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Abstract

A star-factor of a graph is a spanning subgraph each of whose components is a star.
A graph G is called star-uniform if all star-factors of G have the same number of com-
ponents. Motivated by the minimum cost spanning tree and the optimal assignment
problems, Hartnell and Rall posed an open problem to characterize all the star-uniform
graphs. In this paper, we show that a graph G is star-uniform if and only if G has equal
domination and matching number. From this point of view, the star-uniform graphs
were characterized by Randerath and Volkmann. Unfortunately, their characterization
is incomplete. By deploying Gallai-Edmonds Matching Structure Theorem, we give a
clear and complete characterization of star-unform graphs.
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1 Introduction

Throughout this paper, we consider simple finite graphs, which have neither loops nor mul-
tiple edges. Unless otherwise defined, we follow [6] for terminology and definitions.

Let G be a graph with vertex set V (G) and edge set E(G). The minimum degree of G is
denoted by �(G). We denote by Iso(G) the set of isolated vertices of G, and by End(G) the
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set of end-vertices (i.e., vertices of degree one) of G. An edge incident with an end-vertex
is called a pendant edge. A vertex adjacent to an end-vertex is called a stem, and Stem(G)
denotes the set of stems of G. For a subset S ⊆ V (G), let NG(S) denote the neighborhood
of S in G, and ⟨S⟩G denote the subgraph of G induced by S. The subgraph G− S of G is
obtained from G by deleting the vertices in S and all the edges incident with them.

A graph with one vertex and no edge is called a trivial graph. The complete graph of
order n is denoted by Kn, and the complete bipartite graph with bipartite sets of order n
and m is denoted by K(n,m). In particular, K1 is a trivial graph, and K(1, m) is called a
star, where m ≥ 1. When m ≥ 2, the vertex of degree m in a star K(1, m) is called the
center, and only one vertex in K(1, 1) can be called the center. The cycle and the path of
order n are denoted by Cn and Pn, respectively.

The corona H ∘ K1 of a graph H is the graph obtained from H by adding a pendant
edge to each vertex of H . A connected graph G of order at least three is called a generalized

corona if V (G) = End(G)∪Stem(G). A star-factor of a graph is a spanning subgraph each of
whose components is a star. It is not hard to see that every graph without trivial components
admits a star-factor. Amahashi and Kano [1] and Las Vergnas [5], independently, obtained
a criterion for the existence of star-factors with size at most n, i.e., {K1,1, ⋅ ⋅ ⋅ , K1,n}-factor.

A graph G is called star-uniform if all the star-factors of G have the same number of
components. Hartnell and Rall [3] posed an open problem to characterize all the star-uniform
graphs. In the same paper, they characterized star-uniform graphs with girth at least five.
It is obvious that all star-factors of G have the same number of components is equivalent to
the property that every star-factor of G has the same size. For example, every generalized
corona is a star-uniform graph. In this paper, we give a clear and complete characterization
of all the star-uniform graphs.

2 Preliminary Results

We say that a vertex subset S of a graph G dominates a vertex v of G if v ∈ S ∪ NG(S),
and that S is a dominating set of G if every vertex of G is dominated by S. The cardinality
of a smallest dominating set is called the domination number of G and denoted by 
(G).
For extensive bibliographies regarding work on domination in graphs the reader is referred
to [4]. A set D ⊆ V (G) is a covering of G if every edge of G has at least one end in D.
The covering number �(G) is the cardinality of a smallest covering of G. A matching M of
G is a set of independent edges of G. The number of edges in M is called the size of M
and denoted by ∣M ∣. If G has no matching M ′ such that ∣M ′∣ > ∣M ∣, then M is called a
maximum matching, and the size of a maximum matching is called the matching number of
G and denoted by �(G). The order of G is denoted by ∣G∣.

The following results are well-known.

Theorem 1. (see [4]) If a graph G has no isolated vertex, then 
(G) ≤ �(G) ≤ �(G).
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Theorem 2. (Ore, 1962) If a graph G has no isolated vertex, then 
(G) ≤ ⌊∣G∣/2⌋.

In 1998, Randerath and Volkmann [7] characterized all graphs with equal domination
and covering number. To simplify matters we denote this class of extremal graphs by G
=� .
Another different structural characterization is due to Hartnell and Rall [2], but it is a bit
complicated and some of the proofs are omitted. All graphs G with domination number
⌊∣G∣/2⌋ are determined in [7, 11]. Using the two known results, Randerath and Volkmann
[8] gave a characterization of all the graphs with equal domination and matching number, for
abbreviation G
=� . Unfortunately, the characterizations of the family G
=� with minimum
degree one in [7] and [8] are incomplete. For example, the graph G shown in Figure 1 has
domination number 4, but covering number and matching number are 5. So it is not a
member of G
=� or G
=� . However, it is included in the characterizations of G
=� and G
=�

in [7, 8].

Figure 1: 
(G) = 4 and �(G) = �(G) = 5

In Section 3, we show that a graph G is star-uniform if and only if G ∈ G
=� . In
Section 4, we give a clear and complete characterization of all the star-unform graphs, i.e.,
all the graphs with equal domination and matching number. Since the tool in the proof of
the characterization is the so-called “Gallai-Edmonds Structure Theorem”, we need more
definitions and notations.

A matching of G is called perfect if it covers all the vertices of G. A near-perfect matching

of G is a matching that covers all but exactly one vertex of G. A graph G is said to be
factor-critical if G−v has a perfect matching for every v ∈ V (G). Factor-criticality was first
introduced by Gallai (see [6]) in 1963 and it is important in the study of matching theory.
To be contrary to its apparent strong property, such graphs form a relatively rich family for
study, which are the essential “building block” for Gallai-Edmonds Structure of the graphs
with matchings.

Let M be a matching in G. An M-alternating path (or M-alternating cycle) in G is
a path (or cycle) whose edges are alternately in M and E(G) − M . Let M1 and M2 be
matchings in G and M1∪M2 denote the subgraph formed by the union of the two edge sets,
so V (M1 ∪M2) = V (M1)∪ V (M2) and E(M1 ∪M2) = E(M1)∪E(M2). The components of
this subgraph are edges, alternating even cycles or alternating paths.
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For a graph G, let D(G) denote the set of vertices of G which are not covered by at least
one maximum matching of G, A(G) be the set of vertices in V (G) − D(G) adjacent to at
least one vertex in D(G). Finally let C(G) = V (G)− A(G)−D(G) (see Figure 2).

Gallai (1963) and Edmonds (1965), independently, obtained the following canonical de-
composition theorem for maximum matchings in graphs. This result provides a complete
structural characterization of maximum matchings in a graph.

Theorem 3 (Gallai-Edmonds Structure Theorem for Matchings). Let G be a graph and

D(G), A(G) and C(G) be the sets defined as above. Moreover, for convenience, let D(G),
A(G) and C(G) also denote the subgraphs of G induced by them. Then

(i) every component of D(G) is factor-critical;

(ii) C(G) has a perfect matching;

(iii) ∣A(G)∣ is less than the number of components of D(G); and
(iv) every maximum matching of G consists of a near-perfect matching of each component

of D(G), a perfect matching of each component of C(G) and a matching which matches all

the vertices of A(G) with vertices in distinct components of D(G).
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Figure 2: The Gallai-Edmonds decomposition of a graph G

3 Equivalent characterization of star-uniform graphs

Let S be a star-factor with the maximum number of components among all the star-factors
of G. If we choose one edge from each component of S, it yields a matching M . Conversely,
suppose M is a maximum matching in G, then G − V (M) is an independent set, and for
each edge uv in M , u and v can not be adjacent to distinct vertices of G−V (M) due to the
maximality of M . For each isolated vertex x in G−V (M), we add an edge e ∈ E(G) joining
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x to a vertex in V (M) and obtain a star-factor with ∣M ∣ components. Hence we have the
following proposition.

Proposition 4. Let G be a connected graph. Then the maximum number of components

of star-factors in G is equal to the number of edges of a maximum matching in G (i.e., the
matching number).

Proposition 4 shows the relationship between the maximum number of components of
star-factors and the matching number. Similarly, we have a proposition to relate the mini-
mum number of components of star-factors and the domination number.

Proposition 5. Let G be a connected graph. Then the minimum number of components of

star-factors in G is equal to the domination number 
(G).

Proof. Let S be a star-factor in G with the minimum number of components. Then all the
centers in S form a dominating set, so 
(G) is at most the minimum number of components
of star-factors in G.

Conversely, suppose D is a dominating set of the minimum order. Then every vertex of
V (G) −D has at least one neighbor in D and every vertex of D has at least one neighbor
in V (G) − D since D is a minimum dominating set. Now we construct a bipartite graph
B = (V (G) − D,D) with edge set E(B) = {uv ∣ u ∈ V (G) − D, v ∈ D and uv ∈ E(G)}.
Then B has a star-factor, which can be regarded as a star-factor of G. Since the number of
components of a star-factor of B is at most ∣D∣, it follows that 
(G) = ∣D∣ is at least the
minimum number of components of star-factors in G. Therefore the proposition is proved.□

Obviously, Theorem 2 is a corollary of Proposition 5. Combining Propositions 4 and 5,
we are able to link star-uniform graphs with two well-studied graphic parameters - matching
number and domination number.

Theorem 6. A connected graph G is star-uniform if and only if �(G) = 
(G). Moreover,

every star-factor of a star-uniform graph G has 
(G) components.

4 Characterization of all star-uniform graphs

First, we present a lemma which shows the basic idea for dealing with star-uniform graphs.

Lemma 7. ([3, 9]) Let G be a connected star-uniform graph, and H be a spanning subgraph

of G without isolated vertices. Then H is also a star-uniform graph and 
(H) = 
(G) =
�(G) = �(H). In particular, each component of H is star-uniform.

From Lemma 7, we can deduce the following lemma easily, which will be used several
times in the proof of our main result.
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Lemma 8. Let G be a connected star-uniform graph, and H be a spanning subgraph of G
without isolated vertices, and H1 be a component of H and X ⊆ V (H1). Suppose that both

H1−X and ⟨(G−H1)∪X⟩G contain no isolated vertices, and 
(⟨(G−H1)∪X⟩G) = 
(G−H1),
where G − H1 denotes G − V (H1) or V (G) − V (H1). Then H1 − X is star-uniform and


(H1 −X) = 
(H1).

Proof. By Lemma 7, H1 is star-uniform. By Theorem 1 and the assumption of this lemma,
we have


(G) ≤ 
(⟨(G−H1) ∪X⟩G) + 
(H1 −X)

= 
(G−H1) + 
(H1 −X)

≤ �(G−H1) + �(H1 −X)

≤ �(G−H1) + �(H1).

On the other hand, it follows


(G) = �(G) ≥ �(G−H1) + �(H1).

Hence


(H1 −X) = �(H1 −X) = �(H1) = 
(H1)

as H1 is star-uniform. Therefore H1 −X is star-uniform and the lemma holds. □

The following results are given by Randerath and Volkmann [8], which can also be proved
by using Gallai-Edmonds Structure Theorem.

Theorem 9. ([8]) Let G = (X, Y ) be a connected bipartite graph with ∣X∣ ≤ ∣Y ∣ and

�(G) ≥ 2. Then G is star-uniform if and only if G possesses the following properties:

(i) �(G) = 
(G) = ∣X∣;
(ii) for any two distinct vertices x1, x2 of X that are adjacent to a common vertex of Y ,

there exist two distinct vertices y1 and y2 in Y such that NG(yi) = {x1, x2} for i = 1, 2.

Based on Randerath and Volkmann’s original characterization of non-bipartite star-
uniform graphs with �(G) ≥ 2, it is not hard to determine the family of all possible star-
uniform graphs.

Theorem 10. ([8]) Let G be a connected non-bipartite graph with �(G) ≥ 2. Then G is

star-uniform if and only if G is one of the nine graphs shown in Figure 3.

Based on Theorems 9 and 10, we characterize all the star-uniform graphs with minimum

degree one.
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Figure 3. Non-bipartite star-uniform graphs with minimum degree at least two

Theorem 11. Let G be a connected star-uniform graph with minimum degree one. Then

G is K2 or a generalized corona, or has the following structure: every component H of

G− (End(G) ∪ Stem(G)) is one of the following graphs.

(i) a trivial graph;

(ii) a star-uniform graph with minimum degree at least two;

(iii) a bipartite graph with minimum degree one, and H − End(H) is a trivial

graph or a connected bipartite star-uniform graph with minimum degree at least

two such that �(H −End(H)) = �(H).

Moreover, if H satisfies (ii) or (iii), then


(H −X) = 
(H) for all X ⊆ V (H) ∩NG(Stem(G)). (1)

Conversely, if a connected graph G is K2 or a generalized corona, or possesses the above

structure including (1), then G is a star-uniform graph with minimum degree one.

For a graph G, let !(G) denote the number of components of G. To prove that a graph G
is not star-uniform, we usually show that G contains two star-factors with different number
of components. We now prove our main theorem.

Proof of Theorem 11. We first show the second part of Theorem 11. Since K2 and every
generalized corona are star-uniform, we may assume that G is not such a graph but possesses
the given structure. So G has order at least three, and End(G) ∩ Stem(G) = ∅. It follows
that every maximum matching of G covers all vertices in Stem(G). Moreover, there exists
a maximum matching M such that every edge of M incident with a vertex of Stem(G) is a
pendant edge of G. So

�(G) = ∣Stem(G)∣+
∑

H

�(H), (2)

where H runs over all non-trivial components of G− (End(G) ∪ Stem(G)).
We next estimate the domination number of G.

Claim 1. Every non-trivial component H of G− (End(G) ∪ Stem(G)) satisfies �(H) =

(H).
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Let H be a non-trivial component of G − (End(G) ∪ Stem(G)). If H is star-uniform,
then �(H) = 
(H) by Theorem 6. So we may assume that H is a bipartite graph with
minimum degree one given in (iii). If H − End(H) is a trivial graph, then H is a star, and
so �(H) = 
(H) = 1. If H − End(H) is a connected bipartite star-uniform graph with
minimum degree at least two, then �(H) = �(H −End(H)) = 
(H −End(H)) by (iii) and
Theorem 6. Since End(H) ⊆ NG(Stem(G)), we have 
(H −End(H)) = 
(H) by condition
(1). Hence �(H) = 
(H), and the claim is proved.

It is clear that there exists a dominating set L of order 
(G) in G that includes Stem(G).
For every non-trivial component H of G − (End(G) ∪ Stem(G)), let XH denote the set of
vertices of H dominated by Stem(G). Then H −XH is dominated by V (H) ∩ L, and thus
we have


(G) = ∣L∣ = ∣Stem(G)∣+
∑

H

∣L ∩ V (H)∣

≥ ∣Stem(G)∣+
∑

H


(⟨(H −XH) ∪ (L ∩XH)⟩G)

= ∣Stem(G)∣+
∑

H


(H) (by (1))

= ∣Stem(G)∣+
∑

H

�(H) = �(G), (by Claim 1 and (2))

where H runs over all non-trivial components of G − (End(G) ∪ Stem(G)). Therefore

(G) = �(G) by Theorem 1. Consequently G is star-uniform by Theorem 6.

We now prove that a connected star-uniform graphG with �(G) = 1 isK2 or a generalized
corona, or has the structure given in Theorem 11. We may assume that G is neither K2 nor
a generalized corona, and hence G has order at least three. Let S denote a star-factor of G
that consists of a star-factor of the induced subgraph

〈

End(G) ∪ Stem(G) ∪ Iso(G− (End(G) ∪ Stem(G)))
〉

G

and a star-factor of each non-trivial component of G−(End(G)∪Stem(G)). We may assume
that every vertex of Stem(G) is the center of a component in S.

Let H denote any non-trivial component of G − (End(G) ∪ Stem(G)). Then H is a
star-uniform graph by Lemma 7, and SH = S ∩ H is a star-factor of H . It follows from
Theorem 6 that !(SH) = 
(H). Let

U = V (H) ∩NG(Stem(G)).

Then U is non-empty as G is connected, and U is a proper subset of V (H) since otherwise
removing SH from S and for each vertex u of H , by adding an edge joining u to a vertex in
Stem(G) to S, we get another star-factor of G with !(S)− !(SH) components.
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If �(H) ≥ 2, then H is given in (ii). Hence we may assume �(H) = 1, which implies
H has an end-vertex. Notice that every end-vertex of H is adjacent to some vertices of
Stem(G) since it is not contained in End(G).

Claim 2. H has no perfect matchings.

Assume that H has a perfect matching. Since H is star-uniform, SH is a perfect matching
of H . If ∣V (H)∣ = 2, then H = K2 and U = V (H), which contradicts the fact that U is a
proper subset of V (H). Hence ∣V (H)∣ ≥ 4, and H has a path P4 = (x1, x2, x3, x4) such that
x1x2 and x3x4 are edges of SH and a vertex y of Stem(G) adjacent to x1 in G. Then by
removing x1x2 from S and by adding two edges x2x3 and x1y to it, we obtain another star-
factor of G with !(S)− 1 components, a contradiction. Hence H has no perfect matchings.

Let M be a maximum matching of H , and let A(H), C(H) and D(H) be the vertex
sets defined in Gallai-Edmonds Structure Theorem. Also A(H), C(H) and D(H) denote
the subgraphs of H induced by them. We may assume that the star-factor SH satisfies the
following: (i) SH includes M ; (ii) C(H)∩SH is a perfect matching of C(H); (iii) each vertex
of A(H) is the center of a star of SH , whose edges join A(H) to D(H); and (iv) SH ∩D(H)
is a collection of a near-perfect matching of each component of D(H).

Claim 3. C(H) = ∅.

Assume C(H) ∕= ∅. Let C be a component of C(H). Since H is connected, there exists
an edge uv ∈ SH ∩ E(C) such that u is adjacent to a vertex x in A(H), and v is adjacent
to a vertex y in (C − u) ∪ A(H) ∪ Stem(G). By deleting edge uv from S and by adding
two edges ux and vy to S, we obtain another star-factor of G with !(S)− 1 components, a
contradiction.

Claim 4. A(H) is an independent set.

Suppose that there exists an edge uv in A(H). Let Tu be a star in SH with center u.
For each end-vertex x in Tu, where x is a vertex of a component D of D(H), we perform
the following operation. If D is singleton, then x is adjacent to another vertex y in A(H) ∪
Stem(G). In this case, we remove the edge ux from S and add the edge xy to S. If D is
non-trivial, then �(D) ≥ 2 as D is factor-critical. So x is adjacent to another vertex z in D,
then we remove the edge ux from S and add the edge xz to it. Finally, by adding the edge
uv to S, we obtain another star-factor of G with !(S)− 1 components since v is the center
of a component of S, a contradiction.

Claim 5. H is a connected bipartite graph with bipartition A(H) and D(H).

If A(H) = ∅, then H = D(H) is factor-critical, which implies �(H) ≥ 2. But this is
contrary to �(H) = 1. Hence A(H) ∕= ∅. Suppose a component D in D(H) is non-trivial.
Then there exists a star Tv in SH with end-vertex x in D and center v in A(H). If Tv

has another end-vertex z, which is in another component of D(H), we remove the edge
vz from S and add another edge zt to S, where t ∈ A(H) ∪ D(H) ∪ Stem(G). Now we
obtain another star-factor with the same number of components as S. So, without loss of
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generality, we may assume that V (Tv) = {v, x}. Take y ∈ NH(x) ∩ V (D) and let My be
a perfect matchings of D − y. Then since SH ∩ E(D) is a perfect matching of D − x, it
follows that (SH − E(D)) ∪ My ∪ xy is a star-factor of H with !(SH) − 1 components, a
contradiction. Therefore every component of D(H) is a trivial graph. By Claims 3 and 4,
H is a bipartite graph with bipartition A(H) and D(H).

Claim 6. 
(H) = ∣A(H)∣.

By Gallai-Edmonds Structure Theorem, 1 ≤ ∣A(H)∣ < ∣D(H)∣ and every maximum
matching of H covers all vertices in A(H). So 
(H) = ∣A(H)∣ by Theorem 6.

Claim 7. If ∣A(H)∣ = 1, then H is a star K(1, m) for m ≥ 2 and the center of H is

not adjacent to any vertex of Stem(G).

If ∣A(H)∣=1, then H = K(1, m) for m ≥ 2 as H is not K2. If the center of H is adjacent
to a vertex in Stem(G), then we remove SH from S, and for each vertex in H , add an edge
joining it to a vertex in Stem(G). Since every vertex of Stem(G) is a center of some star in
S, it yields a star-factor of G with !(S)− 1 components appears, a contradiction.

Claim 8. If ∣A(H)∣ ≥ 2, then �(H −End(H)) = �(H) and H −End(H) is a connected

bipartite star-uniform graph with minimum degree at least two.

If a vertex v of A(H) has degree one in H , then for a vertex u of D(H) adjacent to v,
H − u has no matching covering v, which is a contradiction (see Theorem 3). Hence every
vertex of A(H) has degree at least two in H . Assume ∣A(H)∣ ≥ 2. By the above property,
End(H) ⊂ D(H) and H − End(H) is a non-trivial connected bipartite graph.

Every vertex of Stem(G) is assumed to be the center of a star in S and every vertex
of End(H) is adjacent to a vertex in Stem(G), so the set of all centers of stars in SG that
are not in H is a minimum dominating set of graphs G − H and ⟨(G − H) ∪ End(H)⟩G,
i.e. 
(⟨(G−H) ∪ End(H)⟩G) = 
(G−H). Then H −End(H) is a star-uniform graph and

(H −End(H)) = �(H −End(H)) = �(H) = 
(H) = ∣A(H)∣ by Lemma 8.

Now it suffices to show that �(H − End(H)) ≥ 2. Suppose �(H − End(H)) = 1. Let
v be an end-vertex of H − End(H), that is, all neighbors of v except one, say u, in H are
end-vertices of H . Then v ∈ A(H), and let Tv be a star with center v in SH . If u ∈ Tv,
let ux be an edge in H and Tx be a star with center x in SH . Remove Tv and Tx from
S, and add edges uv and ux to S. Moreover, for each vertex y in Tv ∪ Tx − {v, x, u}, if
y ∈ End(H), add an edge joining y to a vertex in Stem(G), otherwise joining y to a vertex
in A(H) − {v, x}. Then we obtain another star-factor of G with !(S) − 1 components, a
contradiction. If u /∈ Tv, then there exists a z ∈ A(H) such that u ∈ Tz. By deleting two
components Tv and Tz from S and adding a star {zu, uv} and some edges to S as the above,
we can similarly obtain a star-factor with !(S)− 1 components. Thus we prove the claim.

In the following, for a component H of G− (End(G)∪Stem(G)) satisfying the condition
(ii) or (iii), we show that 
(H −X) = 
(H) for all X ⊆ U = V (H) ∩NG(Stem(G)).

Claim 9. If H is a non-bipartite star-uniform graph with minimum degree at least two,

then 
(H −X) = 
(H) for all X ⊆ U .
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Suppose that H is a graph shown in Figure 3, which is factor-critical. Assume that
there exists a subset X ⊆ U such that 
(H − X) ∕= 
(H). Then H − X contains isolated
vertices by Lemma 8. Let Y be the set of isolated vertices of H −X , and B be a bipartite
graph with vertex set Y ∪ NH(Y ) and edge set consisting of the edges between Y and
NH(Y ) in H . Then for each subset Y ′ ⊆ Y , we have ∣NB(Y

′)∣ > ∣Y ′∣ since H is factor-
critical. By Hall’s Theorem, B has a matching that covers Y , and so B has a star-factor
ℬ with ∣Y ∣ components by Proposition 4. Since H − (X ∪ Y ) has no isolated vertices,
it has a star-factor with 
(H − (X ∪ Y )) components by Proposition 5. Now removing
SH from S, joining each vertex in X − NH(Y ) to a vertex in Stem(G) and adding the
above two star-factors of H − (X ∪ Y ) and B to S, we get a star-factor of G which has
!(S)−
(H)+
(H−(X∪Y ))+ ∣Y ∣ = !(S)−
(H)+
(H−X) components, a contradiction.
Hence 
(H −X) = 
(H).

Claim 10. If H = (A(H), D(H)) is a connected bipartite star-uniform graph with mini-

mum degree at least two and ∣A(H)∣ < ∣D(H)∣, then, for all X ⊆ U , H −X is a connected

graph with minimum degree at least two such that 
(H −X) = 
(H).

Note that every vertex u ∈ U is contained in D(H); otherwise, A(H)−u is a dominating
set of H −u and so G contains a star-factor having at most !(S)− 1 components by Propo-
sition 5 and u ∈ NG(Stem(G)), a contradiction. Denote the vertices of X by v1, v2, ⋅ ⋅ ⋅ , v∣X∣.
Then H ′ = H−v1 is a connected star-uniform graph and 
(H ′) = 
(H) = ∣A(H)∣ by Lemma
8 and Theorem 9. Suppose x1 and x2 are two neighbors of v1 inH . Then by Theorem 9, there
exists a vertex y1 ∕= v1 in A(H) such that NH(y1) = {x1, x2}. Moreover, there is another ver-
tex y2 distinct from v1 and y1 such that NH(y2) = {x1, x2}; otherwise, A(H)∪{y1}−{x1, x2}
is a dominating set for H ′ of order ∣A(H)∣ − 1, which is contradictory to 
(H ′) = ∣A(H)∣.
Hence �(H ′) ≥ 2. We apply the previous procedure to H ′ generating H ′′ = H ′ − v2, and
repeating this procedure until we get the graph H − X , which is a connected bipartite
star-uniform graph with minimum degree at least two and 
(H −X) = 
(H) = ∣A(H)∣.

Claim 11. If H = (A(H), D(H)) is a connected bipartite star-uniform graph with mini-

mum degree one and ∣A(H)∣ < ∣D(H)∣, then 
(H −X) = 
(H) for all X ⊆ U .

If H − End(H) is a trivial graph, then by Claim 7, the claim holds. So we may assume
H −End(H) is a connected bipartite star-uniform graph with minimum degree at least two
by Claim 8. We can similarly show, as in Claim 10, that U ⊆ D(H). By Claims 6 and
10, H ′ = H − (End(H) ∪ X) is a connected bipartite star-uniform graph with minimum
degree at least two, and A(H) is a minimum dominating set for both H and H ′. H −X =
⟨V (H ′)∪ (End(H)−X)⟩H is obtained by adding some pendant edges incident with A(H) to
H ′, thus A(H) is also a minimum dominating set for H−X , i.e., 
(H−X) = 
(H ′) = 
(H).

Consequently, the proof is complete. □

From the proof of Theorem 11 and combining Theorem 9, we are able to give a much
clearer characterization for all the star-uniform graphs with minimum degree one.
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Theorem 12. Let G be a connected graph with �(G) = 1. Then G is star-uniform if and

only if G is K2 or a generalized corona, or every component H of G− (End(G)∪Stem(G))
is one of the following:

(i) H is a trivial graph;

(ii) H is a connected bipartite graph with bipartition X and Y , where 1 ≤ ∣X∣ <
∣Y ∣. Let U = V (H) ∩NG(Stem(G)). Then ∅ ∕= U ⊆ Y and for any two distinct

vertices x1, x2 of X that are adjacent to a common vertex of Y , there exist two

distinct vertices y1 and y2 in Y − U such that NH(yi) = {x1, x2}, for i = 1, 2;
(iii) H is a graph isomorphic to (f), (g), (ℎ) or (i) shown in Figure 3, and


(H−X) = 
(H) for all ∅ ∕= X ⊆ U ⊂ V (H), where U = V (H)∩NG(Stem(G)).

Figure 4: A star-uniform graph with minimum degree one.

As an example, we present a star-uniform graph with minimum degree one in Figure 4.

5 Conclusion

An edge-weighting of a graph G is a function w : E(G) −→ ℕ
+, where ℕ

+ is the set of
positive integers. The weight of a star-factor S of G under w is the sum of all weight on
edges of S, i.e., w(S) = Σe∈E(S)w(e). So characterization of all the star-uniform graphs is a
special case of the following question, which was proposed by Hartnell and Rall [3].

Question 13. Which graph G has a non-constant edge-weighting w of G such that every

star-factor of G has the same weight?
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Wu and Yu [10] characterized this family of graphs when girth is at least five. It seems
that the structures of the graphs with girth less than five are much more complicated. New
ideas and tools are required to identify all such graphs.
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