# Tree coloring of distance graphs with a real interval set 

<br>${ }^{\text {a }}$ Center for Combinatorics, LPMC, Nankai University, Tianjin, 300071, China<br>${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada<br>${ }^{\text {c }}$ School of Mathematics, Shandong University, Jinan, 250100, China

Received 23 January 2006; accepted 26 January 2006


#### Abstract

Let $R$ be the set of real numbers and $D$ be a subset of the positive real numbers. The distance $\operatorname{graph} G(R, D)$ is a graph with the vertex set $R$ and two vertices $x$ and $y$ are adjacent if and only if $|x-y| \in D$. In this work, the vertex arboricity (i.e., the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic subgraph) of $G(R, D)$ is determined for $D$ being an interval between 1 and $\delta$.


© 2006 Elsevier Ltd. All rights reserved.

Keywords: Distance graph; Vertex arboricity; Tree coloring

## 1. Introduction

For a graph $G=(V, E)$ and a mapping $f: V(G) \rightarrow\{1,2, \ldots, k\}$, let $V_{i}=\{v \in V(G) \mid f(v)=i\}$. Such a mapping is often referred to as a $k$-coloring of $G$. Denote by $\left\langle V_{i}\right\rangle$ the subgraph induced by $V_{i}$ in $G$. Depending on the graphic property enforced on each $\left\langle V_{i}\right\rangle$, we can define different coloring concepts. For instance, if each $V_{i}$ is an independent set ( $1 \leq i \leq k$ ), then $f$ is the well-known proper $k$-coloring. If each $V_{i}$ induces a forest (i.e., each connected component of $V_{i}$ is a tree), then $f$ is called a $k$-tree coloring. Clearly, every graph has a required $k$-coloring if the integer $k$ is large enough. It is interesting to find the smallest possible $k$ such that a graph $G$ has a required $k$-coloring. The minimum integer $k$ such that $G$ has a proper $k$-coloring is called the chromatic number of $G$, often denoted by $\chi(G)$. The minimum number $k$ for which $G$ has a $k$-tree coloring is called the vertex arboricity and denoted by $v a(G)$. In other words, the vertex arboricity $v a(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned into acyclic subgraphs. Clearly, $\chi(G) \geq v a(G)$ for any graph $G$.

The vertex arboricity $v a(G)$ has been extensively studied. For instance, Kronk and Mitchem [4] proved that $v a(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ for any graph $G$. Catlin and Lai [2] improved the upper bound to $v a(G) \leq\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for a graph $G$ being neither a cycle nor a clique. Škrekovski [5] proved that locally planar graphs have vertex arboricity $\leq 3$ and that triangle-free locally planar graphs have vertex arboricity $\leq 2$. Chartrand et al. [1] proved $v a\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=n-\max \left\{k \mid \sum_{0}^{k} p_{i} \leq n-k\right\}$ for a complete $n$-partite graph $K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, where $p_{0}=0,1 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{n}$.

[^0]Given any set $D$ of positive real numbers, let $G(R, D)$ denote the graph whose vertices are all the points of the real number line $R$, such that any two vertices $x, y$ are adjacent if and only if $|x-y| \in D$. This graph is called a distance graph and the set $D$ is called the distance set. Coloring problems on distance graphs are motivated by the famous Hadwiger-Nelson coloring problem on the unit distance plane, which asks for the minimum number of colors necessary to color the points of the Euclidean plane (i.e., $V(G)=R^{2}$ ) such that the pairs of points with unit distance (i.e., $D=\{1\}$ ) are colored differently. The best known result is $4 \leq \chi\left(G\left(R^{2},\{1\}\right)\right) \leq 7$ and no substantial progress has been made on this problem for many years. Distance graphs with an interval set were introduced and studied by Eggleton et al. in 1985. In [3], it was proved that $\chi(G(R, D))=n+2$, where $D$ is an interval between 1 and $\delta$ for $1 \leq n<\delta \leq n+1$. Recently distance graphs have been used to described various phenomena from different scientific disciplines, such as gene sequences, sequential series, on-line computing and so on.

In this note, we attempt to determine the vertex arboricity of distance graphs $G(R, D)$ with the distance set $D$ being an interval between 1 and $\delta$. We show that $\operatorname{va}(G(R, D))=n+2$ if $1 \leq n<\delta \leq n+1$.

## 2. Vertex arboricity of $G(R, D)$

The basic idea for determining the vertex arboricity of $G(R, D)$ is to find a subgraph of $G(R, D)$ which has a relatively simple structure but whose vertex arboricity equals $v a(G(R, D))$. So, which subgraph of $G(R, D)$ is the "core structure" responsible for its vertex arboricity? The answer is a complete multipartite graph, $T(m, n)$, defined below. Since $G(R, D)$ is an infinite graph, to find a finite subgraph as a framework for this infinite graph with the same vertex arboricity is itself an interesting task.

Let $G, H_{1}, H_{2}, \ldots, H_{m}$ be vertex-disjoint graphs and $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$. The composition of $G$ with $H_{1}, H_{2}, \ldots, H_{m}$, denoted by $G\left[H_{1}, H_{2}, \ldots, H_{m}\right]$, is the graph with the vertex set $\cup_{i=1}^{m} V\left(H_{i}\right)$ and the edge set consisting of $\cup_{i=1}^{m} E\left(H_{i}\right)$ and all edges between every vertex of $H_{i}$ and every vertex of $H_{j}$ if $v_{i} v_{j} \in E(G)$. The complete $n$-partite graph $K_{m}^{n}$ can be expressed as $K_{n}\left[\bar{K}_{m}, \bar{K}_{m}, \ldots, \bar{K}_{m}\right]$, where $K_{n}$ is the complete graph of order $n$ and $\bar{K}_{m}$ is an independent set of $m$ vertices.

Let $T(m, n)=C_{2 m+1}\left[\bar{K}_{n+2}, K_{n+2}^{n}, \ldots, \bar{K}_{n+2}, K_{n+2}^{n}, \bar{K}_{n+2}\right]$, that is, $H_{2 i+1}=\bar{K}_{n+2}(0 \leq i \leq m), H_{2 i}=$ $K_{n+2}^{n}(1 \leq i \leq m)$, and have $G$ an odd cycle $C_{2 m+1}$. It is clear that $T(m, 1)$ is $C_{2 m+1}\left[\bar{K}_{3}, \bar{K}_{3}, \ldots, \bar{K}_{3}\right]$ and $T(1, n)$ is a complete $(n+2)$-partite graph $K_{n+2}^{n+2}$.

We need the following lemmas for our main result.
Lemma 2.1 (Eggleton et al. [3]). Let $D$ be an interval between 1 and $\delta$ and $1 \leq n<\delta \leq n+1$. Then $\chi(G(R, D))=n+2$.

Lemma 2.2 (Chartrand et al. [1]). va $\left(K\left(p_{1}, p_{2}, \ldots, p_{n}\right)\right)=n-\max \left\{k \mid \sum_{0}^{k} p_{i} \leq n-k\right\}$ for the complete n-partite $\operatorname{graph} K\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ where $p_{0}=0,1 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{n}$.

It is clear that for each $n \geq 1, v a\left(K_{n+2}^{n}\right)=n$ by Lemma 2.2.
Now we present the main result of this work.
Theorem 2.3. Let $D$ be an interval between 1 and $\delta$, and $1 \leq n<\delta \leq n+1$. Then $G(R, D)$ contains a subgraph $T(m, n)$ such that $v a(G(R, D))=v a(T(m, n))$. Furthermore, $v a(G(R, D))=n+2$.

Proof. The theorem follows from the following two claims.
Claim 1. $G(R, D)$ contains a subgraph $T(m, n)$.
For $1 \leq n<\delta \leq n+1$, there exists an integer $m$ such that $n+\frac{1}{m}<\delta \leq n+\frac{1}{m-1}$. We construct a subgraph $T(m, n)$ of $G(R, D)$ for $D \in\{[1, \delta],(1, \delta),(1, \delta],[1, \delta)\}$. Let $\varepsilon=\frac{\delta-\left(n+\frac{1}{m}\right)}{(n+2)^{2}}$. Then $0<\varepsilon \leq \frac{1}{(n+2)^{2} m(m-1)}$. Define vertices $u_{i j}, w_{i j k}$ of $G(R, D)$ by

$$
\begin{array}{ll}
u_{0 j}=j \frac{\varepsilon}{n+2}, & \text { for } 0 \leq j \leq n+1 \\
u_{i j}=\frac{i}{m}+\varepsilon+j \frac{\varepsilon}{n+2}, & \text { for } 1 \leq i \leq m, 0 \leq j \leq n+1 \\
w_{i j k}=k(1+\varepsilon)+u_{i j}, & \text { for } 1 \leq i \leq m, 0 \leq j \leq n+1,1 \leq k \leq n
\end{array}
$$

Let

$$
U_{i}=\left\{u_{i 0}, u_{i 1}, \ldots, u_{i(n+1)}\right\} \quad \text { for } i=0,1, \ldots, m
$$

and

$$
W_{i}=\cup_{k=1}^{n}\left\{w_{i 0 k}, w_{i 1 k}, \ldots, w_{i(n+1) k}\right\} \quad \text { for } i=1,2, \ldots, m
$$

It is easy to see that $U_{i}$ and $\left\{w_{i 0 k}, w_{i 1 k}, \ldots, w_{i(n+1) k}\right\}(1 \leq i \leq m, 1 \leq k \leq n)$ are independent sets. Next, we show that the newly defined sets $U_{i}, W_{i}(i=1,2, \ldots, m)$ satisfy the following properties:
(1) $\left\langle W_{i}\right\rangle \supseteq K_{n+2}^{n}$;
(2) $\left\langle W_{i} \cup U_{i}\right\rangle \supseteq K_{n+2}^{n+1}$;
(3) $\left\langle U_{i-1} \cup W_{i}\right\rangle \supseteq K_{n+2}^{n+1}$; and finally (4)

$$
\text { (4) }\left\langle U_{m} \cup U_{0}\right\rangle \supseteq K_{n+2}^{2} \text {. }
$$

Clearly $u_{i 0}<u_{i 1}<\cdots<u_{i(n+1)}$ for $0 \leq i \leq m$ and $w_{i 0 k}<w_{i 1 k}<\cdots<w_{i(n+1) k}$ for $1 \leq i \leq m, 1 \leq k \leq n$. The above four properties are verified below.
(1) We have $w_{i 0(k+1)}-w_{i(n+1) k}=(k+1)(1+\varepsilon)+\frac{i}{m}+\varepsilon-k(1+\varepsilon)-\frac{i}{m}-\varepsilon-(n+1) \frac{\varepsilon}{n+2}=1+\frac{\varepsilon}{n+2}>1$ for $k=1,2, \ldots, n-1, i=1,2, \ldots, m$, and $w_{i(n+1) n}-w_{i 01}=n(1+\varepsilon)+\frac{i}{m}+\varepsilon+(n+1) \frac{\varepsilon}{n+2}-(1+\varepsilon)-\frac{i}{m}-\varepsilon=$ $(n-1)(1+\varepsilon)+\frac{n+1}{n+2} \varepsilon=(n-1)+\left(n-\frac{1}{n+2}\right) \varepsilon<n+\frac{1}{m}+(n+2) \varepsilon<\delta$ for $i=1,2, \ldots, m$. Therefore $\left\langle W_{i}\right\rangle \supseteq K_{n+2}^{n}$ for $i=1,2, \ldots, m$.
(2) In this case, $w_{i 01}-u_{i(n+1)}=(1+\varepsilon)+\frac{i}{m}+\varepsilon-\frac{i}{m}-\varepsilon-(n+1) \frac{\varepsilon}{n+2}=1+\frac{\varepsilon}{n+2}>1$ and $w_{i(n+1) n}-u_{i 0}=$ $n(1+\varepsilon)+\frac{i}{m}+\varepsilon+(n+1) \frac{\varepsilon}{n+2}-\frac{i}{m}-\varepsilon=n(1+\varepsilon)+\frac{n+1}{n+2} \varepsilon=n+\left(n+\frac{n+1}{n+2}\right) \varepsilon<n+\frac{1}{m}+(n+2) \varepsilon<\delta$ for $i=1,2, \ldots, m$. Therefore $\left\langle W_{i} \cup U_{i}\right\rangle \supseteq K_{n+2}^{n+1}$ for $i=1,2, \ldots, m$.
(3) Similarly, we have $w_{i 01}-u_{(i-1)(n+1)}=(1+\varepsilon)+\frac{i}{m}+\varepsilon-\frac{i-1}{m}-\varepsilon-(n+1) \frac{\varepsilon}{n+2}=1+\frac{\varepsilon}{n+2}+\frac{1}{m}>1$ for $i=2, \ldots, m$; $w_{101}-u_{0(n+1)}=(1+\varepsilon)+\frac{1}{m}+\varepsilon-(n+1) \frac{\varepsilon}{n+2}=1+\frac{n+3}{n+2} \varepsilon+\frac{1}{m}>1 ; w_{i(n+1) n}-u_{(i-1) 0}=n(1+\varepsilon)+\frac{i}{m}+\varepsilon+$ $(n+1) \frac{\varepsilon}{n+2}-\frac{i-1}{m}-\varepsilon=n(1+\varepsilon)+\frac{1}{m}+\frac{n+1}{n+2} \varepsilon=n+\frac{1}{m}+\left(n+\frac{n+1}{n+2}\right) \varepsilon<n+\frac{1}{m}+(n+2) \varepsilon<\delta$ for $i=2, \ldots, m$ and $w_{1(n+1) n}-u_{00}=n(1+\varepsilon)+\frac{1}{m}+\varepsilon+(n+1) \frac{\varepsilon}{n+2}-0=n+\frac{1}{m}+\left(n+1+\frac{n+1}{n+2}\right) \varepsilon<n+\frac{1}{m}+(n+2) \varepsilon<\delta$. Thus $\left\langle U_{i-1} \cup W_{i}\right\rangle \supseteq K_{n+2}^{n+1}$ for $i=1,2, \ldots, m$.
(4) Since $u_{m 0}-u_{0(n+1)}=\frac{m}{m}+\varepsilon-(n+1) \frac{\varepsilon}{n+2}=1+\frac{\varepsilon}{n+2}>1$ and $u_{m(n+1)}-u_{00}=\frac{m}{m}+\varepsilon+(n+1) \frac{\varepsilon}{n+2}-0=$ $1+\left(1+\frac{n+1}{n+2}\right) \varepsilon<n+\frac{1}{m}+(n+2) \varepsilon<\delta$, we have $\left\langle U_{m} \cup U_{0}\right\rangle \supseteq K_{n+2}^{2}$.
From (1)-(4), we conclude that $U_{i}(0 \leq i \leq m)$ and $W_{i}(1 \leq i \leq m)$ form the graph $T(m, n)$ in $G(R, D)$.
Claim 2. For any positive integers $m$ and $n, v a(T(m, n))=n+2$.
Let $U_{i}=V\left(H_{2 i+1}\right)(0 \leq i \leq m), W_{i}=V\left(H_{2 i}\right)$ and $\left\langle W_{i} \cup U_{i}\right\rangle=G_{i}(1 \leq i \leq m)$. First, we construct an $(n+2)$ tree coloring of $T(m, n)$ : let $U_{i}$ be colored 0 for $0 \leq i<m$ and $U_{m}$ be colored $n+1$. For $1 \leq i \leq m$, let $n$ parts of $W_{i}$ be colored $1,2, \ldots, n$, respectively. It is not hard to verify that the given assignment is a tree coloring of $T(m, n)$ and so $v a(T(m, n)) \leq n+2$.

We show next that $\operatorname{va}(T(m, n)) \geq n+2$. Otherwise, $T(m, n)$ has a $(n+1)$-tree coloring $f$. Let $\alpha$ be a color assigned the most vertices, say $l_{0}$ vertices, in $U_{0}$. Then $l_{0}>1$; otherwise there are at least $n+2$ colors appearing in coloring $f$, a contradiction.

We claim that the color $\alpha$ would color $l_{1}>1$ vertices in $U_{1}$. Assume, to the contrary, that $\alpha$ colors at most one vertex in $U_{1}$; then there are at most two vertices in $G_{1}$ colored with $\alpha$, so there are at least $(n+1)(n+2)-2$ remaining vertices in $G_{1}$ that induce a complete ( $n+1$ )-partite graph $K(n+1, n+1, n+2, \ldots, n+2)$. By Lemma 2.2, we have

$$
v a(K(n+1, n+1, n+2, \ldots, n+2))=n+1 .
$$

Hence, there are at least $n+1$ colors appearing in $G_{1}$ besides $\alpha$ and so there are at least $n+2$ colors in $f$, a contradiction. Thus $\alpha$ colors $l_{1}>1$ vertices in $U_{1}$. Similarly, we conclude that $\alpha$ colors $l_{i}>1$ vertices in $U_{i}$ for $1 \leq i \leq m$. But these $l_{0}$ vertices in $U_{0}$ and $l_{m}$ vertices in $U_{m}$ induce a subgraph containing a cycle, a contradiction again.

Thus, we have $v a(T(m, n))=n+2$.
Since $\operatorname{va}(T(m, n)) \leq \operatorname{va}(G(R, D)) \leq \chi(G(R, D))=n+2$ by Lemma 2.1, $T(m, n)$ is a tree chromatic subgraph of $G(R, D)$ for open interval $D$ and consequently for half-open and closed intervals.

## Acknowledgments

The authors would like to thank Prof. W. Y. C. Chen for his helpful suggestions on the earlier version of the manuscript. This work was supported by RFDP of Higher Education of China and the Natural Sciences and Engineering Research Council of Canada (Grant number OGP0122059).

## References

[1] G. Chartrand, H.V. Kronk, C.E. Wall, The point arboricity of a graph, Israel J. Math. 6 (1968) 169-175.
[2] P.A. Catlin, H.J. Lai, Vertex arboricity and maximum degree, Discrete Math. 141 (1995) 37-46.
[3] R.B. Eggleton, P. Erdös, D.K. Skilton, Colouring the real line, J. Combin. Theory, Ser. B 39 (1985) 86-100.
[4] H.V. Kronk, J. Mitchem, Critical point-arboritic graphs, J. London Math. Soc. (2) 9 (1975) 459-466.
[5] R. Škrekovski, On the critical point-arboricity graphs, J. Graph Theory 39 (2002) 50-61.


[^0]:    * Corresponding author at: Center for Combinatorics, LPMC, Nankai University, Tianjin, 300071, China.

    E-mail addresses: yu@tru.ca, yu@nankai.edu.cn (Q. Yu).

