
Sufficient Conditions for n-Matchable Graphs

Dingjun Lou1 ∗and Qinglin Yu23†

1Department of Computer Science, Zhongshan University,
Guangzhou 510275, P. R. China

2Center for Combinatorics
Nankai University, Tianjin, P. R. China

3Department of Mathematics & Statistics
University College of The Cariboo
Kamloops, BC, Canada, V2C 5N3

Abstract

Let n be a non-negative integer. A graph G is said to be n-matchable if the
subgraph G − S has a perfect matching for any subset S of V (G) with |S| = n.
In this paper, we obtain sufficient conditions for different classes of graphs to be n-
matchable. Since 2k-matchable graphs must be k-extendable, we have generalized the
results about k-extendable graphs. All results in this paper are sharp.

1 Introduction

Let G be a connected graph with vertex set V (G) and edge set E(G). (Loops and parallel
edges are forbidden in this paper.)

For S ⊆ V (G) the induced subgraph of G by S is denoted by G[S]. For convenience, we
use G−S for the subgraph induced by V (G)−S. Denote the number of odd components
and components of a graph G by o(G) and ω(G), respectively. For any vertex x of G, the
degree of x is denoted by dG(x). We define N(v) = {u | u ∈ V (G) and uv ∈ E(G)} and
N(S) =

⋃
v∈S N(v). Let H be a subgraph of G, we use the notation NS(v) = N(v) ∩ S,

NH(v) = N(v) ∩ V (H), dS(v) = |NS(v)| and dH(v) = |NH(v)|. Let G and H be two
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graphs. We denote by kH k disjoint copies of H and G + H the join of G and H with
each vertex of G joining to each vertex of H.

A matching in G is a set of edges so that no two of them are adjacent and a perfect
matching is a matching which covers every vertex of G. A graph G is k-extendable
if every matching of size k can be extended to a perfect matching. The concept of k-
extendable graphs was first introduced by Plummer [9] and since then there has been
extensive research done on this topic (e.g., [4], [5] - [12]).

Next, we present the main concept of this paper. Let n be a non-negative integer. A
graph G is said to be n-matchable where 0 ≤ n ≤ |V (G)| − 2 if the subgraph G − S
has a perfect matching for any subset S of V (G) with |S| = n. The term of n-matchable
graphs is first used by Lou in [7] and is also refereed as n-factor-critical graphs by Favaron
[2][3] and Yu [12]. This concept is a generalization of notions of factor-critical graphs and
bicritical graphs (i.e., cases of n = 1 and n = 2) in [8]. A characterization of n-matchable
graphs is given in [12]. The properties of n-matchable graphs and its relationships with
other graph parameters (e.g., degree sum, toughness, binding number, connectivity, etc.)
have been discussed in [3], [5] and [7]. It is interesting to notice the fact that if a graph G
is 2k-matchable then it must be k-extendable. Furthermore, if a graph G is 2k-matchable,
then it is still k-extendable by adding any number of edges to it. Thinking of the fact that
adding an edge to a k-extendable graph may make it not even 1-extendable (for instance,
consider k-extendable bipartite graphs), in this sense 2k-matchability is a much stronger
concept than k-extendability.

In this paper we consider n-matchability of various graphs (such as, claw-free graphs,
power graphs, planar graphs, etc.) and obtain sufficient conditions of such graphs to be
n-matchable. Therefore we generalize several sufficient conditions of k-extendable graphs
to that of 2k-matchable graphs.

2 Sufficient Conditions for n-Matchable Graphs

We start this section with a few lemmas. The first is a characterization of n-matchable
graphs.

LEMMA 2.1 ([12]) Let G be a graph of order p and n an integer such that 0 ≤ n ≤ p−2
and n ≡ p (mod 2). Then G is n-matchable if and only if for each subset S ⊆ V (G) with
|S| ≥ n, then o(G − S) ≤ |S| − n.

The next result shows a relationship between 2n-matchable graphs and n-extendable
graphs.

LEMMA 2.2 ([7]) A graph G of even order is 2n-matchable if and only if
(a) G is n-extendable; and
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(b) for any edge set D ⊆ E(Ḡ), G ∪ D is n-extendable.

Applying Euler’s formula to planar graphs, we can obtain the following classical result.

LEMMA 2.3 If G is a planar triangle-free graph, then

|E(G)| ≤ 2|V (G)| − 4

With the preparation above, we are ready to prove a sufficient condition for planar
graphs to be n-matchable.

THEOREM 2.1 Let G be a 5-connected planar graph of order p. Then G is (4 − ε)-
matchable, where ε = 0 or 1 and ε ≡ p (mod 2).
PROOF: Suppose that G is not (4−ε)-matchable. By Lemma 2.1, since G is 5-connected,
there exists a subset S ⊆ V (G) with |S| ≥ 5 > 4 − ε such that for some k ≥ 1

o(G − S) = |S| − (4 − ε) + 2k ≥ 2 (1)

We choose S to be as small as possible subject to (1). And let C1, C2, . . . , Ct be the
odd components of G − S, where t = |S| − (4 − ε) + 2k.

We claim that, for each x of S, x is adjacent to at least three of C1 , C2, ..., Ct.
Otherwise, there is a vertex x in S which is adjacent to at most two of C1 , C2, ..., Ct. Let
S′ = S −{x}. Then o(G − S′) = |S′| − (4 − ε) + 2q for some q ≥ k and |S| > |S′| ≥ 4 − ε,
which contradicts to the choice of S or the connectedness of G.

Since G is 5-connected, for each component C of G − S C is adjacent to at least five
vertices in S. Now we obtain a bipartite graph H with bipartition (S, Y ) by deleting
all edges in G[S] and contracting each component of G − S to a vertex and deleting the
multiple edges. Then clearly H is planar and triangle free. On the other hand, for each
vertex v in S, dH(v) ≥ 3, and for each vertex u in Y , dH(u) ≥ 5. As G is 5-connected,
we have |S| ≥ 5 and |Y | ≥ |S| − (4 − ε) + 2k ≥ 3. So |E(H)| ≥ 1

2 (3|S| + 5|Y |). Since
|Y | ≥ |S| − (4 − ε) + 2, we can write |Y | = |S| − (4 − ε) + 2 + m for m ≥ 0. Then

|V (H)| = |S| + |Y | = 2|S| − (4 − ε) + 2 + m

and
|E(H)| ≥ 1

2 [3|S| + 5(|S| − (4 − ε) + 2 + m)]
= (4|S| − 2(4 − ε) + 4 + 2m − 4) − 1

2(4 − ε) + 5 + m
2

> 2(|V (H)| − 2)

This contradicts to Lemma 2.3. 2

REMARK 1 Theorem 2.1 implies that a 5-connected planar graph G of even order is 2-
extendable, which was proven by Lou [6] and Plummer [10]. Moreover, adding any number
of edges to G, the resulting graph (which may not be planar anymore) is still 2-extendable
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by Lemma 2.2. In fact, any graph of even order having a spanning 5-connected planar
subgraph is 2-extendable.

THEOREM 2.2 Let G be a graph of order p and n an integer such that 0 ≤ n ≤ p − 2
and n ≡ p (mod 2). If G is (2n + k)-connected and K1,n+k+2-free, then G is n-matchable
where 2n + k ≥ 1.
PROOF: Suppose that G is not n-matchable. By Lemma 2.1, there exists a subset
S ⊆ V (G) with |S| ≥ 2n + k (as G is (2n + k)-connected) such that

ω(G − S) ≥ o(G − S) ≥ |S| − n + 2 ≥ 2 (2)

Let C1, C2, . . . , Ct be the components of G − S, where t = ω(G − S). Let eG(X,Y )
denote the number of edges with one endvertex in X and the other in Y . Since G is
K1,n+k+2-free, each vertex u in S is adjacent to at most n + k + 1 components of G − S.
Then we have eG(X,Y ) ≤ |S|(n + k + 1). By the (2n + k)-connectedness of G, each Ci

is adjacent to at least 2n + k vertices in S. Then eG(S,G − S) ≥ t(2n + k). Therefore,
t(2n + k) ≤ |S|(n + k + 1). Recall |S| ≥ 2n + k and thus we have

ω(G − S) = t ≤ |S|(n + k + 1)
2n + k

= |S| − n − 1
2n + k

|S| ≤ |S| − n + 1,

a contradiction to (2). 2

Combining Theorem 2.2 with Lemma 2.2 we have the following corollary which gen-
eralizes a result of Sumner [11].

COROLLARY 2.1 If a graph G of even order is (4n+ k)-connected and K1,2n+k+2-free,
then G is n-extendable and adding any edge to G the resulting graph is still n-extendable.
In other words, every graph of even order that has a (4n + k)-connected K1,2n+k+2-free
spanning subgraph is n-extendable.

The condition of connectivity of Theorem 2.10 is the weakest possible. Let G1 = Kn−1,
ui /∈ V (G1), i = 1, 2, 3, ..., n + k and G2 = (n + k + 1)K3, where V (G1) ∩ V (G2) = ∅ and
{u1, u2, ..., un+k} ∩ V (G2) = ∅. Then we let G = (G1 ∪ {u1, u2, ..., un+k}) + G2. Then we
can easily see that G is K1,n+k+2-free and κ(G) = 2n + k + 1. However, since we have
o(G−(V (G1)∪{u1, u2, ..., un+k})) = n+k+1 ≥ |V (G1)∪{u1, u2, ..., un+k}|−n = n+k+1,
G is not n-matchable.

Further, G = (Kn ∪ (n + k)K1) + (n + k + 2)K3 shows that the upper bound on r for
K1,r-free graphs in Theorem 2.2 is sharp.

Next we discuss the matchability of power graphs. The rth power of a graph G, Gr,
is the graph with vertex set V (G) and edge set {uv | dG(u, v) ≤ r}.
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THEOREM 2.3 Let G be a graph of order p and n an integer such that 0 ≤ n ≤ p − 2
and n ≡ p (mod 2).

(a) If G is h-connected and h > bn
2 c, then Gr is n-matchable for r ≥ 2;

(b) If G is h-connected and 1 ≤ h ≤ bn
2 c, then Gr is n-matchable for r ≥ n − 2h + 3.

PROOF: Suppose that Gr is not n-matchable. By Lemma 2.1, there is a subset S ⊆ V (G)
with |S| ≥ n such that o(Gr − S) = |S| − n + 2m for some m ≥ 1. Let S1 = S −
{v1, v2, ..., vn}, where v1, v2, ..., vn are any n vertices in S. Then o(Gr − S) = |S1| + 2m.

(a) For the case of h > bn
2 c, as G is h-connected, each component of Gr −S is adjacent

in G to at least h vertices in S. Suppose that no two odd components of Gr − S in G
have a common neighbor in S. Then there are at least (|S1| + 2m)h vertices in S. But
S has only |S| = |S1| + n < (|S1| + 2m)h vertices, a contradiction. So at least two odd
components, say C1 and C2, have a common neighbor v in S. Then there is a vertex u
in C1 and a vertex w in C2 such that uv ∈ E(G) and wv ∈ E(G). In Gr, u and w are
adjacent. So u and w are in the same component of Gr − S, a contradiction to the fact
that C1 and C2 are different components of Gr − S.

(b) For the case of 1 ≤ h ≤ bn
2 c, let C1, C2, ..., Ct be the components of Gr − S

and let Ni be the set of vertices in S adjacent to vertices of Ci in G. Since G is h-
connected, each Ni contains at least h vertices. Furthermore, Ni’s are pairwise disjoint.
Otherwise, a component Ci contains a vertex u that is distance two from a vertex v in
another component Cj . But then u and v would be in the same component of Gr − S.
Because G is connected, there exists a path P in G from a vertex wi in Ni to a ver-
tex wj in Nj(i 6= j). Choose P̄ to be such a path with the minimum length among
all the path P ’s. Then P̄ is contained in S and none of the internal vertices of P̄ is
in Nl ( 1 ≤ l ≤ t ). Since |S| = |S1| + n and t ≥ |S1| + 2m, the order of P̄ is at most
|S1|+n−h(|S1|+2m)+2 ≤ |S1|+n−h(|S1|+2)+2 = n−2h−|S1|(h−1)+2 ≤ n−2h+2.
There is a vertex zi in Ci and a vertex zj in Cj adjacent to wi and wj , respectively. Then
ziP̄ zj is a path of length at most n − 2h + 3. So zi and zj are adjacent in Gr, which
contradicts to the fact that Ci and Cj are different components of Gr − S again. 2

Similar to Remark 1, we can see that Theorem 2.3 implies that for a h-connected
graph G of even order its r-power graph Gr is k-extendable where either k < h and r ≥ 2
or k ≥ h and r ≥ 2(k−h)+3. This result was proven by Holton, Lou and McAvaney in [4].

Our last result is to deal with the n-matchability of total graph T (G).
Total graph T (G) of a graph G is that graph whose vertex set can be put in one-to-

one correspondence with the set V (G)∪E(G) such that two vertices of T (G) are adjacent
if and only if the corresponding elements of G are adjacent or incident. Subdivision
graph S(G) of a graph G is the graph obtained by replacing all edges of G with paths of
length two. Behzad [1] proved that for any graph G, T (G) = (S(G))2.

THEOREM 2.4 Let T (G) be a total graph of order p and n an integer such that
0 ≤ n ≤ p−2 and n ≡ p (mod 2). If T (G) is (n+1)-connected, then T (G) is n-matchable.
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PROOF: Suppose that T (G) is not n-matchable. By Lemma 2.1 and (n+1)-connectedness,
there exists a minimal vertex cut S of T (G) such that |S| ≥ n + 1 and for some m ≥ 1

o(T (G) − S) = |S| − n + 2m (4)

We claim that the cut set S contains a subdivision vertex w of S(G). Otherwise, let
P = x1x2 . . . xn be a path in G joining two components C1 and C2 of T (G) − S, where
x1 ∈ V (C1) and xn ∈ V (C2). Since T (G) = (S(G))2, then P ′ = x1y1x2y2 . . . xn−1yn−1xn

is a path joining x1 and xn in (S(G))2, where y1, y2, . . . , yn−1 are subdivision vertices of
edges x1x2, x2x3, . . . xn−1xn. It is easy to see that y1y2 . . . yn−1 is a path connecting C1

and C2 in (S(G))2. Thus, if none of y1, y2, . . . , yn−1 is in the cut set S, then there is a
path connecting C1 and C2 in T (G) = (S(G))2, which contradicts to fact that S is a cut
set.

Let w be a subdivision vertex of S(G) in S. Then w is adjacent to at most two com-
ponents of T (G) − S. Set S1 = S − {w}, then o(T (G) − S1) = |S1| − n + 2m1 for some
m1 ≥ m ≥ 1. If |S1| = n, then it contradicts to the (n + 1)-connectedness of T (G). If
|S1| ≥ n + 1 and o(T (G) − S1) = |S1| − n + 2m1, it contradicts to the minimality of S. 2

REMARK 2 The graphs considered in this paper may have arbitrarily large diameter.
We show that adding a new edge to it the resulting graphs are still k-extendable. How-
ever, the resulting graphs may not satisfy the original hypotheses in the theorems for those
graphs to be k-extendable. So we have found new large families of k-extendable graphs.
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