
Isolated Toughness and Existence of f -factors ∗

Yinghong Ma1 and Qinglin Yu23

1 School of Management, Shandong Normal University

Jinan, Shandong, China
2Center for Combinatorics, LPMC, Nankai University

Tianjin, China
3Department of Mathematics and Statistics

Thompson Rivers University, Kamloops, BC, Canada

Abstract: Let G be a graph with vertex set V (G) and edge set E(G).
The isolated toughness of G is defined as I(G) = min{|S|/i(G − S) | S ⊆
V (G), i(G−S) ≥ 2} if G is not complete; otherwise, set I(G) = |V (G)|−1.
Let f and g be two nonnegative integer-valued functions defined on V (G)
satisfying a ≤ g(x) ≤ f(x) ≤ b . The purpose in this paper are to
present sufficient conditions in terms of the isolated toughness and the
minimum degree for graphs to have f -factors and (g, f)-factors (g < f). If
g(x) ≡ a < b ≡ f(x), the conditions can be weakened.
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1 Introduction.

All graphs considered in this paper are simple and undirected. Let G = (V (G), E(G))
be a graph, where V (G) and E(G) denote the vertex set and the edge set of
G, respectively. For any S ⊆ V (G), the subgraph of G induced by S is de-
noted by G[S] and we write G − S for G[V (G)\S]. We use i(G − S) to denote
the number of isolated vertices of G − S. For S ⊆ V (G) and T ⊆ V (G), let
E(S, T ) = {uv ∈ E(G) | u ∈ S, v ∈ T} and e(S, T ) = |E(S, T )|. Other notation
and terminology not defined in this paper can be found in [1].

Let g and f be two nonnegative integer-valued functions defined on V (G)
and let H be a spanning subgraph of G. We call H a (g, f)-factor of G if
g(x) ≤ dH(x) ≤ f(x) holds for each x ∈ V (G). Similarly, H is an f-factor of G
if g(x) = f(x) for each x ∈ V (G). If g(x) ≡ a and f(x) ≡ b for each x ∈ V (G),
where a, b are positive integers, then a (g, f)-factor is called an [a, b]-factor.

∗This work is supported by Taishan Scholar Project of Shandong Province, NSFC of China
(grant number 10471078), Natural Sciences and Engineering Research Council of Canada
(grant number OGP0122059).
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For any function f(x) and a vertex subset S, we define f(S) =
∑

x∈S f(x).
The well-known necessary and sufficient condition for a graph G to have an

f -factor was given by Tutte [9].

Tutte’s f-factor Theorem [9]. A graph G has an f-factor if and only if

f(S)− f(T ) + dG−S(T )− o(G− (S ∪ T )) ≥ 0

for any pair of disjoint subsets S and T of V (G), where o(G−(S∪T )) denotes the
number of components C of G− (S ∪T ) such that eG(V (C), T ) +

∑
x∈V (C) f(x)

is odd.

For convenience, we denote δ(S, T ; f) = f(S)−f(T )+dG−S(T )−o(G− (S∪
T )). So a graph G has an f -factor if and only if δ(S, T ; f) ≥ 0 for any pair of dis-
joint S and T . Furthermore, he noticed that δ(S, T ; f) ≡ ∑

x∈V (G) f(x) (mod 2).
Lovász generalized Tutte’s f -factor theorem to (g, f)-factors by minor change

in the notion δ(S, T ; f).

Lovász’s (g, f)-factor Theorem [7]. Let G be a graph and g, f be integer-
valued functions defined on V (G) such that g(x) ≤ f(x) for any x ∈ V (G). Then
G has a (g, f)-factor if and only if

f(S)− g(T ) + dG−S(T )− o(G− (S ∪ T )) ≥ 0

for any pair of disjoint sets S, T ⊆ V (G), where o(G − (S ∪ T )) denotes the
number of components C of G− (S∪T ) such that g(x) = f(x) for any x ∈ V (C)
and e(V (C), T ) +

∑
x∈V (C) f(x) is odd.

For g(x) < f(x), Heinrich et al. [4] simplified Lovász’s (g, f)-factor theorem
and obtained the following necessary and sufficient condition for the existence
of (g, f)-factors.

Lemma 1.1. (Heinrich et al., [4]) Let g and f be nonnegative integer-valued
functions defined on V (G). If either one of the following conditions holds

(i) g(x) < f(x) for every x ∈ V (G);
(ii) G is bipartite;

then G has a (g, f)-factor if and only if for any set S of V (G)

g(T )− dG−S(T ) ≤ f(S),

where T = {x | x ∈ V (G)− S, dG−S(x) ≤ g(x)}.
Through the effort of many researchers, there have been many sufficient con-

ditions for the existence of f -factors or (g, f)-factors. For example, the tough-
ness conditions for the existence of some factors are obtained by Katerinis [5]
and Chvátal [2]. In particular, Chvátal conjectured that G has k-factors if G is
k-tough. This conjecture is confirmed by Enomoto et al. [3] and generalized to
the following version in [5].

2



Katerinis’ Generalization. Let G be a graph and a ≤ b be two positive
integers.

(1) Suppose that t(G) ≥ (b+a)2+2(b−a)
4a when b ≡ a (mod 2) and t(G) ≥

(b+a)2+2(b−a)+1
4a when b 6≡ a (mod 2). If f is an integer-valued function such that

a ≤ f(x) ≤ b and
∑

x∈V (G) f(x) ≡ 0 (mod 2), then G has an f-factor;
(2) If t(G) ≥ (a − 1) + a

b and a|V (G)| is even when a = b, then G has an
[a, b]-factor.

The isolated toughness was first introduced by Ma and Liu [8] and is mo-
tivated from Chvátal’s toughness by replacing c(G − S) with i(G − S) in the
definition, defined as I(G) = min{|S|/i(G− S) | S ⊆ V (G), i(G− S) ≥ 2} if G
is not complete; otherwise, set I(G) = |V (G)| − 1. Clearly, I(G) ≥ t(G) for any
graph and I(G) ≤ |V (G)|−α(G)

α(G) , where α(G) is the size of an independent set.
In this paper, we take advantage of the notion of isolated toughness I(G)

to obtain several sufficient conditions for the existence of f -factors and (g, f)-
factors. The main purpose is to present the following results. Some of them are
more general than Katerinis’ results.

Theorem 1.1. Let G be a K1,n-free graph and f an integer-valued function
on V (G) satisfying a ≤ f(x) ≤ b for any x ∈ V (G) and

∑
x∈V (G) f(x) ≡

0 (mod 2). If δ(G) ≥ (a+b−1)2+4(b+n−1)
4(a−n+1) and I(G) ≥ (a+b−1)2+4(b+n−1)

4(a−n+1) , where
a, b are positive integers satisfying 2 ≤ n− 1 ≤ a ≤ b, then G has an f-factor.

When the condition g(x) < f(x) for each x ∈ V (G) is posted, we have the
following.

Theorem 1.2. Let G be a graph and f , g be two nonnegative integer-valued
functions with a ≤ g(x) < f(x) ≤ b. If δ(G) ≥ (a+b)2+2(b−a)+1

4a and I(G) ≥
(a+b)2+2(b−a)+1

4a , where a ≤ b are two positive integers, then G has a (g, f)-
factor.

For [a, b]-factors, the isolated toughness condition in Theorem 1.2 can be
weakened. Since its proof is very similar to that of Theorem 1.2, we choose to
state the theorem only.

Theorem 1.3. Let a and b be integers with 2 ≤ a < b and let G be a graph. If
δ(G) ≥ a and I(G) ≥ (a− 1) + a

b , then G has an [a, b]-factor.

Let a = 1 < b in Theorem 1.3, then the isolated toughness condition becomes
a necessary and sufficient condition for G having [1, b]-factors in terms of I(G).
This can be derived easily from the criterion of star-factor due to Las Vergnas
[6].

Proposition 1.1. Let G be a graph with δ(G) ≥ 1 and b > 1 be a positive
integer. Then G has a [1, b]-factor if and only if I(G) ≥ 1

b
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2 Proof of Theorem 1.1.

A subset I of V (G) is an independent set if no two vertices of I are adjacent in
G and a subset C of V (G) is a covering set if every edge of G has at least one
end in C. It is easy to verify that a set I ⊆ V (G) is an independent set of G if
and only if V (G)− I is a covering set of G.

To prove the main theorems, we need the following result from Katerinis [5].

Lemma 2.1. (Katerinis, [5]) Let H be a graph and S1, S2, · · · , Sk−1 be a par-
tition of V (H) such that x ∈ Sj if and only if dH(x) ≤ j. Then there exist an
independent set I and a covering set C of V (H) such that

k−1∑

j=1

(k − j)cj ≤
k−1∑

j=1

j(k − j)ij ,

where |I ∩ Sj | = ij and |C ∩ Sj | = cj for every j = 1, 2, · · · , k − 1.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: Suppose, by the contrary, that there exists an
integer-valued function f which satisfies all the conditions in the theorem, but
G has no f -factors. Then, by Tutte’s f -factor Theorem, there exists a pair of
disjoint subsets of V (G), say S and T , such that

0 > δ(S, T ; f). (2.1)

Recall δ(S, T ; f) = f(S)−f(T )+dG−S(T )−o(G−(S∪T )). We choose S and
T such that δ(S, T ; f) is the minimum and then |S ∪ T | is as large as possible.

First, we consider the case of T = ∅. If S = ∅, then o(G) = 0 (since∑
x∈V (G) f(x) is even) and f(T ) − dG−S(T ) = 0. Thus 0 > δ(S, T ; f) = 0, a

contradiction. If S 6= ∅, then o(G − S) ≤ (n − 1)|S| since G is K1,n-free. Then
(n − 1)|S| ≥ o(G − S) > f(S) ≥ a|S| by (2.1) and thus a < n − 1, which
contradicts to the condition given in the theorem.

So, we may assume that T 6= ∅. Next we prove the following two claims.
Claim 1. i(G− (S ∪ T )) = 0.
If i(G−(S∪T )) 6= 0, then there exists an isolated vertex, say v, in G−(S∪T ).

If eG(v, T ) > f(v), then set S′ = S ∪ {v} and we have

δ(S′, T ; f) = f(S′) + dG−S′(T )− f(T )− o(G− (S′ ∪ T ))
≤ f(S) + f(v) + dG−S(T )− eG(v, T )− f(T )− (o(G− (S ∪ T ))− 1)
= δ(S, T ; f) + f(v) + 1− eG(v, T )
≤ δ(S, T ; f),

which contradicts to the maximum of |S ∪ T | with respect to the minimum of
δ(S, T ; f). If eG(v, T ) ≤ f(v), then set T ′ = T ∪ {v} and we have

δ(S, T ′; f) = f(S) + dG−S(T ′)− f(T ′)− o(G− (S ∪ T ′))
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≤ f(S) + dG−S(T ) + eG(v, T )− f(T )− f(v)− (o(G− (S ∪ T ))− 1)
= δ(S, T ; f) + eG(v, T )− f(v) + 1
≤ δ(S, T ; f) + 1.

Since δ(S, T ′; f) ≡ ∑
x∈V (G) f(x) ≡ δ(S, T ; f) (mod 2), we have δ(S, T ′; f) ≤

δ(S, T ; f). Again this is a contradiction to the maximum of |S ∪T | with respect
to the minimum of δ(S, T ; f). Therefore, i(G− (S ∪ T )) = 0.

Claim 2. dG−S(x) ≤ b + n− 1 for any x ∈ T .
For any x ∈ T , let T ′ = T − {x}. By the minimum of δ(S, T ; f), we have

δ(S, T ′; f) ≥ δ(S, T ; f). Since G is a K1,n-free graph, x is adjacent to at most
n− 1 components of G− (S ∪ T ) or o(G− (S ∪ T ′)) ≥ o(G− (S ∪ T ))− (n− 1).
Therefore

δ(S, T ; f) ≤ δ(S, T ′; f) = f(S)− f(T ′) + dG−S(T ′)− o(G− (S ∪ T ′))
≤ f(S)− f(T ) + f(x) + dG−S(T )− dG−S(x)− (o(G− (S ∪ T ))− (n− 1))
= δ(S, T ; f) + f(x)− dG−S(x) + n− 1.

Thus dG−S(x) ≤ b + n− 1 as f(x) ≤ b.

Let T j = {x | x ∈ T, dG−S(x) = j}, tj = |T j | for every j = 0, 1, 2, · · · , b+n−1
and H = G[T 1 ∪ T 2 ∪ · · · ∪ T b+n−1]. Then T 0 is the set of the isolated vertices
and {T j | j = 1, 2, · · · , b + n − 1} is a vertex partition of H. Applying Lemma
2.1 with k = b + n, then there exist an independent set I and a covering C of
V (H) such that

b+n−1∑

j=1

(b + n− 1− j)cj ≤
b+n−1∑

j=1

j(b + n− 1− j)ij , (2.2)

where |I ∩ T j | = ij and |C ∩ T j | = cj for every j = 1, 2, · · · , b + n− 1. Clearly,
Lemma 2.1 holds for any independent set I ′ ⊇ I and the cover set C. So, without
loss of generality, we may assume that I is a maximal independent set.

Set W = G− (S ∪ T ) and U = S ∪ C ∪ (NG(I) ∩ V (W )). Then

|U | ≤ |S|+
b+n−1∑

j=1

jij , (2.3)

i(G− U) ≥
b+n−1∑

j=1

ij + t0. (2.4)

Case 1. i(G− U) ≥ 2.
Since i(G− U) ≥ 2, by the definition of I(G) ,

|U | ≥ i(G− U)I(G). (2.5)
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Combining (2.3), (2.4) and (2.5), we have

|S| ≥
b+n−1∑

j=1

(I(G)− j)ij + I(G)t0. (2.6)

Since a ≤ f(x) ≤ b for each x ∈ V (G), so o(G − (S ∪ T )) > f(S) − f(T ) +
dG−S(T ) ≥ a|S| − b|T | + dG−S(T ). On the other hand, since G is a K1,n-free
graph, we have o(G − (S ∪ T )) ≤ (n − 1)(|S| + |T |). Thus (n − 1)(|S| + |T |) >
a|S| − b|T |+ dG−S(T ) and this implies that

(b + n− 1)|T | − dG−S(T ) > (a− n + 1)|S|. (2.7)

However, (b + n − 1)|T | − dG−S(T ) =
∑b+n−1

j=0 (b + n − 1 − j)tj ≤
∑b+n−1

j=1 (b +

n− 1− j)ij +
∑b+n−1

j=1 (b + n− 1− j)cj + (b + n− 1)t0, since tj ≤ cj + ij in T .
Thus

b+n−1∑

j=1

(b+n−1−j)ij +
b+n−1∑

j=1

(b+n−1−j)cj +(b+n−1)t0 > (a−n+1)|S|. (2.8)

Combining (2.8) and (2.6), we have

b+n−1∑

j=1

(b+n−1−j)cj >

b+n−1∑

j=1

[(a−n+1)(I(G)−j)−(b+n−1−j)]ij+[(a−n+1)I(G)−(b+n−1)]t0.

(2.9)
Notice that (a−n+1)I(G)− (b+n−1) > 0 since I(G) ≥ (a+b−1)2+4(b+n−1)

4(a−n+1) .
Therefore, (2.9) implies that

b+n−1∑

j=1

(b + n− 1− j)cj >

b+n−1∑

j=1

[(a−n +1)(I(G)− j)− (b + n− 1− j)]ij . (2.10)

By (2.10) and (2.2), we have

b+n−1∑

j=1

j(b + n− 1− j)ij >
b+n−1∑

j=1

[(a− n + 1)(I(G)− j)− (b + n− 1− j)]ij .

Hence there exists some j ∈ {1, 2, · · · , b+n−1} such that j(b+n−1−j) > (a−
n+1)(I(G)−j)−(b+n−1−j), that is, j(b+a−j−1) > (a−n+1)I(G)−b−n+1.

Let h(j) = j(b + a − 1 − j). The maximum value of h(j) is (a+b−1)2

4 when

j = a+b−1
2 ≤ b+n−1. But (a−n+1)I(G)−b−n+1 ≥ (a+b−1)2

4 ≥ j(b+a−j−1)

for any j ∈ {1, 2, · · · , b+n−1} since I(G) ≥ (a+b−1)2+4(b+n−1)
4(a−n+1) , a contradiction.

Case 2. i(G− U) = 0.
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By (2.4), we have
∑b+n−1

j=1 ij + t0 ≤ 0 or t0 = ij = 0 for all j = 1, 2, · · · , b +
n − 1. Since I is an maximal independent set, we have T = ∅, a contradiction
to our assumption that T 6= ∅.

Case 3. i(G− U) = 1.
Then, by (2.4), we have

∑b+n−1
j=1 ij + t0 ≤ 1.

If t0 = ij = 0 for all j = 1, 2, · · · , b + n− 1, it is exactly Case 2.
If t0 = 1 and ij = 0 for all j ∈ {1, · · · , b+n−1}, then T is an isolated vertex,

say v. Therefore, by o(G− (S ∪ T )) ≤ (n− 1)(|S|+ |T |) = (n− 1)(|S|+ 1) and
o(G− (S ∪ T )) > f(S)− f(T ) + dG−S(T ) ≥ a|S| − b, it yields

(a− n + 1)|S| < b + n− 1. (2.11)

On the other hand,
δ(G) ≤ dG(v) = e(v, S) ≤ |S|. (2.12)

Thus, by (2.11) and (2.12), we have δ(G)(a − n + 1) < b + n − 1. But this is
impossible because δ(G)(a − n + 1) − (b + n − 1) ≥ (b+a−1)2

4 > 0 since δ(G) ≥
(a+b−1)2+4(b+n−1)

4(a−n+1) .
If there exists some j0 ∈ {1, 2, · · · , b+n−1} such that ij0 = 1 and ij = t0 = 0

for all j ∈ {1, 2, · · · , b + n− 1}\j0, then the maximality of I implies that H is a
complete graph. Let I = {u} for some vertex u ∈ V (H). Then dG(u) ≤ |S|+ j0
and so |S| ≥ δ(G)− j0. By (2.8), we have

b+n−1∑

j=1

(b + n− 1− j)cj > (a− n + 1)(δ(G)− j0)− (b + n− 1− j0). (2.13)

Combining (2.2) and (2.13), we get j0(b + n− 1− j0) > (a−n + 1)(δ(G)− j0)−
(b + n− 1− j0). The maximum value of j0(b + n− 1− j0) + (a−n + 1)j0− j0 =
j0(b + a− j0 − 1) is (a+b−1)2

4 , but (a− n + 1)δ(G)− (b + n− 1) ≥ (a+b−1)2

4 since

δ(G) ≥ (a+b−1)2+4(b+n−1)
4(a−n+1) , a contradiction again.

In all the cases, we derive a contradiction and thus complete the proof.

3 Proof of Theorem 1.2.

In this section, we provide a proof for Theorem 1.2.

Proof of Theorem 1.2:
Suppose that there exist two functions g and f which satisfy the conditions

of the theorem but G has no (g, f)-factors. Then, by Lemma 1.1, there exists a
vertex set S ⊂ V (G) such that

g(T )− dG−S(T ) > f(S), (3.1)

where T = {x | x ∈ V (G)− S, dG−S(x) ≤ g(x)}.
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Choose T such that T is minimal subject to (3.1). Suppose that there exists
x ∈ T such that dG(x) = g(x). Then the sets S and T −{x} satisfy (3.1), which
contradicts to the choice of T . Hence we have dG(x) ≤ g(x)− 1 for all x ∈ T .

We assume that S 6= ∅. Otherwise, since δ(G) ≥ (a+b)2+2(b−a)+1
4a > b ≥ g(x)

for every x ∈ V (G), thus T = ∅ and (3.1) does not hold. Without loss of
generality, we use T = {x | x ∈ V (G) − S, dG−S(x) ≤ b − 1} instead of T =
{x | x ∈ V (G)− S, dG−S(x) ≤ g(x)− 1} since g(x) ≤ b for every x ∈ V (G).

For each 0 ≤ i ≤ b− 1, let T i = {x | x ∈ T, dG−S(x) = i} and ti = |T i| (we
allow T i = ∅ for some i), then T 0 is the set of the isolated vertices. Let H =
G[T 1∪T 2∪· · ·∪T b−1], then dH(x) ≤ i for each x ∈ T i and {T i | i = 1, 2, · · · b−1}
is a vertex partition of H. By Lemma 2.1, there exist an independent set I and
a covering set C of V (H) such that

b−1∑

j=1

(b− j)cj ≤
b−1∑

j=1

j(b− j)ij , (3.2)

where |I ∩ T j | = ij and |C ∩ T j | = cj for every j = 1, 2, · · · , b− 1.
Without loss of generality, we may choose I to be a maximal independent

set of H. Set W = G− (S ∪ T ) and U = S ∪ C ∪ (NG−S(I) ∩ V (W )). Then

|U | ≤ |S|+
b−1∑

j=1

jij , (3.3)

i(G− U) ≥ t0 +
b−1∑

j=1

ij . (3.4)

Case 1. i(G− U) ≥ 2.
By the definition of I(G),

|U | ≥ i(G− U)I(G). (3.5)

Combining (3.3), (3.4) and (3.5), we have

|S| ≥
b−1∑

j=1

(I(G)− j)ij + I(G)t0. (3.6)

On the other hand, since g(x) ≤ b for every x ∈ V (G), g(T ) − dG−S(T ) ≤
b|T | − dG−S(T ) =

∑b−1
j=0(b− j)tj ≤

∑b−1
j=1(b− j)ij +

∑b−1
j=1(b− j)cj + bt0. Since

f(x) ≥ a for every x ∈ V (G), we have f(S) ≥ a|S|. From (3.1) and (3.6), we
obtain

b−1∑

j=1

(b−j)ij+
b−1∑

j=1

(b−j)cj > a|S| ≥ a
b−1∑

j=1

(I(G)−j)ij+(aI(G)−b)t0 ≥ a
b−1∑

j=1

(I(G)−j)ij ,
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this implies that

b−1∑

j=1

(b− j)cj >
b−1∑

j=1

(aI(G)− aj − b + j)ij . (3.7)

By (3.7) and (3.2), we have

b−1∑

j=1

j(b− j)ij >
b−1∑

j=1

(aI(G)− aj − b + j)ij .

Hence, there exists some j ∈ {1, 2, · · · , b−1} such that j(b−j) > aI(G)−aj−b+j.
But j(b − j) + aj − j = −j2 + (a + b − 1)j ≤ (a+b−1)2

4 and aI(G) − b ≥
(b+a)2+2(b−a)+1

4 − b = (b+a−1)2

4 due to I(G) ≥ (b+a)2+2(b−a)+1
4a , a contradiction.

Case 2. i(G− U) = 0.
By (3.4), we have 0 ≥ t0 +

∑b−1
j=1 ij or t0 = ij = 0 for all j = 1, 2, · · · b − 1.

Since I is maximal, it yields T = ∅. Hence g|T | − dG−S(T ) = 0 > g(S) > 0, a
contradiction.

Case 3. i(G− U) = 1 or 1 ≥ t0 +
∑b−1

j=1 ij from (3.4).
If t0 = ij = 0 for all j = 1, 2, · · · , b− 1, it is exactly Case 2.
If t0 = 1, then for all j = 1, 2, · · · , b − 1, ij = 0 and T is an isolated vertex.

Let T = {v}. Since a ≤ g(x) < f(x) ≤ b for every x ∈ V (G), we have g(T ) −
dG−S(T ) = g(v) ≤ b and f(S) ≥ a|S| ≥ adG(v) ≥ aδ(G) ≥ (b+a)2+2(b−a)+1

4 ≥ b,
a contradiction to (3.1).

Suppose there exists some j0 ∈ {1, 2, · · · , b− 1} such that ij0 = 1 and ij = 0
for all j ∈ {1, 2, · · · , b−1}−{j0}. Since I is maximal, then H is a complete graph.
From (3.3), we have |U | ≤ |S|+ j0. On the other hand, |U | ≥ |S|+ dG−S(v) ≥
δ(G) and it yields

|S| ≥ |U | − j0 ≥ δ(G)− j0. (3.8)

On the other hand, g(T ) − dG−S(T ) ≤ b|T | − dG−S(T ) =
∑b−1

j=1(b − j)tj ≤∑b−1
j=1(b−j)ij +

∑b−1
j=1(b−j)cj = (b−j0)+

∑b−1
j=1(b−j)cj . Since f(x) ≥ a for every

x ∈ V (G), by (3.8), we have f(S) ≥ a|S| ≥ a(δ(G) − j0). These inequalities
imply

b−1∑

j=1

(b− j)cj + (b− j0) > a(δ(G)− j0), (3.9)

and by (3.2),
b−1∑

j=1

(b− j)cj ≤ j0(b− j0). (3.10)

Thus, from (3.9) and (3.10), we have

j0(b− j0) > a(δ(G)− j0)− (b− j0) ≥ a(
(a + b)2 + 2(b− a) + 1

4a
− j0)− (b− j0)
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or
(a + b)2 + 2(b− a) + 1

4
− b < −j2

0 + (a + b− 1)j0. (3.11)

However, for any j0 (1 ≤ j0 ≤ b−1), it is not hard to see that (a+b)2+2(b−a)+
1− 4b ≥ (a + b− 1)2 − (2j0 − (a + b− 1))2 or equivalently (a+b)2+2(b−a)+1

4 − b ≥
(a+b−1)2

4 − (j0 − a+b−1
2 )2 = −j2

0 + (a + b− 1)j0, a contradiction to (3.11).
The proof is complete.

Although all the graphs considered are simple, the theorems in this paper
can be extended to graphs with multiple edges as well (but without loops). To
see this, one needs only to notice that a graph with multiple edges has the same
isolated toughness as its underlying graph.
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