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Abstract

A graph G is called T -unique if any other graph having the same Tutte polynomial as G is isomorphic to G. Recently, there has
been much interest in determining T -unique graphs and matroids. For example, de Mier and Noy [A. de Mier, M. Noy, On graphs
determined by their Tutte polynomials, Graphs Combin. 20 (2004) 105–119; A. de Mier, M. Noy, Tutte uniqueness of line graphs,
Discrete Math. 301 (2005) 57–65] showed that wheels, ladders, Möbius ladders, square of cycles, hypercubes, and certain class of
line graphs are all T -unique. In this paper, we prove that the twisted wheels are also T -unique.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a graph with vertex set V and edge set E . We assume that G has no isolated vertices, but loops and
multiple edges are allowed. The rank of a subset S of E is the number of edges in the spanning forest of the subgraph
induced by S in G, i.e. r(S) = |V | − k(G|S), where k(G|S) denotes the number of components of the spanning
subgraph induced by S in G. The Tutte polynomial of G is defined as

T (G; x, y) =
∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S|−r(S).

The Tutte polynomial was introduced in 1954 by Tutte [12] as a generalization of the chromatic polynomial and as a
tool to attack the four-color conjecture.

Two graphs G1 and G2 are called Tutte polynomial equivalent, or T -equivalent for short, if T (G1; x, y) =
T (G2; x, y). For a graph G, if any graph H having the same Tutte polynomial with G implies that H ∼= G, then
G is called T -unique [9]. Clearly, not every graph is T -unique, for instance, all trees of n vertices have the same Tutte
polynomial. Furthermore, Bollobás, Pebody and Riordan [3] constructed non-isomorphic graphs of arbitrarily high
connectivity with the same Tutte polynomial.
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Fig. 1. The twisted wheel.

The coefficients of the Tutte polynomial of a graph contain a lot of information about the graph, such as the graphic
parameters shown in the next two theorems. We will use these results frequently in our later proofs.

Theorem 1.1. (de Mier and Noy [9, Theorem 2.4])
Let G = (V, E) be a 2-connected graph, then the following graphic parameters of G are determined by its Tutte

polynomial:

(i) The number of vertices and the number of edges;
(ii) For every k, the number of edges with multiplicity k. In particular, whether G is a simple graph or not;

(iii) The number of shortest cycles;
(iv) The edge-connectivity λ(G);
(v) If G is simple, the number of cliques of each size. In particular, the clique-number ω(G);

(vi) If G is simple, the number of cycles of lengths three, four and five. For the cycles of length four, it is also possible
to know how many of them have exactly one chord.

Let n(G) = |E(G)| − r(G). The following theorem is a well-known result, here formulated for graphic matroids
(see [9, Theorem 2.2]). A slightly more general result for matroids can be found, for example, in [5, Example 6.2.17].

Theorem 1.2. Suppose that T (G; x, y) =
∑

bi j x i y j . If both of r(G) and n(G) are positive, then the number of
blocks of G is min{i | bi0 6= 0}. Otherwise, G has |E(G)| blocks. In particular, if G is 2-connected and H is
T -equivalent to G, then H is also 2-connected.

A bond of a graph is a minimal edge-cut. In [6], it is proved that for a 2-connected graph G with λ(G) ≥ 3,
the number of the minimum bonds is determined by its flow polynomial. As the flow polynomial of a graph is an
evaluation of its Tutte polynomial (see, for example, [2]), the number of minimum bonds of a graph can also be
determined by its Tutte polynomial. We will use this fact in Section 3.

Based on Theorems 1.1 and 1.2, several classes of graphs have been proved to be T -unique. de Mier and Noy [9]
proved that wheels Wn , square of cycles C2

n , complete multipartite graphs K p1,p2,···,pr , ladders Ln , Möbius ladders
Mn and hypercubes Qn are T -unique. In [7], it is proved that generalized Peterson graph P(m, 2) is T -unique. de
Mier and Noy [10] considered T -uniqueness of line graphs and proved that the line graphs of complete graphs Kn ,
complete bipartite graphs K p,q and regular complete t-partite graphs K (p, t) (t ≥ 2) are T -unique.

Márquez, de Mier, Noy and Revuelta [8] proved that the locally grid graphs are T -unique. Bonin and de Mier [4]
studied T -uniqueness of certain class of matroids. Here, we will continue the research of T -uniqueness of graphs.
We study T -uniqueness of twisted wheels which are obtained by adding an edge to two fans sharing a common edge
(see Fig. 1). The class of twisted wheels is one of two classes of graphs with exactly two non-essential edges in
3-connected graphs [13,11] (an edge in a 3-connected graph G is non-essential if either G \ e or G/e is both simple
and 3-connected). Moreover, the twisted wheels form a subclass of another class of graphs, accordion graphs, defined
by Benashski, Martin, Moore and Traldi [1]. In this paper, we will show that all twisted wheels with at least two
internal spokes in each fan are T -unique. The formal statement and the proof will be given in Section 3.
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Fig. 2. Examples of triangle-induced subgraphs and triangle-graphs.

2. The triangle-graph of a graph

From Theorem 1.1(ii), we see that any graph which is T -equivalent to a simple graph is also simple. Although the
Tutte polynomials are defined on all graphs, in this paper we restrict our attention to T -uniqueness of simple graphs
only. From now on, all graphs considered are simple.

Definition 2.1. For a graph G, the subgraph induced by all edges contained in a triangle of G is called the triangle-
induced subgraph of G, denoted by Ĝ.

Similar to the concept of line graphs, we introduce the following term.

Definition 2.2. For a graph G, define a new graph TR(G) associated with G as follows. Each vertex of TR(G)
corresponds to a triangle in G and two vertices are adjacent in TR(G) if and only if the corresponding triangles
share an edge in G.

Clearly, the graph TR(G) is well-defined and simple. We refer to TR(G) as the triangle-graph of G. In the
following, we use C+4 to denote a cycle of length four with exactly one chord. The graph consisting of q triangles
sharing a common edge is denoted by K+q,2. Clearly, the triangle-graph of K+q,2 is a complete graph Kq . Moreover, the
number of vertices in TR(G) is equal to the number of triangles in G and the number of edges in TR(G) is equal to
the number of C+4 in G.

Definition 2.3. Let TR(G) be the triangle-graph of G.

(i) If TR(G) is a tree of n vertices, then the graph G is called a triangular n-tree graph. Denote the set of such graphs
by Γ n . Furthermore, if TR(G) is a path of order n, then G is called a triangular n-path graph and the set of such
graphs is denoted by ℘n .

(ii) If TR(G) is a cycle of length n, then G is called a triangular n-cycle graph, and we denote the set of such graphs
by C n .

(iii) If TR(G) is a forest of n vertices with r components, then G is called a triangular n-forest with r components
graph, and we denote the set of such graphs by zn

r .

We also use T n to denote a graph in Γ n , Pn a graph in ℘n , Cn a graph in C n and Fn
r a graph in zn

r , respectively.
Some examples are shown in Fig. 2.

Proposition 2.4. (i) If T n
∈ Γ n , then |V (T̂ n)| ≤ n + 2 and |E(T̂ n)| = 2n + 1;

(ii) If Cn
∈ C n , n ≥ 4, then |V (Ĉn)| ≤ n + 1 and |E(Ĉn)| = 2n.
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Proof. (i) Since there are n triangles in T̂ n , and at least 2(n − 1) vertices belong to more than one triangle, we
conclude that |V (T̂ n)| ≤ 3n − 2(n − 1) = n + 2.

Now we show that |E(T̂ n)| = 2n + 1. Recall that the number of vertices in TR(G) is equal to the number of
triangles in G and the number of edges in TR(G) is equal to the number of C+4 ’s in G. By Definition 2.3(i), there
are n triangles and n − 1 C+4 ’s in T n . Since T n is a triangular n-tree graph, it contains no K+3,2 as a subgraph.

Thus there are 3n − (n − 1) = 2n + 1 edges contained in triangles. Hence |E(T̂ n)| = 2n + 1.
(ii) Let e = uv be an edge of Ĉn which is contained in exactly one triangle. Note that such an edge does exist. Then

both u and v are still contained in some triangles of Ĉn
− e. Moreover, Ĉn

− e is a graph in the class Γ n−1.
By (i), Ĉn

− e contains at most n + 1 vertices and thus |V (Ĉn)| = |Ĉn
− e| ≤ n + 1. On the other hand,

|E(Ĉn)| = |E(T̂ n−1)| + 1 = 2(n − 1)+ 1+ 1 = 2n, as required. �

Definition 2.5. Suppose that G is a connected graph in Γ n such that V (G) = V (Ĝ), E(G) = E(Ĝ) and
|V (Ĝ)| = n + 2. Then G is called a maximal triangular n-tree graph, denoted by T n

max. The set of all such graphs is
denoted by Γ n

max.

Similarly, we denote the maximal triangular n-path graph by Pn
max and the set of such graphs by ℘n

max; the maximal
triangular n-cycle graph by Cn

max and the set of such graphs by C n
max. For example, in Fig. 2, neither T 9 nor T̂ 9 is a

maximal triangular 9-tree graph; Ĉ15 is a maximal triangular 15-cycle graph but C15 is not.
In the proof of Proposition 2.4, the vertices of T n

max are counted repeatedly only in the case of two triangles sharing
an edge. Thus, a maximal triangle-induced n-tree graph T n

max has at least two vertices of degree 2. In particular, a
maximal triangle-induced n-path graph Pn

max has exactly two vertices of degree 2.
It is clear that in a tree, the number of paths of length two (or 2-paths) is equal to the number of edges of its line

graph. Let L(G) denote the line graph of G. It is well-known that |E(L(G))| =
∑
v∈V

(
d(v)

2

)
. Next, we will count

the number of 2-paths in a tree.

Lemma 2.6. Let T be a tree with n vertices and maximum degree ∆(T ). Let mi be the number of vertices of degree i

in T . Then the number of 2-paths is n − 2+
∑∆(T )

i=3 mi

(
i−1

2

)
, and hence T has n − 2 2-paths if and only if T is an

n-path.

Proof. Since |E(T )| = n − 1 =
∑∆(T )

i=1 i · mi and |V (T )| = n =
∑∆(T )

i=1 mi , the number of 2-paths is

∆(T )∑
i=1

mi

(
i

2

)
=

∆(T )∑
i=1

mi

(
i − 1

2

)
+

∆(T )∑
i=1

i · mi −

∆(T )∑
i=1

mi =

∆(T )∑
i=3

mi

(
i − 1

2

)
+ n − 2.

The result then follows immediately. �

3. Main result

In this section, we will state and prove our main result. A twisted wheels Wk1,k2 is a graph obtained from K4 with
vertex set {v1, v2, v3, v4} by subdividing the edges v1v2 and v3v4 with k1−1 and k2−1 vertices, and then joining each
of the new vertices on v1v2 and v3v4 to v3 and v1, respectively (see Fig. 3 where v1, v2, v3, v4 have been relabeled as
v1,k1 , v1,0, v2,k2 , and v2,0, respectively). Clearly, Wk1,k2 has k1 + k2 triangles. The following is the main result of this
paper.

Theorem 3.1. If G is T -equivalent to the twisted wheel Wk1,k2 where k1 ≥ k2 ≥ 3, then G is isomorphic to Wk1,k2 .
That is, Wk1,k2 is T -unique.

The edges v1,0v2,k2 and v2,0v1,k1 are called brim spoke-edges, the edges v1,0v1,1 and v2,0v2,1 are called brim non-
spoke-edges and the edge e0 = v1,0v2,0 is called the strap edge.

We assume that k1+k2+2 = n and k1 ≥ k2 ≥ 3. Then in Wk1,k2 , there are n vertices, 2n−2 edges, n−2 triangles,
n − 2 C4’s and n − 3 C+4 ’s. Moreover, Wk1,k2 contains no K+3,2 as a subgraph and is a graph in ℘n−2. In Wk1,k2 , each
vertex and each edge except the strap edge is contained in a triangle.
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Fig. 3. The twisted wheel Wk1,k2 .

Fig. 4. A k-fan Fk .

Definition 3.2. A k-fan Fk is a maximal triangular k-path graph such that these k triangles share a common vertex
v (see Fig. 4). The vertex v is called the central vertex of the k-fan. The edges incident with the center are called
spoke-edges and the other edges are called non-spoke-edges. The edges vv0 and vvk are called brim spoke-edges of a
k-fan, and the edges v0v1 and vk−1vk are called brim non-spoke-edges of a k-fan.

de Mier and Noy [9] introduced a new polynomial, rank-size generating polynomial, as follows

F(G; x, y) =
∑
S⊆E

xr(S)y|S|.

It is not hard to see that the coefficient of each monomial xr(S)y|S| in F(G; x, y) can be derived from T (G; x, y),
and vice versa. That is, these two polynomials contain exactly the same information about G. However, it is relatively
easier to extract information from F(G; x, y) than from T (G; x, y). So the rank-size generating polynomial becomes
a useful tool to mine invariant properties for T (G; x, y) and thus to prove T -uniqueness property of many families of
graphs. Following the same notion in [9], we use [x i y j

]F(G; x, y) to denote the coefficient of the monomial x i y j in
the polynomial F(G; x, y).

Proposition 3.3. For a twisted wheel Wk1,k2 and A ⊆ E(Wk1,k2), the following holds

(i) [xk y2k+i
]F(Wk1,k2; x, y) = 0 for k ≤ n − 2 and i ≥ 0;

(ii) If the strap edge e0 6∈ A, then the subgraphs induced by A contributing to the coefficient of xk y2k−1 are those
subgraphs isomorphic to graphs in ℘k−1

max ;
(iii) If the strap edge e0 ∈ A, then the subgraphs induced by A contributing to the coefficient of xk y2k−1 are the three

types of graphs shown in Fig. 5.

Proof. Consider a subset A ⊆ E(Wk1,k2), A = A0 ∪ A′0 ∪ A′′0 , where A0 = {e0} or ∅, A′0 is the set of edges in
E(Wk1,k2) − A0 contained in a cycle of G[A − A0], and A′′0 is the set of edges in E(Wk1,k2) − A0 contained in no
cycles of G[A − A0].

For all vertices in Wk1,k2 , we give an ordering that is quite similar to the lexicographical ordering for their sub-
indices: (1, 0) < (1, 1) < (1, 2) < · · · < (1, k1 − 1) < (2, k2) < (2, k2 − 1) < · · · < (2, 0) < (1, k1). Let C1,
C2, . . . ,Cm be the chordless cycles of G[A′0] with the order of these cycles given by the minimum suffix of vertices
of each cycle. Let c1, c2, . . . , cm denote the sizes of these cycles respectively. Since G[A′0] is a subgraph of Wk1,k2 ,
every two chordless cycles share at most one edge.
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(a) k = k1 + 2. (b) k = k2 + 2. (c) k1 + 3 ≤ k ≤ n − 2. (d) k2 + 3 ≤ k ≤ n − 2. (e) k = n − 1.

(f) k = n − 1. (g) k = n − 1. (h) k = n − 1. (i) k = n − 1. (j) k = n − 1.

(k) k1 + 3 ≤ k ≤ n − 2. (l) k2 + 3 ≤ k ≤ n − 2. (m) k = n − 1. (n) k = n − 1.

Fig. 5. Three types of subgraphs contributing to the coefficient of xk y2k−1.

Let f be the number of edges in A′′0 . Define

θi =

1, if i = 1;
2, if i ≥ 2;moreover,Ci and Ci−1 share an edge;
1, if i ≥ 2;moreover,Ci and Ci−1 share no edges.

ψ =

{
0, if e0 6∈ A;
1, otherwise.

ψ ′ =

{
0, if e0 6∈ A, or e0 is contained in a cycle of G[A];
1, otherwise.

Then we obtain the following two equations:

|A| =
m∑

i=1

(ci − θi + 1)+ f + ψ =
m∑

i=1

ci −

m∑
i=1

θi + m + f + ψ. (1)

r(A) =
m∑

i=1

(ci − θi )+ f + ψ ′ =
m∑

i=1

ci −

m∑
i=1

θi + f + ψ ′. (2)

Consider the edge subset contributing to the coefficient of xk y2k . Since |A| = 2r(A), from Eqs. (1) and (2), we
deduce that

m∑
i=1

ci −

m∑
i=1

θi + f + 2ψ ′ = m + ψ. (3)

If ψ = 0, then ψ ′ = 0, and
∑m

i=1 ci −
∑m

i=1 θi + f = m. Since ci ≥ 3, θi ≤ 2 (i ≥ 2), θ1 = 1, and f ≥ 0, we
deduce that

∑m
i=1 ci −

∑m
i=1 θi + f ≥ m + 1, which is impossible.

If ψ = 1, then clearly ψ ′ = 0 (otherwise, from Eq. (3), we have
∑m

i=1 ci −
∑m

i=1 θi + f + 2 = m + 1, which is a
contradiction to

∑m
i=1 ci −

∑m
i=1 θi + f ≥ m + 1). In addition, equality holds in

∑m
i=1 ci −

∑m
i=1 θi + f ≥ m + 1

and therefore ci = 3 (1 ≤ i ≤ m), θi = 2 (2 ≤ i ≤ m), and f = 0, i.e. A = E(Wk1,k2). That is, in F(Wk1,k2; x, y)
the only edge subset contributing to the coefficient of xk y2k is E(Wk1,k2), and the only monomial is xn−1 y2n−2 with
coefficient one. Moreover, [xk y2k+i

]F(Wk1,k2; x, y) = 0 for k ≤ n−2 and i > 0, as
∑m

i=1 ci −
∑m

i=1 θi + f ≥ m+1
implies |A| ≤ 2r(A). Thus (i) holds.

Next consider the edge subset contributing to the coefficient of xk y2k−1 where 1 ≤ k ≤ n − 1.
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If ψ = 0, i.e., e0 6∈ A, then ψ ′ = 0. As |A| = 2r(A)− 1, by Eqs. (1) and (2), we deduce the following equation:

m∑
i=1

ci −

m∑
i=1

θi + f − 1 = m. (4)

As
∑m

i=1 ci −
∑m

i=1 θi + f ≥ m+1, we deduce that ci = 3 (1 ≤ i ≤ m), θi = 2 (2 ≤ i ≤ m), f = 0, and m+1 = k.
If e0 6∈ A, then G[A] is a subgraph of Wk1,k2 which is isomorphic to a graph in ℘k−1

max . Thus (ii) follows.
If ψ = 1, i.e., e0 ∈ A, then

m∑
i=1

ci −

m∑
i=1

θi + f − 1+ 2ψ ′ = m + 1. (5)

As
∑m

i=1 ci −
∑m

i=1 θi + f ≥ m + 1, we conclude that ψ ′ = 0, i.e., e0 ∈ A, and e0 is contained in a cycle of G[A].
From Eq. (5), one of the following three cases must hold.

Case 1. ci = 3 (1 ≤ i ≤ m), θi = 2 (2 ≤ i ≤ m) and f = 1.
In this case, in order to maintain the rank after adding e0, either both edges v1,0v2,k2 and v2,0v1,k1 are in A, or one

of the brim non-spoke-edges is in A. Thus G[A] is a subgraph of Wk1,k2 isomorphic to one of the graphs shown in
Fig. 5(a.1)–(a.8).

Case 2. There exists t (1 ≤ t ≤ m) such that ct = 4; moreover, f = 0, ci = 3, and θi = 2 for all i 6= t (2 ≤ i ≤ m).
In this case, k = n − 1 and G[A] is the subgraph obtained by deleting a spoke-edge (except the two brim spoke-

edges) of Wk1,k2 , as shown in Fig. 5(b.1) and (b.2).
Case 3. For some t (2 ≤ t ≤ m) we have that θt = 1; moreover, for all i 6= t , we have that θi = 2,

ci = 3 (1 ≤ i ≤ m), and f = 0.
In this case, G[A] is a subgraph of Wk1,k2 isomorphic to one of the graphs shown in Fig. 5(c.1)–(c.4). This

completes the proof of the proposition. �

Remark. In Wk1,k2 (3 ≤ k2 ≤ k1), if k ≤ k2 + 1, then the subgraphs induced by A contributing to the coefficient
of xk y2k−1 are those subgraphs of Wk1,k2 isomorphic to graphs in ℘k−1

max and the total number of such subgraphs is
n − k. If k ≥ k2 + 2, then the subgraphs induced by A contributing to the coefficient of xk y2k−1 are those subgraphs
isomorphic to graphs in ℘k−1

max and the subgraphs in Fig. 5, and there are at least n − k + 1 such graphs in total.

Assume that a graph G is T -equivalent to Wk1,k2 . Our proof to show that G is isomorphic to Wk1,k2 includes the
following steps: (1) there are no cycles of length p (4 ≤ p ≤ n− 2) in TR(G) (Lemma 3.5); (2) there is no triangle in
TR(G) (Lemma 3.6); (3) TR(G) is a special tree, i.e., a path; (4) TR(G) is a path of length n − 2. Once these claims
are confirmed, the main result follows easily.

Lemma 3.4. If a graph G is T -equivalent to Wk1,k2 , then G contains no C p
∈ C p as a subgraph for all p,

4 ≤ p ≤ n − 2.

Proof. Suppose that G contains C p as a subgraph for some p, 4 ≤ p ≤ n − 2. Then by Proposition 2.4(ii),
[x p−i y2p

]F(G; x, y) ≥ 1 for some i ≥ 0. As G is T -equivalent to Wk1,k2 , by Proposition 3.3(i), we conclude
that for all i ≥ 0 and 4 ≤ p ≤ n − 2,

[x p−i y2(p−i)+2i
]F(G; x, y) = [x p−i y2(p−i)+2i

]F(Wk1,k2; x, y) = 0.

This is a contradiction. �

Lemma 3.5. If a graph G is T -equivalent to Wk1,k2 and G contains no K+q,2 as a subgraph (q ≥ 4), then TR(G) does
not contain any cycles, i.e., TR(G) is acyclic.

Proof. We proceed by contradiction. Let C p = v1v2v3 · · · vpv1 be a shortest cycle of TR(G) such that 4 ≤ p ≤ n−2.
By Lemma 3.4, G contains no subgraph isomorphic to any graph in C p. We conclude that C p has at least one chord,
say, v1vs . Let S1 = v1v2 · · · vsv1 and S2 = v1vp · · · vsv1. Clearly, both S1 and S2 have at least three edges. Since C p
is a shortest cycle in TR(G) such that 4 ≤ p ≤ n − 2, we conclude that |S1| = |S2| = 3. Thus TR(G) contains C+4
as a subgraph. Now it is straightforward to show that G contains either K+4,2 or K4 as a subgraph. By our assumption
that G contains no K+4,2 as a subgraph, we conclude that G contains K4 as a subgraph. However, by Theorem 1.1(v),
G contains no K4 in Wk1,k2 . The last contradiction completes the proof of the lemma. �
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Fig. 6. G0, G1 and G2.

Lemma 3.6. If a graph G is T -equivalent to the twisted wheel Wk1,k2 where k1 ≥ k2 ≥ 3, then no edge in G is
contained in three or more triangles.

Proof. Theorems 1.1 and 1.2 as well as the remark after Theorem 1.2 yield the following facts:

(1) G is simple and 2-connected;
(2) |V (G)| = n, |E(G)| = 2n − 2;
(3) The numbers of K3’s and K4’s are n − 2 and 0, respectively;
(4) The numbers of C4’s and C+4 ’s are n − 2 and n − 3, respectively;
(5) G is 3-edge-connected and the number of 3-element bonds is n − 2.

Let τi be the number of edges of G contained in exactly i triangles, i ≥ 0. In the following, we count the number
of occurrences where edges are contained in triangles of G:

∑n−2
i=3 iτi is the number of occurrences where edges

are contained in at least three triangles; 2
(

n − 3−
∑n−2

i=3 τi

(
i
2

))
is the number of occurrences where edges are

contained in exactly two triangles and
[
2n − 2−

∑n−2
i=3 τi −

(
n − 3−

∑n−2
i=3 τi

(
i
2

))]
is the number of occurrences

where edges are contained in at most one triangle. Then

3(n − 2) ≤
n−2∑
i=3

iτi + 2

(
n − 3−

n−2∑
i=3

τi

(
i

2

))
+

[
2n − 2−

n−2∑
i=3

τi −

(
n − 3−

n−2∑
i=3

τi

(
i

2

))]
. (6)

So we have
∑n−2

i=3

[(
i
2

)
− (i − 1)

]
τi ≤ 1. Therefore τ3 ≤ 1, and τi = 0 for i ≥ 4. Thus, G contains no K+q,2 (q ≥ 4)

as a subgraph, and the number of K+3,2’s in G is τ3 ≤ 1.
Next we count the number of subgraphs of G contributing to the coefficient of x4 y7. There are four possible

subgraphs: (a) K+3,2; (b) a 3-fan; (c) a complete subgraph K4 plus an extra edge; (d) K3,2 with an extra edge joining
two vertices in the partite set of order three. By Lemma 3.4, G contains no C p for all p in {4, . . . , n − 2}. Moreover,
G contains no K4, and all but one 4-element cycle contain a chord. Hence the subgraphs (c) and (d) do not occur. We
conclude that the possible subgraphs contributing to the coefficient of x4 y7 can only be K+3,2’s and 3-fans. Let c be

the number of subgraphs of G isomorphic to 3-fan. Then τ3 + c = [x4 y7
]F(G; x, y) = n − 4. Next we show that

τ3 = 0.
Suppose not, that is, τ3 = 1. Then c = n − 5 and G contains exactly one K+3,2 as a subgraph denoted by G0 (see

Fig. 6(a)). By Lemma 3.5, TR(G) contains exactly one cycle and its length is three. From Eq. (6), every edge of G is
contained in a triangle and thus every vertex of G is in a triangle too. In G0, let e0 = uu′, ei = uui and e′i = u′ui
(i = 1, 2, 3), and denote the triangles uui u′ by ti . Let r be the number of triangles of G \ e0 containing edges ei
or e′i for i = 1, 2, 3. Clearly 0 ≤ r ≤ 6. Note that a C+4 in G corresponds to an edge of TR(G), and a 3-fan of G
corresponds to a 2-path of TR(G).

Suppose that r = 6. Let H1 = G \ e0. Then there are n − 5 triangles, n − 12C+4 ’s and at most n − 20 3-fans in H1
and TR(H1) is acyclic. Thus TR(H1) is a forest with n − 5 vertices and 7 components, but by Lemma 2.6, there are at
least n − 19 2-paths in TR(H1), a contradiction. We conclude that 0 ≤ r ≤ 5.

Case 1. There exists a triangle ti (1 ≤ i ≤ 3), say t3, in which the edges ei and e′i are not contained in any other
triangle.

Let H2 = G \ e3. Then there are n − 3 triangles, n − 5 C+4 ’s and n − 5 − r 3-fans in H2 and TR(H2) is acyclic,
i.e., TR(H2) is a forest with n−3 vertices and 2 components. Thus H2 is a graph of zn−3

2 . Let H2 = T n1 ∪T n2 , where
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T n1 ∈ Γ n1 , T n2 ∈ Γ n2 and n1 + n2 = n − 3. By Proposition 2.4(i), |E(Ĥ2)| = (2n1 + 1) + (2n2 + 1) = 2n − 4.
Since e3 and e′3 are contained in t3 only, we deduce that e3, e′3 6∈ E(Ĥ2). Thus E(G) = E(Ĥ2)∪ {e3, e′3} and V (G) =

V (Ĥ2) ∪ {u3}. As G is 3-edge-connected, δ(G) ≥ 3. Thus in H2, there is at least one edge e′′3 (e′′3 6∈ {e3, e′3}) incident
with u3. Since each edge of G is contained in a triangle, e′′3 ∈ E(Ĥ2) and thus u3 ∈ V (Ĥ2). Therefore V (G) = V (Ĥ2).
As G is 2-connected and δ(G) ≥ 3, we conclude that |V (G)| = |V (Ĥ2)| ≤ (n1 + 2) + (n2 + 2) − 2 = n − 1, a
contradiction.

Case 2. For every triangle ti (i = 1, 2, 3), at least one of the edges ei and e′i is contained in another triangle.
In this case, r ≥ 3. Since r ≤ 5, there exists an edge, say e′3, contained in no other triangles. Let H3 = G \ e′3.

Then there are n− 3 triangles and n− 6 C+4 ’s in H3. Moreover, the number of 3-fans decreased by at least r + 1 after
deleting the edge e′3 from G. Therefore there are at most n − 6− r 3-fans. Clearly TR(H3) is acyclic. Thus TR(H3) is
a forest with n − 3 vertices, three components and at most n − 6− r 2-paths. By Lemma 2.6, there are at least n − 9
2-paths in TR(H3). Thus, n − 6 − r ≥ n − 9, or r ≤ 3. Hence, in this case, r = 3 and G contains G1 or G2 shown
in Fig. 6(b) and (c) as a subgraph and TR(H3) has exactly n − 9 2-paths. In addition, the number of 3-fans decreased
exactly by four after deleting e′3 from G. Thus, both uv3 and u3v3 are contained only in the triangle uu3v3. Therefore,
H3 is a graph of zn−3

3 and it can be written as H3 = Pn1 ∪ Pn2 ∪ Pn3 , Pni ∈ ℘ni (i = 1, 2, 3) and one of Pni ’s
contains exactly one triangle, say Pn2 . As each edge and each vertex of G is contained in a triangle, it is easy to see
that |E(H3)| = |E(Ĥ3)| and |V (H3)| = |V (Ĥ3)|. Since |E(Ĥ3)| = 2n − 3, we have that E(G) = E(Ĥ3) ∪ {e′3} and
V (G) = V (Ĥ3) = V (Pn1) ∪ V (Pn2) ∪ V (Pn3).

From the structures of G1 and G2, we may assume that u ∈ V (Pn1) ∪ V (Pn2). Since G is 2-connected and
δ(G) ≥ 3, we deduce that |V (G)| = |V (Ĥ3)| ≤ |V (Pn1)| + |V (Pn2)| − 1+ |V (Pn3)| − 3 ≤ n − 1, a contradiction
again. This completes the proof of Case 2 and thus we show that τi = 0 for i ≥ 3, i.e., no edge is contained in three
or more triangles. �

Combining Lemmas 3.4–3.6, we obtain the following.

Corollary 3.7. If a graph G is T -equivalent to Wk1,k2 , then G contains no C p
∈ C p as a subgraph for 3 ≤ p ≤ n−2.

Furthermore, TR(G) is acyclic.

Lemma 3.8. Suppose that G is a graph satisfying the following conditions

(i) G is 3-edge-connected,
(ii) Ĝ ∈ ℘n−2

max where n ≥ 8, and

(iii) E(G) = E(Ĝ) ∪ {e}, where e is an edge joining the two vertices of degree 2 in Ĝ.

Then every 3-element bond of G is trivial.

Proof. Suppose not. Then there exists a non-trivial 3-element bond B = { f1, f2, f3}which induces a partition (A, A′)
of V (G). Let fi = viv

′

i (1 ≤ i ≤ 3), where v1, v2, v3 ∈ A, and v′1, v
′

2, v
′

3 ∈ A′. As B is non-trivial, both A and A′

have at least two vertices.
Case 1. Each of f1, f2, f3 is contained in a triangle, say fi ∈ ti = viv

′

i ui . Then u1 ∈ {v2, v
′

2, v3, v
′

3}; otherwise,
either v1u1 or v′1u1 would connect A to A′, a contradiction as B is a bond with exactly three edges. Without loss of
generality, assume that u1 = v2. Then v1v2 ∈ E(G) and v′1 = v

′

2. Similarly, u3 ∈ {v1, v2, v
′

1}. If v3 6∈ {v1, v2}, then
v′3 = v

′

1 as B is a bond with exactly three edges. But then B is a trivial bond, a contradiction. Therefore, v3 ∈ {v1, v2}.
Without loss of generality, assume that v3 = v2. Then u3 = v

′

1, and v′1v
′

3 ∈ E(G).
Denote Q2 the subgraph induced by the set {v1, v2, v

′

1, v
′

3}. Then Q2 ∼= C+4 . In Q2, each of f1, f3 is contained
in exactly one triangle, and f2 is contained in exactly two triangles. Since G ∈ ℘n−2 and n ≥ 8, at least one of the
edges v1v2, v

′

1v
′

3, say the former, is contained in another triangle. Let w3v1v2 be the new triangle sharing an edge
v1v2 with the triangle v1v2v

′

1. Then it is easy to see that w3 ∈ A. Thus Q3 = Q2 ∪ {v1w3, v2w3} is a 3-fan. Similarly,
if Qi is already constructed (i ≤ n − 3), then Qi+1 is constructed by adding a new vertex wi+1 and two new edges
{wi+1w

′

i , wi+1w
′′

i }, where w′i and w′′i are contained in the same set in the partition (A, A′), and the edge w′iw
′′

i is
contained in exactly one triangle of Qi . Clearly, wi+1 is in the same set as w′i and w′′i in the partition. In this way, we
see that Qn−2 ∈ ℘

n−2
max . In Qn−2, there are two vertices of degree two contained in A and A′, respectively. Condition
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(iii) implies that there is an edge joining these two vertices, which contradicts the assumption that f1, f2, f3 is a
non-trivial 3-element bond.

Case 2. One of the edges in { f1, f2, f3} is not contained in any triangle, say f1.
Then f1 is the edge e given in Condition (iii). By our assumption, each of f2 and f3 is contained in a triangle. As B

is a bond with exactly three edges, it is easy to see that either v2v3 ∈ E(G) and v′2 = v
′

3, or v2 = v3 and v′2v
′

3 ∈ E(G).
Without loss of generality, assume that the former occurs. Now v2v3 must be contained in another triangle. Using a
similar method as in Case 1 to construct G, finally there must be a vertex wn−2 ∈ A of degree 2. Since f1 is contained
in no triangle, it must be the edge joining the two vertices of degree 2. Clearly these two vertices must be v′2 andwn−2,
respectively. Thus v1 = wn−2 and v′1 = v

′

2, which is a contradiction to the assumption that { f1, f2, f3} is a non-trivial
3-element bond. �

With the preparation above, we are ready to prove Theorem 3.1, our main result.

Proof of Theorem 3.1. From Eq. (6) in the proof of Lemma 3.6, among 2n−2 edges of G, n−3 edges are contained
in exactly two triangles, n edges are contained in exactly one triangle and one edge is contained in no triangles. By
Corollary 3.7, TR(G) is acyclic. Moreover, there are n − 2 triangles, n − 3C+4 ’s in G. Hence TR(G) is a tree of n − 2
vertices. Furthermore, inheriting the notion from the proof of Lemma 3.6, we have that τ3 = 0 and c = n − 4, that is,
there are exactly n − 4 3-fans. Thus TR(G) is a path of length n − 2, or G ∈ ℘n−2.

Since G is 3-edge-connected, |V (G)| = n, |E(G)| = 2n − 2 and every vertex is contained in a triangle
(i.e., V (Ĝ) = V (G)), we deduce that G satisfies the three conditions of Lemma 3.8. Therefore every 3-element
bond of G is trivial. We conclude that there are n− 2 vertices of degree three in G, and exactly two vertices of degree
greater than three. Because Ĝ ∈ ℘n−2

max , there must exist an i-fan for some i ≤ n − 3 (otherwise, if i = n − 2, joining
the two vertices of degree two in G will increase the number of triangles of G by one). Let Fθ1 be a θ1-fan with the
maximum number of triangles of G, where 3 ≤ θ1 ≤ n − 3. Then there must be another triangle t sharing a brim
non-spoke-edge of Fθ1 . Now V (Fθ1) ∪ V (t) has two vertices, denoted by u and v, of degree greater than three. Since
there are exactly two vertices of degree greater than three in G, we conclude that G contains exactly two maximal
fans, namely the θ1-fan and another θ2-fan. Moreover, u and v are the central vertices of the two fans. Clearly, θ2 ≥ 4
(otherwise, there are two C4’s containing no chord). Now it is straightforward to see that G is isomorphic to Wk′1,k

′

2
,

where k′1 = θ1 − 1, k′2 = θ2 − 1 and θ ′1, θ
′

2 ≥ 4. By the above proof, k′1 ≥ k′2 ≥ 3.
Next we complete the proof of the theorem by showing that k′1 = k1 and k′2 = k2. Suppose that k2 6= k′2, say,

k2 < k′2. Then k2 < k′2 ≤ k′1 < k1. Consider the coefficient of xk2+2 y2k2+3. By the remark after Proposition 3.3,
[xk2+2 y2k2+3

]F(Wk1,k2; x, y) ≥ n−k2−1. However, since k2+2 ≤ k′2+1, [xk2+2 y2k2+3
]F(Wk′1,k

′

2
; x, y) = n−k2−2,

a contradiction. Therefore, k′2 = k2 and thus k′1 = k1. This completes the proof of the theorem. �

It is well-known that the chromatic polynomial and the flow polynomial are two important evaluations of the Tutte
polynomial (see, for example, [2]). To conclude the paper, we would like to mention that it would be interesting
to know if twisted wheels can be determined by their chromatic polynomials or flow polynomials alone or both
polynomials together.
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