Sufficient Conditions for n-Matchable Graphs

Dingjun Lou ${ }^{1}{ }^{*}$ and Qinglin $\mathbf{Y u}^{23 \dagger}$
${ }^{1}$ Department of Computer Science, Zhongshan University, Guangzhou 510275, P. R. China
${ }^{2}$ Center for Combinatorics
Nankai University, Tianjin, P. R. China
${ }^{3}$ Department of Mathematics \& Statistics
University College of The Cariboo
Kamloops, BC, Canada, V2C 5N3

Abstract

Let n be a non-negative integer. A graph G is said to be n-matchable if the subgraph $G-S$ has a perfect matching for any subset S of $V(G)$ with $|S|=n$. In this paper, we obtain sufficient conditions for different classes of graphs to be n matchable. Since $2 k$-matchable graphs must be k-extendable, we have generalized the results about k-extendable graphs. All results in this paper are sharp.

1 Introduction

Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. (Loops and parallel edges are forbidden in this paper.)

For $S \subseteq V(G)$ the induced subgraph of G by S is denoted by $G[S]$. For convenience, we use $G-S$ for the subgraph induced by $V(G)-S$. Denote the number of odd components and components of a graph G by $o(G)$ and $\omega(G)$, respectively. For any vertex x of G, the degree of x is denoted by $d_{G}(x)$. We define $N(v)=\{u \mid u \in V(G)$ and $u v \in E(G)\}$ and $N(S)=\bigcup_{v \in S} N(v)$. Let H be a subgraph of G, we use the notation $N_{S}(v)=N(v) \cap S$, $N_{H}(v)=N(v) \cap V(H), d_{S}(v)=\left|N_{S}(v)\right|$ and $d_{H}(v)=\left|N_{H}(v)\right|$. Let G and H be two

[^0]graphs. We denote by $k H k$ disjoint copies of H and $G+H$ the join of G and H with each vertex of G joining to each vertex of H.

A matching in G is a set of edges so that no two of them are adjacent and a perfect matching is a matching which covers every vertex of G. A graph G is k-extendable if every matching of size k can be extended to a perfect matching. The concept of k extendable graphs was first introduced by Plummer [9] and since then there has been extensive research done on this topic (e.g., [4], [5] - [12]).

Next, we present the main concept of this paper. Let n be a non-negative integer. A graph G is said to be n-matchable where $0 \leq n \leq|V(G)|-2$ if the subgraph $G-S$ has a perfect matching for any subset S of $V(G)$ with $|S|=n$. The term of n-matchable graphs is first used by Lou in [7] and is also refereed as n-factor-critical graphs by Favaron [2][3] and Yu [12]. This concept is a generalization of notions of factor-critical graphs and bicritical graphs (i.e., cases of $n=1$ and $n=2$) in [8]. A characterization of n-matchable graphs is given in [12]. The properties of n-matchable graphs and its relationships with other graph parameters (e.g., degree sum, toughness, binding number, connectivity, etc.) have been discussed in [3], [5] and [7]. It is interesting to notice the fact that if a graph G is $2 k$-matchable then it must be k-extendable. Furthermore, if a graph G is $2 k$-matchable, then it is still k-extendable by adding any number of edges to it. Thinking of the fact that adding an edge to a k-extendable graph may make it not even 1 -extendable (for instance, consider k-extendable bipartite graphs), in this sense $2 k$-matchability is a much stronger concept than k-extendability.

In this paper we consider n-matchability of various graphs (such as, claw-free graphs, power graphs, planar graphs, etc.) and obtain sufficient conditions of such graphs to be n-matchable. Therefore we generalize several sufficient conditions of k-extendable graphs to that of $2 k$-matchable graphs.

2 Sufficient Conditions for n-Matchable Graphs

We start this section with a few lemmas. The first is a characterization of n-matchable graphs.

LEMMA 2.1 ([12]) Let G be a graph of order p and n an integer such that $0 \leq n \leq p-2$ and $n \equiv p(\bmod 2)$. Then G is n-matchable if and only if for each subset $S \subseteq V(G)$ with $|S| \geq n$, then $o(G-S) \leq|S|-n$.

The next result shows a relationship between $2 n$-matchable graphs and n-extendable graphs.

LEMMA 2.2 ([7]) A graph G of even order is $2 n$-matchable if and only if
(a) G is n-extendable; and
(b) for any edge set $D \subseteq E(\bar{G}), G \cup D$ is n-extendable.

Applying Euler's formula to planar graphs, we can obtain the following classical result.
LEMMA 2.3 If G is a planar triangle-free graph, then

$$
|E(G)| \leq 2|V(G)|-4
$$

With the preparation above, we are ready to prove a sufficient condition for planar graphs to be n-matchable.

THEOREM 2.1 Let G be a 5 -connected planar graph of order p. Then G is $(4-\varepsilon)$ matchable, where $\varepsilon=0$ or 1 and $\varepsilon \equiv p(\bmod 2)$.
PROOF: Suppose that G is not $(4-\varepsilon)$-matchable. By Lemma 2.1, since G is 5 -connected, there exists a subset $S \subseteq V(G)$ with $|S| \geq 5>4-\varepsilon$ such that for some $k \geq 1$

$$
\begin{equation*}
o(G-S)=|S|-(4-\varepsilon)+2 k \geq 2 \tag{1}
\end{equation*}
$$

We choose S to be as small as possible subject to (1). And let $C_{1}, C_{2}, \ldots, C_{t}$ be the odd components of $G-S$, where $t=|S|-(4-\varepsilon)+2 k$.

We claim that, for each x of S, x is adjacent to at least three of $C_{1}, C_{2}, \ldots, C_{t}$. Otherwise, there is a vertex x in S which is adjacent to at most two of $C_{1}, C_{2}, \ldots, C_{t}$. Let $S^{\prime}=S-\{x\}$. Then $o\left(G-S^{\prime}\right)=\left|S^{\prime}\right|-(4-\varepsilon)+2 q$ for some $q \geq k$ and $|S|>\left|S^{\prime}\right| \geq 4-\varepsilon$, which contradicts to the choice of S or the connectedness of G.

Since G is 5 -connected, for each component C of $G-S C$ is adjacent to at least five vertices in S. Now we obtain a bipartite graph H with bipartition (S, Y) by deleting all edges in $G[S]$ and contracting each component of $G-S$ to a vertex and deleting the multiple edges. Then clearly H is planar and triangle free. On the other hand, for each vertex v in $S, d_{H}(v) \geq 3$, and for each vertex u in $Y, d_{H}(u) \geq 5$. As G is 5 -connected, we have $|S| \geq 5$ and $|Y| \geq|S|-(4-\varepsilon)+2 k \geq 3$. So $|E(H)| \geq \frac{1}{2}(3|S|+5|Y|)$. Since $|Y| \geq|S|-(4-\varepsilon)+2$, we can write $|Y|=|S|-(4-\varepsilon)+2+m$ for $m \geq 0$. Then

$$
|V(H)|=|S|+|Y|=2|S|-(4-\varepsilon)+2+m
$$

and

$$
\begin{aligned}
|E(H)| & \geq \frac{1}{2}[3|S|+5(|S|-(4-\varepsilon)+2+m)] \\
& =(4|S|-2(4-\varepsilon)+4+2 m-4)-\frac{1}{2}(4-\varepsilon)+5+\frac{m}{2} \\
& >2(|V(H)|-2)
\end{aligned}
$$

This contradicts to Lemma 2.3.
REMARK 1 Theorem 2.1 implies that a 5 -connected planar graph G of even order is 2extendable, which was proven by Lou [6] and Plummer [10]. Moreover, adding any number of edges to G, the resulting graph (which may not be planar anymore) is still 2-extendable
by Lemma 2.2. In fact, any graph of even order having a spanning 5 -connected planar subgraph is 2 -extendable.

THEOREM 2.2 Let G be a graph of order p and n an integer such that $0 \leq n \leq p-2$ and $n \equiv p(\bmod 2)$. If G is $(2 n+k)$-connected and $K_{1, n+k+2}$-free, then G is n-matchable where $2 n+k \geq 1$.
PROOF: Suppose that G is not n-matchable. By Lemma 2.1, there exists a subset $S \subseteq V(G)$ with $|S| \geq 2 n+k$ (as G is $(2 n+k)$-connected) such that

$$
\begin{equation*}
\omega(G-S) \geq o(G-S) \geq|S|-n+2 \geq 2 \tag{2}
\end{equation*}
$$

Let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G-S$, where $t=\omega(G-S)$. Let $e_{G}(X, Y)$ denote the number of edges with one endvertex in X and the other in Y. Since G is $K_{1, n+k+2}$-free, each vertex u in S is adjacent to at most $n+k+1$ components of $G-S$. Then we have $e_{G}(X, Y) \leq|S|(n+k+1)$. By the $(2 n+k)$-connectedness of G, each C_{i} is adjacent to at least $2 n+k$ vertices in S. Then $e_{G}(S, G-S) \geq t(2 n+k)$. Therefore, $t(2 n+k) \leq|S|(n+k+1)$. Recall $|S| \geq 2 n+k$ and thus we have

$$
\omega(G-S)=t \leq \frac{|S|(n+k+1)}{2 n+k}=|S|-\frac{n-1}{2 n+k}|S| \leq|S|-n+1,
$$

a contradiction to (2).
Combining Theorem 2.2 with Lemma 2.2 we have the following corollary which generalizes a result of Sumner [11].

COROLLARY 2.1 If a graph G of even order is $(4 n+k)$-connected and $K_{1,2 n+k+2}$-free, then G is n-extendable and adding any edge to G the resulting graph is still n-extendable. In other words, every graph of even order that has a $(4 n+k)$-connected $K_{1,2 n+k+2}$-free spanning subgraph is n-extendable.

The condition of connectivity of Theorem 2.10 is the weakest possible. Let $G_{1}=K_{n-1}$, $u_{i} \notin V\left(G_{1}\right), i=1,2,3, \ldots, n+k$ and $G_{2}=(n+k+1) K_{3}$, where $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$ and $\left\{u_{1}, u_{2}, \ldots, u_{n+k}\right\} \cap V\left(G_{2}\right)=\emptyset$. Then we let $G=\left(G_{1} \cup\left\{u_{1}, u_{2}, \ldots, u_{n+k}\right\}\right)+G_{2}$. Then we can easily see that G is $K_{1, n+k+2}$-free and $\kappa(G)=2 n+k+1$. However, since we have $o\left(G-\left(V\left(G_{1}\right) \cup\left\{u_{1}, u_{2}, \ldots, u_{n+k}\right\}\right)\right)=n+k+1 \geq\left|V\left(G_{1}\right) \cup\left\{u_{1}, u_{2}, \ldots, u_{n+k}\right\}\right|-n=n+k+1$, G is not n-matchable.

Further, $G=\left(K_{n} \cup(n+k) K_{1}\right)+(n+k+2) K_{3}$ shows that the upper bound on r for $K_{1, r}$-free graphs in Theorem 2.2 is sharp.

Next we discuss the matchability of power graphs. The r th power of a graph G, G^{r}, is the graph with vertex set $V(G)$ and edge set $\left\{u v \mid d_{G}(u, v) \leq r\right\}$.

THEOREM 2.3 Let G be a graph of order p and n an integer such that $0 \leq n \leq p-2$ and $n \equiv p(\bmod 2)$.
(a) If G is h-connected and $h>\left\lfloor\frac{n}{2}\right\rfloor$, then G^{r} is n-matchable for $r \geq 2$;
(b) If G is h-connected and $1 \leq h \leq\left\lfloor\frac{n}{2}\right\rfloor$, then G^{r} is n-matchable for $r \geq n-2 h+3$. PROOF: Suppose that G^{r} is not n-matchable. By Lemma 2.1, there is a subset $S \subseteq V(G)$ with $|S| \geq n$ such that $o\left(G^{r}-S\right)=|S|-n+2 m$ for some $m \geq 1$. Let $S_{1}=S-$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are any n vertices in S. Then $o\left(G^{r}-S\right)=\left|S_{1}\right|+2 m$.
(a) For the case of $h>\left\lfloor\frac{n}{2}\right\rfloor$, as G is h-connected, each component of $G^{r}-S$ is adjacent in G to at least h vertices in S. Suppose that no two odd components of $G^{r}-S$ in G have a common neighbor in S. Then there are at least $\left(\left|S_{1}\right|+2 m\right) h$ vertices in S. But S has only $|S|=\left|S_{1}\right|+n<\left(\left|S_{1}\right|+2 m\right) h$ vertices, a contradiction. So at least two odd components, say C_{1} and C_{2}, have a common neighbor v in S. Then there is a vertex u in C_{1} and a vertex w in C_{2} such that $u v \in E(G)$ and $w v \in E(G)$. In G^{r}, u and w are adjacent. So u and w are in the same component of $G^{r}-S$, a contradiction to the fact that C_{1} and C_{2} are different components of $G^{r}-S$.
(b) For the case of $1 \leq h \leq\left\lfloor\frac{n}{2}\right\rfloor$, let $C_{1}, C_{2}, \ldots, C_{t}$ be the components of $G^{r}-S$ and let N_{i} be the set of vertices in S adjacent to vertices of C_{i} in G. Since G is h connected, each N_{i} contains at least h vertices. Furthermore, N_{i} 's are pairwise disjoint. Otherwise, a component C_{i} contains a vertex u that is distance two from a vertex v in another component C_{j}. But then u and v would be in the same component of $G^{r}-S$. Because G is connected, there exists a path P in G from a vertex w_{i} in N_{i} to a vertex w_{j} in $N_{j}(i \neq j)$. Choose \bar{P} to be such a path with the minimum length among all the path P 's. Then \bar{P} is contained in S and none of the internal vertices of \bar{P} is in $N_{l}(1 \leq l \leq t)$. Since $|S|=\left|S_{1}\right|+n$ and $t \geq\left|S_{1}\right|+2 m$, the order of \bar{P} is at most $\left|S_{1}\right|+n-h\left(\left|S_{1}\right|+2 m\right)+2 \leq\left|S_{1}\right|+n-h\left(\left|S_{1}\right|+2\right)+2=n-2 h-\left|S_{1}\right|(h-1)+2 \leq n-2 h+2$. There is a vertex z_{i} in C_{i} and a vertex z_{j} in C_{j} adjacent to w_{i} and w_{j}, respectively. Then $z_{i} \bar{P} z_{j}$ is a path of length at most $n-2 h+3$. So z_{i} and z_{j} are adjacent in G^{r}, which contradicts to the fact that C_{i} and C_{j} are different components of $G^{r}-S$ again.

Similar to Remark 1, we can see that Theorem 2.3 implies that for a h-connected graph G of even order its r-power graph G^{r} is k-extendable where either $k<h$ and $r \geq 2$ or $k \geq h$ and $r \geq 2(k-h)+3$. This result was proven by Holton, Lou and McAvaney in [4].

Our last result is to deal with the n-matchability of total graph $T(G)$.
Total graph $T(G)$ of a graph G is that graph whose vertex set can be put in one-toone correspondence with the set $V(G) \cup E(G)$ such that two vertices of $T(G)$ are adjacent if and only if the corresponding elements of G are adjacent or incident. Subdivision graph $S(G)$ of a graph G is the graph obtained by replacing all edges of G with paths of length two. Behzad [1] proved that for any graph $G, T(G)=(S(G))^{2}$.

THEOREM 2.4 Let $T(G)$ be a total graph of order p and n an integer such that $0 \leq n \leq p-2$ and $n \equiv p(\bmod 2)$. If $T(G)$ is $(n+1)$-connected, then $T(G)$ is n-matchable.

PROOF: Suppose that $T(G)$ is not n-matchable. By Lemma 2.1 and $(n+1)$-connectedness, there exists a minimal vertex cut S of $T(G)$ such that $|S| \geq n+1$ and for some $m \geq 1$

$$
\begin{equation*}
o(T(G)-S)=|S|-n+2 m \tag{4}
\end{equation*}
$$

We claim that the cut set S contains a subdivision vertex w of $S(G)$. Otherwise, let $P=x_{1} x_{2} \ldots x_{n}$ be a path in G joining two components C_{1} and C_{2} of $T(G)-S$, where $x_{1} \in V\left(C_{1}\right)$ and $x_{n} \in V\left(C_{2}\right)$. Since $T(G)=(S(G))^{2}$, then $P^{\prime}=x_{1} y_{1} x_{2} y_{2} \ldots x_{n-1} y_{n-1} x_{n}$ is a path joining x_{1} and x_{n} in $(S(G))^{2}$, where $y_{1}, y_{2}, \ldots, y_{n-1}$ are subdivision vertices of edges $x_{1} x_{2}, x_{2} x_{3}, \ldots x_{n-1} x_{n}$. It is easy to see that $y_{1} y_{2} \ldots y_{n-1}$ is a path connecting C_{1} and C_{2} in $(S(G))^{2}$. Thus, if none of $y_{1}, y_{2}, \ldots, y_{n-1}$ is in the cut set S, then there is a path connecting C_{1} and C_{2} in $T(G)=(S(G))^{2}$, which contradicts to fact that S is a cut set.

Let w be a subdivision vertex of $S(G)$ in S. Then w is adjacent to at most two components of $T(G)-S$. Set $S_{1}=S-\{w\}$, then $o\left(T(G)-S_{1}\right)=\left|S_{1}\right|-n+2 m_{1}$ for some $m_{1} \geq m \geq 1$. If $\left|S_{1}\right|=n$, then it contradicts to the $(n+1)$-connectedness of $T(G)$. If $\left|S_{1}\right| \geq n+1$ and $o\left(T(G)-S_{1}\right)=\left|S_{1}\right|-n+2 m_{1}$, it contradicts to the minimality of S.

REMARK 2 The graphs considered in this paper may have arbitrarily large diameter. We show that adding a new edge to it the resulting graphs are still k-extendable. However, the resulting graphs may not satisfy the original hypotheses in the theorems for those graphs to be k-extendable. So we have found new large families of k-extendable graphs.

Acknowledgment

The first author is indebted to University College of The Cariboo for the hospitality during his visit to the institution where this research was carried out.

References

[1] M. Behzad, A criterion for the planarity of a total graphs, Proc. Cambridge Philos. Soc., 63(1967), 679-681.
[2] O. Favaron, Stabilité, domination, irredondance et autres paramétres de graphes, Thése d'Etat, Université de Paris-Sud, 1986.
[3] O. Favaron, On k-factor-critical graphs, Discussiones Mathematicae - Graph Theory, 16(1996), 41-51.
[4] D. A. Holton, D. Lou and K. L. McAvaney, n-extendability of line graphs, power graphs and total graphs, Australasian J. of Combin., 11(1995), 215-222.
[5] G. Liu and Q. Yu, On n-edge-deletable and n-critical graphs, Bulletin of the Institute of Combinatorics and Its Applications, 24(1998), 65-72.
[6] D. Lou, 2-extendability of planar graphs, Acta Sci. Natur. Univ. Sunyatseni, 29(1990), 124-126.
[7] D. Lou, On matchability of graphs, Australasian J. Combin. 21(2000), 201-210
[8] L. Lovász and M. D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
[9] M. D. Plummer, On n-extendable graphs, Discrete Math., 31(1988), 201-210.
[10] M. D. Plummer, Extending matchings in planar graphs IV, Discrete Math., 109(1992), 207-219.
[11] D. P. Sumner, 1-factors and antifactor sets, J. London Math. Soc. , 13(1976), 351-359.
[12] Q. Yu, Characterizations of various matchings in graphs, Australasian J. of Combin., 7(1993), 55-64.

[^0]: *Work supported by National Science Foundation of China
 ${ }^{\dagger}$ Work supported by Natural Sciences and Engineering Research Council of Canada under grant OGP0122059

