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Connectivity of k-extendable graphs with large k
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Abstract

Let G be a simple connected graph on 2n vertices with perfect matching. For a given positive
integer k (06 k6 n − 1), G is k-extendable if any matching of size k in G is contained in
a perfect matching of G. It is proved that if G is a k-extendable graph on 2n vertices with
k¿ n=2, then either G is bipartite or the connectivity of G is at least 2k. As a corollary, we
show that if G is a maximal k-extendable graph on 2n vertices with n + 26 2k + 1, then G
is Kn;n if k + 16 �6 n and G is K2n if 2k + 16 �6 2n − 1. Moreover, if G is a minimal
k-extendable graph on 2n vertices with n + 16 2k + 1 and k + 16 �6 n then the minimum
degree of G is k + 1. We also discuss the relationship between the k-extendable graphs and the
Hamiltonian graphs.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction and terminology

All graphs considered in this paper are ;nite, undirected and simple. For the termi-
nology and notation not de;ned in this paper, the reader is referred to [4].
Let G and H be two graphs. Let kH denote k disjoint copies of H and G + H

denote the union of G and H with each vertex of G joining to every vertex of H .
A graph G is said to be factor-critical if G − v has a perfect matching for each

v ∈ V (G). Let G be a graph with a perfect matching. Then G is said to be k-extendable
for 06 k6 (�−2)=2 if any matching in G of size k is contained in a perfect matching
of G. And G is said to be maximal k-extendable if G is k-extendable and for each
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e ∈ E( EG), where EG is the complement of G, G ∪ {e} is not k-extendable. And G is
said to be minimal k-extendable if G is k-extendable and for each e ∈ E(G), G − e is
not k-extendable.
The concept of k-extendable graphs was introduced by Plummer [7] in 1980. Since

then, extensive researches on this topic have been done (see [1,2,6–10]). In [2],
Ananchuen and Caccetta proved the following result about the minimum degree of
k-extendable graphs.

Lemma 1 (Ananchuen and Caccetta [2]). Suppose 16 k6 (� − 2)=2 and |V (G)| = �.
Then if G is k-extendable, then either k + 16 �6 �=2 or 2k + 16 �6 � − 1.

For each value of � given in Lemma 1, there exist k-extendable graphs with the
minimum degree �. However, the problem that which value in these ranges is attainable
for maximal k-extendable graphs remains open. Plummer [9] proposed the following
problem.

Problem 1. Suppose 16 k6 (� − 2)=2 and k + 16 j6 �=2 or 2k + 16 j6 � − 1.
Then which k-extendable graphs having minimum degree j are maximal k-extendable?

Motivated by this problem, we study the k-extendable graphs with k¿ �=4, that is
�=2 + 16 2k + 1, which means the two intervals for � in Lemma 1 are separated.
We prove that if G is a k-extendable graph with k¿ �=4, then either G is bipartite
or �(G)¿ 2k. As corollaries, we characterize the maximal k-extendable graphs with
�=2 + 26 2k + 1 and we show that the minimum degree of a minimal k-extendable
graph with �=2 + 16 2k + 1 and with k + 16 �6 �=2 is k + 1. Also we prove that
a k-extendable graph with k¿ �=4 is Hamiltonian, which shows the relation between
k-extendable graphs and Hamiltonian graphs.

2. Main result

We start this section with a few basic lemmas on k-extendable graphs.

Lemma 2 (Yu [10]). A graph G is k-extendable if and only if for any matching M
of size r in G(16 r6 k), G − V (M) is (k − r)-extendable.

Lemma 3 (Yu [10]). Let G be a connected k-extendable non-bipartite graph. Then
for each edge e ∈ E( EG), G + e is (k − 1)-extendable.

Lemma 4 (Plummer [7]). If G is k-extendable, then �(G)¿ k + 1.

Lemma 5. Let G be a graph and S ⊆ V (G). If the size of a maximum matching of
G − S is m, then the size of a maximum matching of G is at most m + |S|.

Proof. Obvious.
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We need the following lemma to prove our main result, this lemma itself may serve
as a useful tool in other research on matching theory.

Lemma 6. Let G be a graph with order � = 2r + m. If G has a matching of size r
and deleting any vertex from G, the resulting graph still has a matching of size r,
then G has a matching of size r +1 unless G has exactly m odd components and no
even components and each odd component is factor-critical.

Proof. Suppose that the maximum matchings of G have size r. Then by Berge’s
formula on maximum matching, there exists a set S ⊆ V (G) such that o(G−S)−|S|=m.
If S �= ∅, let v ∈ S, G′ = G − v and S ′ = S \ {v}. Then o(G′ − S ′)− |S ′|= o(G − S)−
|S|+1=m+1. So the maximum matching in G′ has size at most (|V (G′)| − (o(G′ −
S ′) − |S ′|))=2 = (2r + m − 1 − (m + 1))=2 = r − 1, contradicting to the hypothesis that
deleting any vertex from G the resulting graph still has a matching of size r. So S = ∅
and G has exactly m odd components. If G has an even component C, deleting a
vertex v from C, G − v has a maximum matching of size less than r since there is a
vertex in each of the m + 1 odd components which is not covered by the maximum
matching and also v is not covered by the maximum matching. Hence, G has no even
component. But deleting any vertex v from each odd component C of G, C − v must
have a perfect matching, otherwise by counting the number of vertices of G, G − v
has no matching of size r. So each component of G is factor-critical.

Now we give the proof of our main result.

Theorem 7. If G is a k-extendable graph on � vertices with k¿ �=4, then either G is
bipartite or �(G)¿ 2k.

Proof. By contradiction. Suppose that G is a connected k-extendable graph with con-
nectivity at most 2k − 1 but not bipartite. Let S be a minimum cutset of G and let M
be a maximum matching in G[S]. Let T = S \ V (M) and r = |M |. Since |S|6 2k − 1,
|M |6 k − 1. By Lemmas 2 and 4, G − V (M) is (k − r +1)-connected. Then we have

|T |¿ k − r + 1¿ 2 (1)

and we have 2k − 1¿ 2r + |T |¿ k + r + 1, so

r6 k − 2: (2)

Claim 1. For every perfect matching F containing M, F ∩ E(G − S) is a maximum
matching in G − S and |F ∩ E(G − S)|6 k − 1.

Since T is an independent set of G, by (1) and assumption that |V (G)|6 4k,

|F ∩ E(G − S)|= (|V (G)| − 2|M | − 2|T |)=2
= |V (G)|=2 − r − |T |6 2k − (k + 1) = k − 1:
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If F ∩ E(G − S) is not a maximum matching in G − S, then there is a matching
F1 in G − S such that |F1| = |F ∩ E(G − S)| + 16 k. But by Lemma 5, the size of a
maximum matching in G − V (F1) is at most

|V (G − S − V (F1))| + |M |6 |V (G)|=2 − |F1| − 1;

hence G − V (F1) does not have perfect matching, this contradicts the k-extendability
of G. The proof of Claim 1 is complete.

By Claim 1 and the fact that T is an independent set of G, we easily prove the
following claim.

Claim 2. The size of every maximum matching in G − S is |V (G)|=2 − |M | − |T |.

By (1), there are two distinct vertices x and y in T . By Lemma 3, the graph
H = G + xy is (k − 1)-extendable. By (2), M1 = M ∪ {xy} is a matching in H which
has size at most k − 1. Then H − V (M1) has a perfect matching M∗ and M∗ matches
each vertex of T \{x; y} to a vertex in V (G −S). Hence, M∗ ∩E(G −S) is a matching
of size |V (G)|=2 − |M | − |T | + 1 in G − S. This contradicts Claim 2. The proof of
Theorem 7 is complete.

Remark 1. The lower bound on connectivity in Theorem 7 is best possible. Let H1 =
K2k , H2 = Kr and H3 = Ks with 46 r + s6 2k − 2 and both r and s being positive
even integers. Then G =H1 + (H2 ∪ H3) is k-extendable but with �(G) = 2k. Also the
lower bound on k in Theorem 7 is best possible. The hypothesis k¿ �=4 is equivalent
to �6 4k. Let H1 = EKk+1, H2 =Kk+1 and H3 =K2k , where EKk+1 is the complement of
Kk+1. Then G = H1 + (H2 ∪ H3) is a k-extendable graph with � = 4k + 2 that is not
bipartite but has connectivity k + 1.

3. Maximal k-extendable graphs with large k

In this section, we characterize all maximal k-extendable graphs with �=2+26 2k+1.
Then we show some maximal k-extendable graphs with 2k + 16 �=2 + 1 and with
�¿ �=2. Our results partially answer Problem 1.

Lemma 8 (Ananchuen and Caccetta [1]). If G �= K� is a maximal k-extendable graph
on � vertices, then

(a) if �=2¡ 2k, then �6 �=2, while
(b) if �=2¿ 2k, then �6 �=2 + 2�(k − 1)=2.

Lemma 9 (Plummer [8] and Yu [10]). If G = (X; Y ) �= Kn;n is a connected k-
extendable bipartite graph and e = xy ∈ E( EG), where x ∈ X and y ∈ Y , then G ∪ {e}
is also k-extendable.
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Corollary 10. Let G be a maximal k-extendable graph on � vertices with �=2 +
26 2k + 1. Then

(a) if k + 16 �6 �=2, then G is K�=2; �=2 and hence � = �=2;
(b) if 2k + 16 �6 � − 1, then G is K� and hence � = � − 1.

Proof. By Theorem 7, if k +16 �6 �=2, then G is bipartite. Otherwise �(G)¿ �(G)
¿ 2k. When �=2+26 2k+1, �(G) �= 2k by Lemma 1. Hence, �(G)¿ 2k+1¿ �=2+2
and G is non-bipartite. By Lemma 9, we have conclusion (a). By Lemma 8(a), we
have conclusion (b).

Remark 2. Corollary 10 characterizes all maximal k-extendable graphs with � ¡ 4k. It
shows that the minimum degree of a maximal k-extendable graph G with �6 4k −2 is
either �=2 or �−1. But for the case of �¿ 4k, we give a family of maximal k-extendable
graphs to show that the minimum degree of G can be much more diverse.
Let Gi = Kri ; i = 1; 2; : : : ; m, where each ri is an odd number and r1 + r2 + · · · +

rm = 2k − 2 + m. Let Hj = Ksj , j = 1; 2; : : : ; m, where each sj is an odd number and
s1+s2+· · ·+sm=2k−2+m. And let G=(G1∪G2∪· · ·∪Gm)+(H1∪H2∪· · ·∪Hm). Then it
is not too diMcult to verify that G is maximal k-extendable but not (k +1)-extendable.
When we take m = 2, by choosing proper ri and si (i = 1; 2), we have �(G) = t for
all even numbers t such that �=26 t6 �=2 + 2�(k − 1)=2. When we take m = 3, by
choosing proper ri and si (i = 1; 2; 3), we have �(G) = t for all odd numbers t such
that �=26 t6 �=2 + �(2k + 1)=3 − 1.

4. Minimal k-extendable graphs with large k

In this section, we show that the minimum degree of a minimal k-extendable graph
with �6 4k and k+16 �6 �=2 is k+1. We introduce a result of Lou [6] as a lemma.

Lemma 11 (Lou [6]). If G is a minimal k-extendable bipartite graph, then �(G) =
k + 1, and furthermore, there are at least 2k + 2 vertices of degree k + 1 in G.

Corollary 12. Let G be a minimal k-extendable graph on � vertices with �=2+16 2k+
1. If k + 16 �(G)6 �=2, then �(G) = k + 1. Furthermore, there are at least 2k + 2
vertices of degree k + 1 in G.

Proof. By Theorem 7, if k + 16 �(G)6 �=2, then G is bipartite. By Lemma 11, the
result follows.

Since a k-extendable graph with k¿ �=4 is rather dense, we make the following
conjectures.

Conjecture 1. Let G be a minimal k-extendable graph on � vertices with �=2+16 2k+
1. Then �(G) = k + 1, 2k or 2k + 1.
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In particular, for the case of �6 4k − 2, we have the following conjecture.

Conjecture 2. Let G be a minimal k-extendable graph on � vertices with �=2+26 2k+
1. If 2k + 16 �6 � − 1, then �(G) = 2k + 1.

5. Hamiltonicity of k-extendable graphs with large k

In this section, we show that a k-extendable graph is Hamiltonian if k is suMciently
large with respect to its order.

Lemma 13 (Dirac [5]). If �(G)¿ �=2, then G is Hamiltonian.

Lemma 14 (Jackson [3]). Let G = (X; Y ) be a connected bipartite graph with |X | =
|Y | = n. If �(G)¿ (n + 1)=2, then G is Hamiltonian.

Corollary 15. If G is a k-extendable graph with k¿ �=4, then G is Hamiltonian.

Proof. By Theorem 7, if k +16 �(G)6 �=2, G = (X; Y ) is bipartite with |X |= |Y |=
�=26 2k. However, �(G)¿ k+1=(2k+2)=2¿ (|X |+1)=2, by Lemma 14, G is Hamil-
tonian. Otherwise �(G)¿ �(G)¿ 2k¿ �=2, by Lemma 13, G is Hamiltonian.

Remark 3. Although we did not ;nd new Hamiltonian graphs in Corollary 15, we
did show the relation between k-extendable graphs and Hamiltonian graphs that a
k-extendable graph with suMciently large k with respect to the order �(G) is Hamilto-
nian. In fact, we suspect that the lower bound on k in Corollary 15 is not best possible.
And hence, we give the following conjecture.

Conjecture 3. If G is a k-extendable graph with k ¿ (�−2)=6, then G is Hamiltonian.

The lower bound on k in Conjecture 3 is best possible. Let S = {v1; v2; : : : ; v2k} be
an independent set and H = (2k + 1)K2 with V (H) ∩ S = ∅. Then G = S + H is a
k-extendable graph but G is not Hamiltonian as G is not 1-tough. Here �(G)=6k +2,
that is k = (� − 2)=6. The above counterexamples also show that a k-extendable
graph with arbitrarily large k (but � is also suMciently large) is not guaranteed to be
Hamiltonian.
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