T -join; moreover,
for every uv ∈ E(G), dF (u) + dF (v) 6 |T |+ 2.

In fact, T -joins associate with several well-known optimization problems: shortest paths
problem instances with negative length edges, the Chinese postman problem, the 1-matching
problem, and so on. In [2], Edmonds and Johnson showed that the T -join problem can be
reduced to the weighted matching problem. The idea of this reduction is as follows: for
every pair of vertices u, v in T , compute the distance d(u, v) in G. Consider the complete
graph H with vertex set T , with the edges of H weighted by the corresponding d(u, v).
Let M be a minimum weight perfect matching in H and, for each edge uv ∈ M , let Puv

be a u − v path of the minimum length in G. It is not hard to show that the Puv’s are
mutually edge-disjoint and hence that ∪uv∈MPuv is a minimum T -join. Edmonds [1] proved
that the weighted matching problem can be solved in polynomial time. Later, Wattenhofer
and Wattenhofer [8] presented an algorithm for constructing a minimum weighted perfect
matching on complete graphs whose cost functions satisfy the triangular inequality, and
this improved the running time to O(n2 log n). So from algorithm complexity point of view,
finding a T -join is a P -problem.

We use the notation [x]2 = 2bx/2c, i.e., [x]2 denotes the maximum even number no more
than x. And [n] = {1, 2, . . . , n}. For terminology and notation not defined here, readers are
referred to [7].

2 Main results

The main result presented in this paper is the following theorem.

Theorem 2.1 Let G1 be a connected m-fc graph and G2 be a connected n-fc graph.

(i) If m > 0, n = 0, |V (G1)| > 2m + 2, and |V (G2)| > 4, then G1 £ G2 is (2m + 2)-fc;

(ii) if n = 1, |V (G1)| > 2m + 3, either m > 3 or |V (G2)| > 5, then G1 £ G2 is
(2m + 4− ε)-fc, where ε = 0 if m is even, otherwise ε = 1;

(iii) if m+2 6 |V (G1)| 6 2m+2, or n+2 6 |V (G2)| 6 2n+2, then G1 £G2 is mn-fc;

(iv) if |V (G1)| > 2m+3 and |V (G2)| > 2n+3, then G1£G2 is (mn−min{[3m
2 ]2, [3n

2 ]2})-
fc.

Remark. In [5], Györi and Imrich conjectured that the strong product of an m-extendable
graph and an n-extendable graph is ([(m + 2)(n + 2)]2 − 2)-factor-critical. This conjecture
is still open. In the above theorem, we use a stronger condition to obtain better results.
For example, (iv) if G1 and G2 are 2m-fc and 2n-fc (which imply m-extendability and n-
extendability), then G1 £G2 is at least (4mn−min{[3m]2, [3n]2})-fc, which is stronger than
the conclusion in the conjecture when m,n > 3.
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An important special case of the main theorem is the following, which is used many
times in the proof of Theorem 2.1.

Theorem 2.2 If G is an m-fc graph, then G £ K2 is 2m-fc.

In addition, we need the following lemmas.

Lemma 2.3 Let G1 be m-fc and G2 be n-fc (n > 2) such that G1 £ (G2 − v) is m(n− 1)-
fc, for any v ∈ V (G2). Suppose X is a subset of V (G1 £ G2) with |X| = mn. If there
exists a vertex v ∈ V (G2) such that |X ∩ V (Gv

1)| > m, then there is a perfect matching in
G1 £ G2 −X.

Proof. Let X0 = {x1, . . . , xm} be any m vertices of X ∩ V (Gv
1). Then Gv

1 −X0 contains
a perfect matching M as G1 is m-fc. Consider the edges y1z1, . . . , ypzp of M such that
zi ∈ X −X0 and yi /∈ X −X0. As G1 is m-fc, by Theorem 1.1, δ(G1) > m + 1. Thus, for
v′ ∈ V (G2)− v, if vv′ ∈ E(G2), yi has at least m + 2 neighbors in Gv′

1 , by the definition of
strong product. Moreover, v has at least n + 1 neighbors in G2 as G2 is n-fc. Thus every
vertex yi has at least (n+1)(m+2) neighbors in G1£(G2−v). Since Gv

1 contains at least m+p
elements of X, we infer that G1£(G2−v)−X contains at least (n+1)(m+2)−(nm−m−p) >
p neighbors of any yi. Thus there exist vertices w1, . . . , wp ∈ V (G1 £ (G2 − v)) such that
wi /∈ X, yiwi ∈ E(G1 £ G2) for i = 1, . . . , p. Let X1 = (X − V (Gv

1)) ∪ {w1, . . . , wp}. Then
|X1| ≡ m(n − 1) (mod 2) and |X1| 6 m(n − 1). So, there exists a perfect matching M1

in G1 £ (G2 − v) − X1 by the assumption. Let M0 be the set of edges of M with both
end-vertices in X. Then M1 ∪ (M −M0) ∪ {y1w1, . . . , ypwp} − {y1z1, . . . , ypzp} is a perfect
matching in G1 £ G2 −X.

In the case of n = 1, we can deduce the following lemma by the same technique.

Lemma 2.4 Let G1, G2 be m-fc and 1-fc, respectively, and let X be a subset of V (G1 £G2)
with |X| = 2m + 4 when m is even (resp. |X| = 2m + 3 when m is odd). Suppose that v is
a vertex of G2 such that G1 £ (G2 − v) is (2m + 2)-fc. Then there is a perfect matching in
G1 £ G2 −X if

(1) m is odd; or

(2) m is even and |X ∩ V (Gv
1)| > 2.

Although the next lemma is weaker than some of the main results, we state it for the
convenience of the induction hypothesis in the proof of Theorem 2.1(iv).

Lemma 2.5 Suppose G1 is m-fc and G2 is n-fc with n 6 2. Then G1 £ G2 is mn-fc.

Proof. It is trivial when n = 0. From now on, assume n = 1 or 2. Suppose X is a subset
of V (G1 £ G2) with |X| = mn.

Case 1. |X ∩ V (Gv
1)| 6 m for all v ∈ V (G2).

Subcase 1.1 |X ∩ V (Gv
1)| ≡ m (mod 2) for each v ∈ V (G2).
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Then Gv
1−X has a perfect matching as G1 is m-fc, and hence the union of these perfect

matchings is a desired perfect matching.

Subcase 1.2. |X ∩ V (Gv
1)| ≡ m + 1 (mod 2) for some v ∈ V (G2).

When G2 is 1-fc, |V (G2)| is odd. By parity, there is a vertex in G2, say v0, such that
|X ∩V (Gv0

1 )| ≡ m (mod 2). Then |X ∩V (G1 £ (G2−v0))| (resp. |X ∩V (G1 £G2)|) is even
if n = 1 (resp. n = 2). Suppose {v1v2, . . . , v2t−1v2t} is a perfect matching of G2 − v0 (resp.
G2) when n = 1 (resp. n = 2).

Let T denote the set of vertices vi (1 6 i 6 2t) satisfying |X ∩ V (Gvi
1 )| ≡ 1 (mod 2).

Clearly, |T | is even. Let F be a minimum T -join in G2 such that dF (v0) is as small as
possible if v0 exists. By the definition of T -join, dF (v2i−1)+dF (v2i)+|X∩V (G{v2i−1,v2i}

1 )| ≡ 0
(mod 2) and dF (v0)+ |X∩V (Gv0

1 )| ≡ m (mod 2) if v0 exists. Here we construct a matching
M in G1 £G2−X by considering edges of F step by step, such that one and only one edge
joins V (Gvi

1 ) and V (Gvj

1 ) if vivj ∈ E(F )−{v1v2, . . . , v2t−1v2t}. If such a matching M exists,
we have |(X ∪ V (M)) ∩ V (G{v2i−1,v2i}

1 )| (i = 1, 2, . . . , t) is even and is at most 2m, and so
G
{v2i−1,v2i}
1 − X − V (M) has a perfect matching Mi by Theorem 2.2. For the vertex v0,

Gv0
1 −X −V (M) has a perfect matching M0 because |(X ∪V (M))∩V (Gv0

1 )| ≡ m (mod 2)
and is less than m. Thus

⋃t
i=0 Mi ∪M (resp.

⋃t
i=1 Mi ∪M) is a desired perfect matching

in G1 £ G2 −X when n = 1 (resp. n = 2).

So we only need to prove the existence of M . If for every vivj ∈ E(F )−{v1v2, . . . , v2t−1v2t},
there is an edge connecting Gvi

1 and G
vj

1 avoiding vertices in X and M constructed so far,
we are done. Suppose vivj is the next edge we consider. By the minimality of F , M to-
gether with X cover no more than 2m vertices of G

{vi,vj}
1 , i.e., |X ∩ V (G{vi,vj}

1 )|+ |V (M)∩
V (G{vi,vj}

1 )| 6 2m. Therefore, it follows from the fact that |V (G1)| > m + 2, G1 is m-
connected and the definition of strong product that there is an edge between Gvi

1 −X−V (M)
and G

vj

1 −X − V (M).

Case 2. |X ∩ V (Gv
1)| > m for some v ∈ V (G2).

In this case, n = 2, because Case 1 implies that G1 £G2 is m-fc when n = 1. By Lemma
2.3 and above proof, there is a perfect matching in G1 £ G2 −X.

3 Proofs of the Main Theorems

3.1 Proof of Theorem 2.2

Proof. Suppose V (K2) = {v1, v2}, and G£K2 is not 2m-fc. Then, by Theorem 1.2, there
exists a set S ⊆ V (G £ K2) with |S| > 2m such that

co(G £ K2 − S) > |S| − 2m.

By parity, co(G £ K2 − S) > |S| − 2m + 2. Note that for any vertex u ∈ V (G), the vertices
(u, v1) and (u, v2) have the same neighbors apart from each other and so they belong to
the same component, unless we delete at least one of them. Thus, each odd component of
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G£K2−S contains a vertex (u, vi) (i = 1, 2) with (u, v3−i) ∈ S. We call (u, v1) and (u, v2)
a full vertex pair.

Since there are at least |S|−2m+2 odd components, S contains at most m−1 full vertex
pairs, denoted by S1 = {(u1, v1), (u1, v2), (u2, v1), (u2, v2), . . .}. Then |V (Gvi) ∩ S| 6 m− 1
for i = 1, 2. Moreover, since G is m-fc and thus m-connected, Gvi−S1 (i = 1, 2) is connected.
Hence G £ K2 − S1 is connected. Let S2 = S − S1. We claim that (G £ K2 − S1)− S2 (=
G £ K2 − S) is connected, which yields a contradiction.

Claim. (G £ K2 − S1)− S2 is connected.

Pick two vertices in (G£K2−S1)−S2 arbitrarily. Suppose they are (x, v1) and (x′, v2).
It is the same when x = x′ or v1 = v2. Since G £ K2 − S1 is connected, there is a path
connecting the two vertices, say P = (x, v1)(x1, vi1)(x2, vi2) . . . (x′, v2). If P contains some
vertex (xj , vij ) ∈ S2, ij = 1, 2, we know that (xj , v3−ij ) /∈ S2, and (xj , v3−ij ) is adjacent to
vertices (xj−1, vij−1) and (xj+1, vij+1), ij±1 = 1, 2. So we can replace the vertex (xj , vij ) by
(xj , v3−ij ). It completes the proof.

3.2 Proof of Theorem 2.1(iii)

Proof. We prove it by induction on m + n. When n = 0, 1, 2, the statement holds by
Lemma 2.5. Assume it holds for smaller m + n. By symmetry of m and n, we assume that
m,n > 3, and |V (G2)| 6 2n + 2.

Consider the strong product G1 £ G2 of an m-fc graph G1 and an n-fc graph G2. Let
X = {x1, . . . , xmn} be an arbitrary set of vertices in G1 £ G2. We distinguish two cases
with respect to |X ∩ V (Gv

1)|.
Case 1. There exists a vertex v in G2 such that |X ∩ V (Gv

1)| > m.

By Lemma 2.3 and induction hypothesis, there is a perfect matching in G1 £ G2 −X.

Case 2. For every vertex v in G2, |X ∩ V (Gv
1)| 6 m− 1.

We only prove the subcase that both m and n are even. When m, n are odd or one of
them is odd, the proofs go along the same lines.

Since G2 is n-fc and δ(G2) > n + 1 > |V (G2)|
2 , by Dirac’s Theorem, G2 has a Hamilton

cycle. We can pick several paths in the cycle. Every path begins with a vertex v such that
|V (Gv

1)∩X| is odd and ends with another vertex v′ with |V (Gv′
1 )∩X| odd along the cycle.

Let P denote the spanning subgraph of G2 induced by the union of the edge sets of these
paths. Then for every vertex v with |V (Gv

1) ∩X| odd, dP (v) is 1. For every vertex v with
|V (Gv

1) ∩ X| even, dP (v) is 0 (i.e., it is not in any path) or 2 (i.e., it is in a path). So
dP (v) + |X ∩ V (Gv

1)| 6 m.

Next, construct a matching M of |E(P )| edges in G1 £ G2 − X such that one and
only one edge joins V (Gvi

1 ) and V (Gvj

1 ) if vivj ∈ E(P ) is the next edge to choose. Such
an edge exists, otherwise G

{vi,vj}
1 − (X ∪ V (M)) is disconnected. Since M constructed so

far together with X cover at most 2m − 2 vertices of G
{vi,vj}
1 , and at most m − 1 pair

vertices like {(u, vi), (u, vj)}, then G1 is disconnected after deleting at most m− 1 vertices,
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a contradiction to the fact that G1 is m-connected by Theorem 1.1.

Then, for arbitrary vi ∈ G2, Gvi
1 − X − V (M) has a perfect matching Mi, since G1 is

m-fc. So
⋃2t

i=1 Mi ∪M , where 2t = |V (G2)|, is a perfect matching of G1 £ G2 −X.

3.3 Proof of Theorem 2.1(iv)

Proof. Suppose G1 is m-fc and G2 is n-fc, and |V (G1)| > 2m + 3 and |V (G2)| > 2n + 3.
Let X be an arbitrary subset of V (G1 £ G2) with |X| = mn−min{[3m

2 ]2, [3n
2 ]2}. If there is

a vertex v ∈ V (G2) (or u ∈ V (G1)) such that |X ∩ V (Gv
1)| > m (or |X ∩ V (Gu

2)| > n), then
it is easy to apply induction and Lemma 2.3 to complete the proof as before. So assume
|X ∩ V (Gv

1)| < m and |X ∩ V (Gu
2)| < n, for any v ∈ V (G2), u ∈ V (G1).

Without loss of generality, we may assume m > n, and m is odd, n is even if m and
n have different parities. Thus, |X| = mn − [3n

2 ]2. Since G2 is n-fc, if n is even, it has a
perfect matching M(G2) = {v1v2, . . . , v2t−1v2t}; if n is odd, there is a vertex v0 ∈ V (G2)
such that |X ∩ V (Gv0

1 )| ≡ m (mod 2), |X ∩ V (Gv0
1 )| 6 m − 2, and G2 − v0 has a perfect

matching M(G2 − v0) = {v1v2, . . . , v2t−1v2t}. If |X ∩ V (G{v2i−1,v2i}
1 )| ≡ 1 (mod 2) for some

i, put i into I0. Clearly, |I0| is even as |X| (or |X − V (Gv0
1 )|) is even.

Claim. For each i ∈ I0, put either v2i−1 or v2i into T , and so |T | = |I0| is even. There
exists a minimum T -join (T is selected over all choices of {v2i−1, v2i}) F of G2 such that if
dF (x) denotes the degree of x in F , then

(1) dF (v2i−1) + dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| 6 2m for i = 1, . . . , t;

(2) dF (v2i−1) + dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| is even;

(3) dF (vi) + dF (vj) + |X ∩ V (G{vi,vj}
1 )| 6 |V (G1)|+ m for vivj ∈ E(G2);

(4) if mn is odd, dF (v0) + |X ∩ V (Gv0
1 )| is odd and no more than m.

We show the claim by constructing F inductively. Set I := I0, F = ∅ and T = {v2i−1, i ∈
I} at first. Obviously, it satisfies conditions (1), (3) and (4). Starting with F = ∅, we change
F step by step so that |I| decreases by two in each step. Suppose that some F has been
constructed already. If I = ∅, we are done, i.e., F is the T -join required. Otherwise, select
i0, j0 ∈ I, and set I := I \ {i0, j0}. We next show that there is a path P from v2i0−1 to
v2j0−1. Then, the symmetric difference of E(P ) and E(F ), maybe after deletion of some
edges, is a new graph still satisfying (1), (3), (4), and at least two more indices in (2).

Obviously, the path cannot use any vertex of {v2l−1, v2l} if dF (v2l−1) + dF (v2l) + |X ∩
V (G{v2l−1,v2l}

1 )| > 2m− 1 unless we join this pair to another pair when this sum is odd, and
so precisely 2m−1. But as we shall see, it is all right when we use both vertices of {v2l−1, v2l}
with 2m − 3 6 dF (v2l−1) + dF (v2l) + |X ∩ V (G{v2l−1,v2l}

1 )| 6 2m − 2. Similarly, the path
cannot use both vertices of {vi, vj} if dF (vi)+ dF (vj)+ |X ∩V (G{vi,vj}

1 )| > |V (G1)|+m− 3
and vivj ∈ E(G2).

Set

A := {v2i−1, v2i | 2m− 1 6 dF (v2i−1) + dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| 6 2m}
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and
B := {vi | dF (vi) + |X ∩ V (Gvi

1 )| > m + 2− ε, vi ∈ V (G2)−A},
where ε = 1 if mn is odd; ε = 0, otherwise.

Furthermore, when mn is odd, and if dF (v0)+ |X ∩V (Gv0
1 )| = m, set A = A∪{v0}. Let

|A| = 2a (resp. |A| = 2a + 1) if v0 /∈ A (resp. v0 ∈ A) and |B| = b. We consider two cases.

Case 1. |A|+ |B| 6 n− 1.

Since G2 is n-fc, it is n-connected. So G2 − A − B is connected. Thus, there is a path
from {v2i0−1, v2i0} to {v2j0−1, v2j0} avoiding A∪B. Suppose P uses both vertices of some d

vertex pairs {v2l−1, v2l} with 2m− 3 6 dF (v2l−1)+dF (v2l)+ |X ∩V (G{v2l−1,v2l}
1 )| 6 2m− 2.

Then these 2d vertices divide the path P into 2d + 1 segments. Delete the edge set of the
2nd, 4th, . . . , 2dth segments of P . Simultaneously, if v2i0−1v2i0 ∈ E(P ), replace v2i0−1 in
T by v2i0 ; if v2j0v2j0−1 ∈ E(P ), replace v2j0−1 in T by v2j0 . The smaller edge set E(P )
obtained still satisfies the conditions as before and the sum of the F -degrees of the vertices
v2l−1, v2l increases by two.

Consider the symmetric difference F0 of the edge sets E(P ) and E(F ). If F0 contains
an Eulerian graph, then delete its edges. Trivially, F0 defines a forest. Furthermore, F0

remains acyclic if we add the edges v1v2, . . . , v2t−1v2t by the minimality of T -join. We only
need to check (3) and (4) from now on.

For any vivj ∈ E(G2), if {vi, vj} ⊆ A∪B, then nothing changed; if {vi, vj}∩(A∪B) = ∅,
then dF (vi) + dF (vj) + |X ∩ V (G{vi,vj}

1 )| 6 2(m + 2 − ε) 6 |V (G1)| + m − 4, and hence,
dF0(vi) + dF0(vj) + |X ∩ V (G{vi,vj}

1 )| 6 |V (G1)| + m − 4 + 4 6 |V (G1)| + m; otherwise,
suppose {vi, vj} ∩ (A ∪ B) = {vi}, then we have dF (vi) + |X ∩ V (Gvi

1 )| 6 2m by (1) and
dF (vj) + |X ∩ V (Gvj

1 )| 6 m + 2− ε by the choice of B, and hence dF0(vi) + dF0(vj) + |X ∩
V (G{vi,vj}

1 )| 6 2m + m + 2− ε + 2 6 |V (G1)|+ m. So (3) still holds.

Suppose mn is odd. If v0 ∈ A, then nothing is changed; if v0 /∈ A, since dF (v0) + |X ∩
V (Gv0

1 )| ≡ m (mod 2), then dF0(v0) + |X ∩ V (Gv0
1 )| 6 m − 2 + 2 = m and dF0(v0) + |X ∩

V (Gv0
1 )| ≡ m (mod 2). In other words, (4) holds.

Case 2. |A|+ |B| > n.

Assume first that v0 /∈ A. Contracting each edge v2i−1v2i of G2 to a vertex wi, G2 is
transformed into a graph H on t + ε vertices, and F is transformed into F ′. Note that
v2i−1v2i /∈ E(F ), so dF ′(wi) = dF (v2i−1) + dF (v2i). Set A′ := {wi | {v2i−1, v2i} ⊆ A},
B′ := {wi | v2i−1 ∈ B or v2i ∈ B}. Then, dF ′(wi) > 2, for wi ∈ A′ ∪ B′ because of the
definition of A′ and B′, the construction of F and the fact that |X ∩ V (Gvi

1 )| 6 m− 1.

Let z denote the number of indices i such that |X ∩ V (G{v2i−1,v2i}
1 )| is odd. Then, z 6

mn− [3n
2 ]2 and the number of leaves in F ′ is at most z−2−∑

wi∈A′∪B′ |X ∩V (G{v2i−1,v2i}
1 )|

by the construction of F .

On the other hand, we have
∑

wi∈A′∪B′(dF ′(wi)− 2) (∗)
> a(2m− 3) + b(m + 1− ε)−∑

wi∈A′∪B′ |X ∩ V (G{v2i−1,v2i}
1 )|

= (2a + b)m− 3a + b(1− ε)−∑
wi∈A′∪B′ |X ∩ V (G{v2i−1,v2i}

1 )|.
8



If 2a 6 n, then (∗) > mn − [3n
2 ]2 −

∑
wi∈A′∪B′ |X ∩ V (G{v2i−1,v2i}

1 )|; otherwise, let 2a =

[n + 2k]2 (k > 1), then (∗) > mn− [3n
2 ]2 + (2m− 3)k −∑

wi∈A′∪B′ |X ∩ V (G{v2i−1,v2i}
1 )|, a

contradiction (note that for any forest F with at least one edge, the number of leaves is at
least

∑
d(x)>2,x∈F (d(x)− 2) + 2).

If mn is odd, v0 ∈ A and 2a + b + 1 > n, we derive the same contradiction similarly.

Contracting each edge v2i−1v2i of G2 to a vertex wi, G2 is transformed into a graph H
(v0 is unchanged and named w0 in H) of t + 1 vertices and F is transformed into F ′. Set
A′ := {wi | {v2i−1, v2i} ⊆ A} ∪ {w0}, B′ := {wi | v2i−1 ∈ B or v2i ∈ B}. Then dF ′(wi) > 2
for wi ∈ A′ ∪B′. Similarly, F ′ has at most mn− [3n

2 ]2− 2−∑
wi∈A′∪B′ |X ∩V (Gwi

1 )| leaves,

where Gwi
1 denotes G

{v2i−1,v2i}
1 when i 6= 0 or Gv0

1 when i = 0.

On the other hand, we have
∑

wi∈A′∪B′(dF ′(wi)− 2)
> a(2m− 3) + (m− 2) + bm−∑

wi∈A′∪B′ |X ∩ V (Gwi
1 )|

= (2a + 1 + b)m− 3a− 2−∑
wi∈A′∪B′ |X ∩ V (Gwi

1 )|
> mn− [3n

2 ]2 + 2−∑
wi∈A′∪B′ |X ∩ V (Gwi

1 )|,
a contradiction and we complete the proof of Claim.

Now, we go back to the proof of Theorem 2.1 (iv). Our aim is to construct an edge set
M of |E(F )| independent edges in G1 £ G2 − X step by step. For any edge vivj ∈ E(F )
(we take the edges one by one), find one and only one edge e between V (Gvi

1 ) and V (Gvj

1 )
such that e is not covered by X and M constructed so far, and add e into M . Suppose
vivj ∈ E(F ) ⊆ E(G2) is the next edge. The vertex set X ∩ V (G{vi,vj}

1 ) together with the
chosen edges of M cover a set Y of no more than |V (G1)|+ m− 2 vertices by (3). If there
is a vertex u ∈ V (G1) such that (u, vi), (u, vj) /∈ Y , then add the edge (u, vi)(u, vj) to M .
Otherwise, it follows from the fact |Y | 6 |V (G1)| + m − 2 that the set Y0 of vertices u
such that both (u, vi), (u, vj) ∈ Y have cardinality at most m − 2. Set Yi := V (Gvi

1 ) − Y ,
Yj := V (Gvj

1 )−Y . Condition (1) and |V (G1)| > 2m + 3 imply Yi 6= ∅ and Yj 6= ∅. Since G1

is m-fc and hence m-connected, then there is an edge u1u2 ∈ E(G1) such that (u1, vi) ∈ Yi

and (u2, vj) ∈ Yj . Then add the edge (u1, vi)(u2, vj) to M . Proceed similarly for other edges
of F . Thus, by Claim, |X ∩ V (G{v2i−1,v2i}

1 )|+ |V (M) ∩ V (G{v2i−1,v2i}
1 )| is even and at most

2m. Therefore, G
{v2i−1,v2i}
1 − (X ∪ V (M)) has a perfect matching Mi as G1 £ K2 is 2m-fc,

Gv0
1 − (X ∪ V (M)) has a perfect matching M0 (when mn is odd) and hence, M ∪⋃t

i=1 Mi

(or M ∪⋃t
i=0 Mi) is a desired perfect matching of G1 £ G2 −X. This completes the proof

of Theorem 2.1(iv).

Lemma 3.1 Given a connected 0-fc graph G, then G £ K2 is bicritical.

Proof. The proof is similar to that of Theorem 2.2.

Theorem 3.2 Let G1, G2 be two connected nontrivial graphs. If G1 is 0-fc, then G1 £ G2

is bicritical.
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Proof. Let X = {x1, x2} be an arbitrary subset of V (G1 £ G2). There are two cases to
discuss.

Case 1. X ⊆ V (G{v,v′}
1 ), vv′ ∈ E(G2).

By Lemma 3.1, G
{v,v′}
1 − X has a perfect matching M0. Since G1 is 0-fc, Gw

1 has a
perfect matching for any w ∈ V (G2)− {v, v′}, and so the union of these perfect matchings
together with M0 is a perfect matching of G1 £ G2 −X.

Case 2. x1 ∈ Gv
1, x2 ∈ Gv′

1 , vv′ /∈ E(G2).

Suppose x1 = (u, v), x2 = (u′, v′). Since G2 is connected, there is a v-v′ path in G2,
denoted by P := v1v2 . . . vk, where v1 = v, vk = v′. Moreover, as |X ∩ V (Gw

1 )| = 0, Gw
1 −X

has a perfect matching for any v ∈ V (G2) − {v1, . . . , vk}. So, if we can find a perfect
matching of H = G1 £ P −X, we are done.

Subcase 2.1. k is even.

Set M∗ = {(u, v2i)(u, v2i+1) | 1 6 i 6 k
2 − 1}. It is easy to prove that |(X ∪ V (M∗)) ∩

V (G{v2i−1,v2i}
1 )| = 2 for all 1 6 i 6 k

2 . Then, by Lemma 3.1, G
{v2i−1,v2i}
1 − (X ∪ V (M∗)) has

a perfect matching Mi. Hence,
⋃ k

2
i=1 Mi ∪M∗ is a perfect matching of H.

Subcase 2.2. k is odd.

Suppose M(Gv1
1 ) is a perfect matching of Gv1

1 and (u, v1)(u′′, v1) ∈ M(Gv1
1 ). Set

M∗ = {(u′′, v1)(u′′, v2)} ∪ {(u, v2i−1)(u, v2i) | 2 6 i 6 k−1
2 }. Similarly, |(X ∪ V (M∗)) ∩

V (G{v2i,v2i+1}
1 )| = 2 for all 1 6 i 6 k−1

2 , and then by Lemma 3.1, G
{v2i,v2i+1}
1 − (X ∪V (M∗))

has a perfect matching Mi. If M(Gv1
1 ) ∼= M(G1) denotes a perfect matching of Gv1

1 , then
⋃ k−1

2
i=1 Mi ∪M(Gv1

1 ) ∪M∗ − {(u, v1)(u′′, v1)} is the desired perfect matching of H.

This completes the proof.

3.4 Proof of Theorem 2.1(i)

Proof. If both G1 and G2 are 0-fc (connected), it follows directly from Theorem 3.2 that
G1 £ G2 is 2-fc. Next we consider when G1 is m-fc, m > 1 and |V (G1)| > 2m + 2.

We use induction on |V (G2)|. Let X be a subset of 2m + 2 vertices in G1 £ G2.

If |V (G2)| = 4, then P4 ⊆ G2, and there is a perfect matching in G1£P4−X, so is in G1£
G2 −X. Now suppose the assertion is true for smaller |V (G2)|. Since G2 is connected and
0-fc, we may assume that G2 has a perfect matching M(G2) = {v1v2, . . . , v2t−1v2t}. Extend
it to a spanning tree T of G2 and contract the edges v1v2, . . . , v2t−1v2t of the matching.
Then T is transformed into a spanning tree of the contracted graph. Consider one of the
leaves, say the vertex obtained from the contraction of v1v2, and v1 has a neighbor in
{v3, v4, . . . , v2t}, say v3. Let X1 ⊆ X ∩ V (G{v1,v2}

1 ), where |X1| = 2m if |X ∩ V (G{v1,v2}
1 )| >

2m; |X1| = [|X ∩ V (G{v1,v2}
1 )|]2 otherwise.

Case 1. |X1| = 2m.

There exists a perfect matching M1 in G
{v1,v2}
1 − X1. Note that we can always find a

matching M1 such that the vertices in Gv2
1 −X are matched with vertices not in X −X1.
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Suppose there are edges x1y1, . . . , xpyp ∈ M , where xi ∈ X−X1, yi /∈ X−X1, and yi ∈ Gv1
1 .

By the definition of strong product and δ(G2) > m + 1, yi has at least m + 2 neighbors in
Gv3

1 for i = 1, . . . , p. Since |X ∩ V (Gv3
1 )| 6 2− p, we can find z1, . . . , zp ∈ V (Gv3

1 )−X such
that y1z1, . . . , ypzp ∈ E(G1 £ G2 −X). Let X2 = X ∩ V (G1 £ (G2 − {v1, v2})). Then it is
obvious that |X2 ∪ {z1, . . . , zp}| 6 2m + 2. Now G2 − {v1, v2} is 0-fc and connected. So, by
induction hypothesis, G1 £(G2−{v1, v2}) is (2m+2)-fc, and there is a perfect matching M2

in G1 £ (G2 − {v1, v2})− (X2 ∪ {z1, . . . , zp}). Let M ′
1 denote the set of edges of M1 whose

both ends are covered by X. Then M1 ∪M2 ∪ {y1z1, . . . , ypzp} − {x1y1, . . . , xpyp} −M ′
1 is

a perfect matching in G1 £ G2 −X.

Case 2. |X1| < 2m.

If |X ∩ V (G{v1,v2}
1 )| is odd, we just have to choose an edge ab, where a ∈ V (Gv1

1 ) −X

and b ∈ V (Gv3
1 ) −X. Clearly, G

{v1,v2}
1 − (X1 ∪ {a}) has a perfect matching M1. Now the

graph G2 − {v1, v2} is still 0-fc and connected. Let X2 = X ∩ V (G1 £ (G2 − {v1, v2})), by
induction hypothesis, there is a perfect matching M2 in G1 £ (G2 − {v1, v2})− (X2 ∪ {b}),
and thus M1 ∪M2 ∪ {ab} is a perfect matching in G1 £ G2 −X. If |X ∩ G

{v1,v2}
1 | is even,

there is a perfect matching M1 in G
{v1,v2}
1 −X1. Moreover, by induction hypothesis, there

is a perfect matching M2 in G1 £ (G2 − {v1, v2}) − X. So M1 ∪ M2 is a desired perfect
matching in G1 £ G2.

An immediate corollary of Theorem 2.2 and Theorem 2.1(i) is the following.

Corollary 3.3 If G1 is m-fc with |V (G1)| > 2m and G2 is 0-fc, then G1 £ G2 is 2m-fc.

3.5 Proof of Theorem 2.1(ii)

Proof. Let X be an arbitrary subset of V (G1 £ G2) with |X| = 2m + 4− ε, where ε = 1
if m is odd; ε = 0 otherwise. Here, we assume m > 1 and |V (G2)| > 5 first.

Case 1. There exists a vertex, say v0 ∈ V (G2), such that |X ∩ V (Gv0
1 )| > 2− ε.

Without loss of generality, we may assume C1, . . . , Cl are the components of G2 − v0,
l > 1. Clearly, Ci has a perfect matching and |X ∩ V (G1 £ Ci)| 6 2m + 2 for all 1 6 i 6 l.
If |X ∩V (G1 £Ci)| is odd, we can join an edge between Gv0

1 and G1 £Ci. Call such an edge
set P . (It is possible that P = ∅.) Since every vertex in Gv0

1 has at least 2(m+2) neighbors
in each component, we can choose the endvertex of the edges of P in Gv0

1 freely so that
Gv0

1 −X − V (P ) has a perfect matching M0. Then |(X ∪ V (P )) ∩ V (G1 £ Ci)| 6 2m + 2
and is even. If |(X ∪ V (P )) ∩ V (G1 £ Ci)| 6 2m for each i, G1 £ Ci − (X ∪ V (P )) has a
perfect matching Mi, and therefore,

⋃l
i=0 Mi ∪ P is a perfect matching in G1 £ G2 − X.

Assume |X ∩ V (G1 £ Ci0)| > 2m + 1. Note that |(X ∪ V (P )) ∩ V (G1 £ Ci)| 6 2m for
all i 6= i0. If |V (Ci0)| > 4, by Theorem 2.1 (i), G1 £ Ci0 is (2m + 2)-fc, and hence
G1 £ Ci0 −X − V (P ) has a perfect matching. If |V (Ci0)| = 2, we can reselect v0 from Ci0

such that |(X ∪ V (P )) ∩ V (G1 £ Ci)| 6 2m for every component Ci of G2 − v0. Therefore⋃l
i=0 Mi ∪ P is a perfect matching in G1 £ G2 −X.

Case 2. |X ∩ V (Gv
1)| 6 1− ε for all v ∈ V (G2).

It is easy to see that we only have to deal with the case of m even. So m > 2 and
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|V (G1)| > 2m + 4.

By parity, there is at least one vertex, say v0 ∈ V (G2), satisfying |X ∩V (Gv0
1 )| = 0. Let

C1, . . . , Cl be the components of G2 − v0 (l > 1).

Subcase 2.1. |V (G1 £ Ci) ∩X| 6 2m + 2 for i = 1, . . . , l.

If |X ∩ V (G1 £ Ci)| is odd for 1 6 i 6 l, we can join an edge between Gv0
1 and G1 £ Ci.

Call such an edge set P . (It is possible that P = ∅.) Since every vertex in Gv0
1 has at least

2(m+2) neighbors in each component, we can choose the endvertex of P in Gv0
1 freely so that

Gv0
1 −X−V (P ) has a perfect matching M0. Note that |(X∪V (P ))∩V (G1 £Ci)| 6 2m+2.

Moreover, if |V (G1£Ci)∩(X∪V (P ))| = 2m+2, then by assumption, |V (Ci)| > 2m+2−1 >
3 and |V (Ci)| > 4 by parity. By Theorem 2.1(i) and Corollary 3.3, G1£Ci−X has a perfect
matching Mi. Thus,

⋃l
i=0 Mi ∪ P is a perfect matching in G1 £ G2 −X.

Subcase 2.2. There is a component C1 such that |V (G1 £ C1) ∩X| > 2m + 3.

There is at most one vertex of X lying in some G1 £Ci (i 6= 1). Let {v1v2, . . . , v2k−1v2k}
be a perfect matching of G2− v0. As in the proof of Theorem 2.1(iv), we have the following
Claim.

Claim. Let I0 denote the set of indices i with |X ∩ V (G{v2i−1,v2i}
1 )| ≡ 1 (mod 2). For

each i ∈ I0 put v2i−1 or v2i into T . There exists a minimum T -join (T is selected over all
choices of {v2i−1, v2i}) F of G2 such that

(1) dF (v0) + |X ∩ V (Gv0
1 )| is even and no more than m;

(2) Either there exists v1 and v2 such that dF (v1)+dF (v2)+ |X ∩V (G{v1,v2}
1 )| > 2m+2

and for i 6= 1, dF (v2i−1) + dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| 6 m + 2 6 2m; or dF (v2i−1) +

dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| 6 2m for all 1 6 i 6 k.

(3) For all 1 6 i 6 k, dF (v2i−1) + dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| ≡ 0 (mod 2).

We show the claim by constructing F inductively. Set I := I0, F = ∅ and T = {v2i−1, i ∈
I} at first. Obviously, it satisfies conditions (1) and (2). Starting with F = ∅, we change
F step by step so that |I| decreases by two in each step. Suppose that some F has been
constructed already. If I = ∅, we are done, i.e., F is the T -join required. Otherwise, select
i0, j0 ∈ I, and set I := I \ {i0, j0}. Let P be a path from v2i0−1 to v2j0−1 in G2. Moreover,
if dF (v0) + |X ∩ V (Gv0

1 )| = m, P must avoid v0; it is feasible because we can make sure
that vertices v2i0−1, v2i0 , v2j0−1, v2j0 lie in a connected component C1 of G2 − v0. Suppose
P uses both vertices of some d vertex pairs {v2i−1, v2i}. These 2d vertices divide the path
into 2d + 1 segments. Delete the edge set of 2nd, 4th, . . . , 2dth segments of P . At the same
time, if v2i0−1v2i0 ∈ E(P ), replace v2i0−1 in T by v2i0 ; if v2j0v2j0−1 ∈ E(P ), replace v2j0−1

in T by v2j0 . We then obtain a smaller edge set E(P ). Consider the symmetric difference
F0 of E(P ) and E(F ). If F0 contains an Eulerian graph, then delete its edges. Moreover,
F0 remains acyclic if we add the edges v1v2, . . . , v2k−1v2k by minimality of T -join.

Then the T -join F we obtained satisfies (1) and (3). We only need to check (2).

If dF (v1)+dF (v2)+ |X∩V (G{v1,v2}
1 )| > 2m+2 and dF (v3)+dF (v4)+ |X∩V (G{v3,v4}

1 )| >
m+4, then by construction of F , easy to show that there are (2m+2−1)+(m+4−1) > 2m+4
in X, a contradiction. So, (2) is true, and this completes the proof of the above claim.
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Now assume dF (v1) + dF (v2) + |X ∩ V (G{v1,v2}
1 )| > 2m + 2. It is not difficult to find a

vertex set X ′ ⊆ V (G{v1,v2}
1 ) satisfying

(i) X ∩ V (Gvi
1 ) ⊆ X ′ ∩ V (Gvi

1 ) and |(X ′ −X) ∩ V (Gvi
1 )| = dF (vi), for i = 1, 2;

(ii) G
{v1,v2}
1 −X ′ has a perfect matchings.

As before, we construct a matching set M according to F . During the construction,
when we take an edge with one endvertex in G

{v1,v2}
1 , we choose the endvertex from X ′−X

and pick an edge in E(G1 £ G2 −X). It is possible because for any vertex (u, vi) ∈ X ′, it
has at least (m + 2)dF (vi) > m + 1 neighbors in G1 £ (G2 − {v1, v2}).

Then G
{v2i−1,v2i}
1 −X − V (M) has a perfect matching Mi for 1 6 i 6 k and Gv0

1 have a
perfect matching M0. Thus

⋃k
i=0 Mi ∪M is a perfect matching in G1 £ G2 −X.

The case that dF (v2i−1) + dF (v2i) + |X ∩ V (G{v2i−1,v2i}
1 )| 6 2m for every 1 6 i 6 k can

be dealt in the same way.

Next, we consider the remaining case that m > 3 and |V (G2)| = 3. Thus, G2 is K3 as
G2 is 1-fc. Let V (G2) = {v1, v2, v3}.

If there exists vi, say v1, such that |X ∩ V (Gv1
1 )| > m, then we can apply induction

hypothesis on |V (G2)| as in Lemma 2.4 and thus obtain a perfect matching of G1 £G2−X.
So, suppose |X∩V (Gv

1)| < m for any v ∈ V (G2). By parity, we may assume |X∩V (Gv1
1 )| ≡

m (mod 2), and thus, Gv1
1 − X has a perfect matching M1. So |X ∩ V (G{v2,v3}

1 )| 6 2m,
and G

{v2,v3}
1 −X has a perfect matching M . Hence, G1 £ G2 −X has a perfect matching

M1 ∪M . It completes the proof.
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