A Characterization of Graphs with Equal Domination Number and Vertex Cover Number

Yunjian $\mathrm{Wu}^{1 *}$ and Qinglin $\mathrm{Yu}^{2 \dagger}$
${ }^{1}$ Department of Mathematics
Southeast University, Nanjing 211189, China
${ }^{2}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

Let $\gamma(G)$ and $\beta(G)$ denote the domination number and the vertex cover number of a graph G, respectively. We use $\mathcal{G}_{\gamma=\beta}$ for the set of graphs which have equal domination number and vertex cover number. In this short note, we present a characterization for the class $\mathcal{G}_{\gamma=\beta}$.

Key words: domination number, vertex cover number, matching number

1 Introduction

In this note, we consider simple finite graphs $G=(V, E)$ only and follow [1] and [5] for terminology and definitions.

For $S \subset V(G),\langle S\rangle_{G}$ denotes the subgraph induced by vertex set S, and $G-S$ is the subgraph of G obtained by deleting the vertices in S and all the edges incident with them. A subset S of $V(G)$ is a dominating set if every vertex of G is either in S or is adjacent to a vertex in S. The minimum cardinality of a dominating set is called the domination number and denoted by $\gamma(G)$. A set $D \subseteq V(G)$ is a vertex cover if every edge of G has at least one end in D. The vertex cover number $\beta(G)$ is the minimum cardinality of a vertex cover of G.

The class of graphs with equal domination and vertex cover number is simplify denoted by $\mathcal{G}_{\gamma=\beta}$. A characterization of the family $\mathcal{G}_{\gamma=\beta}$ with minimum degree one

[^0]was given in [5] but was incomplete. The graph G shown in Figure 1 has domination number 4 and vertex cover number 5, respectively. However, the graph G was included in the characterization in [5]. Independently, Hartnell and Rall [2] also gave a characterization, but their characterization was involved and complicated. In this note, we give a new clear characterization of graphs in $\mathcal{G}_{\gamma=\beta}$ with minimum degree one.

Figure 1: $\gamma(G)=4$ and $\beta(G)=5$
The minimum degree of G is denoted by $\delta(G)$. We denote by $I(G)$ the set of isolated vertices of G, and by $\operatorname{End}(G)$ the set of end-vertices (i.e., vertices of degree one) of G. An edge incident with an end-vertex is called a pendant edge. A vertex adjacent to an end-vertex is called a stem, and $\operatorname{Stem}(G)$ denotes the set of stems of G.

A graph with a single vertex is called a trivial graph. The corona $H \circ K_{1}$ of a graph H is the graph obtained from H by adding a pendant edge to each vertex of H. A connected graph G of order at least three is called a generalized corona if $V(G)=\operatorname{End}(G) \cup \operatorname{Stem}(G)$.

For a graph G, the maximum size of a matching is called the matching number of G and denoted by $\nu(G)$. The class of extremal graphs with equal domination and matching number, for abbreviation, denoted by $\mathcal{G}_{\gamma=\nu}$.

The following result is well-known.
Theorem 1. (see [3]) If G is a graph without isolated vertices, then $\gamma(G) \leq \nu(G) \leq$ $\beta(G)$.

There is a characterization of the family $\mathcal{G}_{\gamma=\nu}$ in [6]. Unfortunately, their characterization is incomplete, so it was corrected in [4] as follows.

Theorem 2 (Kano, Wu and Yu [4]). Let G be a connected graph with $\delta(G)=1$. Then $G \in \mathcal{G}_{\gamma=\nu}$ if and only if G is K_{2} or a generalized corona, or every component H of $G-(\operatorname{End}(G) \cup \operatorname{Stem}(G))$ is one of the following:
(i) H is a trivial graph;
(ii) H is a connected bipartite graph with bipartition X and Y, where $1 \leq|X|<|Y|$. Let $U=V(H) \cap N_{G}(\operatorname{Stem}(G))$. Then $\emptyset \neq U \subseteq Y$
and for any two distinct vertices x_{1}, x_{2} of X that are adjacent to a common vertex of Y, there exist two distinct vertices y_{1} and y_{2} in $Y-U$ such that $N_{H}\left(y_{i}\right)=\left\{x_{1}, x_{2}\right\}$, for $i=1,2$;
(iii) H is isomorphic to one of graphs shown in Figure 2, and $\gamma(H-X)=$ $\gamma(H)$ for all $\emptyset \neq X \subseteq U \subset V(H)$, where $U=V(H) \cap N_{G}(\operatorname{Stem}(G))$.

Figure 2: Graphs in (iii) of Theorem 2.

It is clear that $\mathcal{G}_{\gamma=\beta}$ is a subclass of $\mathcal{G}_{\gamma=\nu}$ from Theorem 1. Next we use Theorem 2 to give a complete characterization of graphs G with $\delta(G)=1$ in the family $\mathcal{G}_{\gamma=\beta}$.

2 Main results

We start with two lemmas, then give a clear characterization of graphs in $\mathcal{G}_{\gamma=\beta}$ with minimum degree one.
Lemma 1 (Randerath and Volkmann [5]). Let G be a connected graph with $\delta(G) \geq 2$. Then $\gamma(G)=\beta(G)$ if and only if G is a bipartite graph with bipartition X and Y and the following property is satisfied: for any two distinct vertices x_{1}, x_{2} of X that are adjacent to a common vertex of Y, there exist two distinct vertices y_{1} and y_{2} in Y such that $N_{G}\left(y_{i}\right)=\left\{x_{1}, x_{2}\right\}$ for $i=1,2$. Moreover, $\gamma(G)=\beta(G)=|X|$.
Lemma 2 (Volkmann [7]). Let G be a connected graph and H be a spanning subgraph of G without isolated vertices. If $\gamma(G)=\beta(G)$, then $H \in \mathcal{G}_{\gamma=\beta}$ and $\gamma(H)=\gamma(G)=$ $\beta(G)=\beta(H)$. In particular, each component of H is in $\mathcal{G}_{\gamma=\beta}$.

Now we give a complete characterization of graphs in $\mathcal{G}_{\gamma=\beta}$ with $\delta(G)=1$.
Theorem 3. Let G be a connected graph with $\delta(G)=1$. Then $\gamma(G)=\beta(G)$ if and only if G is K_{2} or a generalized corona, or for each component H of $G-(\operatorname{End}(G) \cup \operatorname{Stem}(G))$, it satisfies one of the following:
(i) H is a trivial graph;
(ii) H is a connected bipartite graph with bipartition X and Y, where $1 \leq$ $|X|<|Y|$. Let $U_{H}=V(H) \cap N_{G}(\operatorname{Stem}(G))$. Then $\emptyset \neq U_{H} \subseteq Y$ and for any two distinct vertices x_{1}, x_{2} of X that are adjacent to a common vertex of Y, there exist two distinct vertices y_{1} and y_{2} in $Y-U_{H}$ such that $N_{H}\left(y_{i}\right)=\left\{x_{1}, x_{2}\right\}$, for $i=1,2$.

Proof. If G is K_{2} or a generalized corona, then $\gamma(G)=\beta(G)$ and the theorem holds. So, in the following, we may assume that G is neither K_{2} nor a generalized corona, and G has order at least three. We first show the sufficiency. Without loss of generality, assume there is a minimum vertex cover set containing all the vertices in $\operatorname{Stem}(G)$. So

$$
\begin{equation*}
\beta(G)=|\operatorname{Stem}(G)|+\sum_{H} \beta(H) \tag{1}
\end{equation*}
$$

where $H_{\widetilde{G}}$ runs over all non-trivial components of $G-(\operatorname{End}(G) \cup \operatorname{Stem}(G))$.
Let \widetilde{G} be a graph consisting of all the non-trivial component H of $G-(E n d(G) \cup$ $\operatorname{Stem}(G))$ and the subgraph $\langle\operatorname{End}(G) \cup \operatorname{Stem}(G) \cup I(G-(\operatorname{End}(G) \cup \operatorname{Stem}(G)))\rangle_{G}$. Then \widetilde{G} is a spanning subgraph of G without isolated vertices. So $\gamma(H)=\beta(H)=|X|$ by Lemma 1 and Lemma 2.

Without loss of generality, for every minimum dominating set L of order $\gamma(G)$ in G, we assume $\operatorname{Stem}(G) \subseteq L$. Let H be a non-trivial component of $G-(\operatorname{End}(G) \cup$ $\operatorname{Stem}(G))$, and U_{H} denote the set of vertices of H dominated by $\operatorname{Stem}(G)$, then all the vertices in $H-U_{H}$ are dominated by $V(H) \cap L$. By the assumption, H is a bipartite graph with bipartition X and Y, where $1 \leq|X|<|Y|$. Since $U_{H} \subseteq Y$, all the vertices in X of H are of degree at least two. Let $U_{H}^{\prime} \subseteq U_{H}$ and $U_{H}^{\prime \prime}=U_{H}-U_{H}^{\prime}$. Suppose $\widetilde{U} \subseteq U_{H}^{\prime \prime}$ is the set of vertices of degree one in graph $H-U_{H}^{\prime}$ and $H^{\prime}=\left\langle V(H)-U_{H}^{\prime} \cup \widetilde{U}\right\rangle_{H}$,

Claim 1. H^{\prime} is a trivial graph or all the vertices in X of graph H^{\prime} are of degree at least two.

Let $x \in X$ be an isolated vertex in graph H^{\prime}, then x is either adjacent to at least one vertex of degree at least two in H or all neighbors of x in H are end-vertices. If it is the former case, then by assumption (ii), x has at least two neighbors in $H-U_{H}$, which contradicts to that x is an isolated vertex. Otherwise, $U_{H}^{\prime} \cup \widetilde{U}=Y$ and H is a star $K_{1, n}(n \geq 2)$ since H is connected. Hence if $x \in X$ is an isolated vertex in graph H^{\prime} then H^{\prime} is a trivial graph. Next suppose $x_{1} \in X$ is a vertex of degree one in graph H^{\prime} and adjacent to a vertex $y \in Y-U_{H}^{\prime} \cup \widetilde{U}$ in H^{\prime}. Since all the vertices of $Y-U_{H}^{\prime} \cup \widetilde{U}$ in H^{\prime} are of degree two, then y is adjacent to another vertex x_{2} in X. By assumption (ii), there exist two distinct vertices y_{1} and y_{2} in $Y-U_{H}$ such that $N_{H}\left(y_{i}\right)=\left\{x_{1}, x_{2}\right\}$, for $i=1,2$. A contradiction to $d_{H^{\prime}}(v)=1$, i.e. $d_{H^{\prime}}(v) \geq 2$.

Claim 2. $\gamma\left(H-U_{H}^{\prime}\right)=\gamma(H)$, for all $U_{H}^{\prime} \subseteq U_{H}$.
If H^{\prime} is a trivial graph, then H is a star $K_{1, n}(n \geq 2)$ by the proof of Claim 1. The claim holds. Otherwise, H^{\prime} is a connected bipartite graph with minimum degree at least two and satisfies the condition of Lemma 1. So $\gamma\left(H^{\prime}\right)=|X|$ and X is a minimum dominating set of graph H^{\prime}. Hence adding some pendant edges adjacent to vertices in X will maintain the domination number, i.e., $\gamma\left(H-U_{H}^{\prime}\right)=|X|=\gamma(H)$.

Let $\gamma^{H}=\min \left\{\gamma\left(H-U_{H}^{\prime}\right) \mid U_{H}^{\prime} \subseteq U_{H}\right\}$, then $\gamma^{H}=\gamma(H)$ by Claim 2. Now we can
compute $\gamma(G)$ as follows:

$$
\begin{align*}
\gamma(G) & =|L|=|\operatorname{Stem}(G)|+\sum_{H} \gamma^{H} \\
& =|\operatorname{Stem}(G)|+\sum_{H} \gamma(H) \\
& =|\operatorname{Stem}(G)|+\sum_{H} \beta(H)=\beta(G) . \tag{1}
\end{align*}
$$

where H runs over all non-trivial components of $G-(\operatorname{End}(G) \cup \operatorname{Stem}(G))$.
Next we first show the necessity. Let D be a minimum vertex cover set of G with $\operatorname{Stem}(G) \subseteq D$. Clearly, D is also a minimum dominating set of G. Let $G^{\prime}=$ $G-E\left(\langle\operatorname{Stem}(G)\rangle_{G}\right)$, where $E\left(\langle\operatorname{Stem}(G)\rangle_{G}\right)$ denotes the edges in the induced subgraph $\langle\operatorname{Stem}(G)\rangle_{G}$. Then we next show that G^{\prime} is a bipartite graph with the partite sets D and $V(G)-D$. Since G^{\prime} is a spanning subgraph of G without isolated vertices, then Lemma 2 yields that $\gamma\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)=|D|$. Clearly, D is also a minimum vertex cover of G^{\prime} and set $V\left(G^{\prime}\right)-D$ is an independent set by the definition of vertex cover. Suppose that there exists an edge $u v$ in the induced subgraph $G^{\prime}[D]$. By the construction of G^{\prime}, there is at least one of $\{u, v\}$, say u, which is not a stem in G. But now $D-\{u\}$ is also a dominating set of G^{\prime}, a contradiction. Hence, G^{\prime} is bipartite with bipartition D and $V(G)-D$. Consequently, each component H of $G-(\operatorname{End}(G) \cup \operatorname{Stem}(G))$ is a trivial graph or a bipartite graph.

Since $G \in \mathcal{G}_{\gamma=\beta}$, so G is also a member of $\mathcal{G}_{\gamma=\nu}$ by Theorem 1. From Theorem 2, we complete the proof.

Acknowledgments The authors are indebted to the anonymous referees for their constructive comments.

References

[1] B. Bollobás, Modern Graph Theory, 2nd Edition, Springer-Verlag New York, Inc. 1998.
[2] B. L. Hartnell and D. F. Rall, A characterization of graphs in which some minimum dominating set covers all the edges, Czechoslovak Math. J., 45(1995), pp. 221-230.
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[4] M. Kano, Y. Wu and Q. Yu, Star-uniform graphs, Graphs Combin., 26(2010), pp. 383-394.
[5] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math., 191(1998), pp. 159-169.
[6] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and matching number, Utilitas Math., 55(1999), pp. 65-72.
[7] L. Volkmann, On graphs with equal domination and covering number, Discrete Appl. Math., 51(1994), pp. 211-217.

[^0]: *Corresponding author: y.wu@seu.edu.cn
 ${ }^{\dagger}$ The work is supported by Natural Sciences and Engineering Research Council of Canada.

