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Abstract

A vertex subset S of a graph G is a dominating set if every vertex of G either belongs to S or is adjacent to a vertex of S. The
cardinality of a smallest dominating set is called the dominating number of G and is denoted by γ (G). A graph G is said to be
γ -vertex-critical if γ (G − v) < γ (G), for every vertex v in G.

Let G be a 2-connected K1,5-free 3-vertex-critical graph of odd order. For any vertex v ∈ V (G), we show that G − v has
a perfect matching (except two graphs), which solves a conjecture posed by Ananchuen and Plummer [N. Ananchuen, M.D.
Plummer, Matchings in 3-vertex critical graphs: The odd case, Discrete Math., 307 (2007) 1651–1658].
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Matching; Factor-critical; Dominating set; 3-vertex-critical graphs

1. Introduction

Let G be a finite simple graph with vertex set V (G) and edge set E(G). A vertex subset S of G is a dominating set
if every vertex of G either belongs to S or is adjacent to a vertex of S. The minimum size of such a set is called the
dominating number of G and is denoted by γ (G). A graph G is vertex-domination-critical, or γ -vertex-critical, if for
any vertex v of G, γ (G − v) < γ (G). We use G[S] to denote the subgraph induced by S for some S ⊆ V (G). The
minimum degree of G is denoted by δ(G). A graph is called K1,k-free if it has no induced subgraph isomorphic to the
complete bipartite graph K1,k .

A set of independent edges in a graph G is called a matching of G. A matching is perfect if it is incident with
every vertex of G. If G − v has a perfect matching, for every choice of v ∈ V (G), G is said to be factor-critical. The
concept of factor-critical graphs was first introduced by Gallai in 1963 and it plays an important role in the study of
matching theory. In contrast to its apparent strong property, such graphs form a relatively rich family for study. It is
the essential “building block” for the so-called Gallai–Edmonds structure of the graphs with matchings.

The subject of γ -vertex-critical graphs was studied first by Brigham, Chinn and Dutton [3,4] and continued by
Fulman et al. [5,6]. Clearly, the only 1-vertex-critical graph is K1 (a single vertex). Brigham, Chinn and Dutton [3]
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pointed out that the 2-vertex-critical graphs are precisely the family of graphs obtained from the complete graphs K2n
with a perfect matching removed. For γ > 2, however, much remains unknown about the structure of γ -vertex-critical
graphs. Recently, Ananchuen and Plummer [1,2] began to study matchings in 3-vertex-critical graphs. They showed
that a K1,5-free 3-vertex-critical graph of even order has a perfect matching (see [1]) and a K1,4-free 3-vertex-critical
graph of odd order is factor-critical (see [2]). Furthermore, they posed the following conjecture.

Conjecture 1. If G is a K1,5-free 3-vertex-critical 2-connected graph of odd order with δ(G) ≥ 3, then G is factor-
critical.

In this paper, we show that the conjecture holds for almost all graphs and there are only two counterexamples.
Let v ∈ V (G), we denote a minimum dominating set of G − v by Dv . The following facts about Dv follow

immediately from the definition of 3-vertex-criticality and we shall use it frequently in the proof of the main theorem.

Facts: If G is 3-vertex-critical, then the following hold

(1) For every vertex v of G, |Dv| = 2.
(2) If Dv = {x, y}, then x and y are not adjacent to v.
(3) For every pair of distinct vertices v and w, Dv 6= Dw.

The readers are referred to [7] for other terminologies not specified in this paper.

2. Main result

By Tutte’s well-known 1-Factor Theorem, if a graph G has no perfect matching, then there exits a set S ⊆ V (G)
such that the number of components in G − S having odd order is greater than the order of S. Let S ⊆ V (G), we
shall denote by ω(G − S), the number of components of G − S and by co(G − S), the number of odd components of
G − S. A criterion similar to 1-Factor Theorem for factor-critical graphs is as follows.

Lemma 2.1 (see [7]). A graph G is factor-critical if and only if co(G − S) ≤ |S| − 1, for every nonempty set
S ⊆ V (G).

Lemma 2.2. Let G be 3-vertex-critical and S be a cutset in G with |S| ≥ 4. If Du ⊆ S for each vertex u ∈ S, then
there exists no vertex of degree 1 in G[S].

Proof. Suppose to the contrary that there exists some v ∈ S such that v is of degree 1 in G[S]. Without loss of
generality, let vw ∈ E(G), where w ∈ S. By Fact 2, v 6∈ Dw. Since Dw ⊆ S, Dw does not dominate v, a
contradiction. �

The following two lemmas, proved by Ananchuen and Plummer [2], will be used in our proof of the main theorem.

Lemma 2.3. If G is 3-vertex-critical and S is a cutset in G such that ω(G − S) ≥ 4 or ω(G − S) = 3, but each
component has at least 2 vertices, then each vertex of G − S is not adjacent to at least one vertex of S.

Lemma 2.4. Let G be a 3-vertex-critical graph and suppose that S is a cutset of order 2 in G, then ω(G − S) ≤ 3.
Furthermore, if ω(G − S) = 3, then G − S must contain at least one singleton component.

Before giving our main result, we note that the graphs G1 and G2 in Fig. 1 are K1,5-free 3-vertex-critical 2-
connected graph of order 11 with δ(G) = 3, but are not factor-critical, since Gi − vi has no perfect matching for
i = 1, 2. We shall show that these two graphs are the only two counterexamples to Conjecture 1.

Theorem 2.1. If G is a K1,5-free 3-vertex-critical 2-connected graph of odd order with δ(G) ≥ 3, except the graphs
G1 and G2 shown in Fig. 1, then G is factor-critical.

Proof. Suppose that G is not factor-critical. By Lemma 2.1 and the parity, there exists a nonempty set S ⊆ V (G)
such that co(G − S) ≥ |S| + 1. Without loss of generality, let S be a minimal such set with |S| = k. Then k ≥ 2 as
G is 2-connected. Let C1,C2, . . . ,Ct be the odd components of G − S and E1, E2, . . . , En the even components of
G − S. We consider the following cases.
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Fig. 1. The graphs G1 and G2.

Case 1. k = 2.
By Lemma 2.4, then t = 3 and G − S has no even components. Since δ(G) ≥ 3 and k = 2, each odd component

of G − S has at least three vertices, which contradicts Lemma 2.4.
Case 2. k = 3.
Thus, t ≥ 4. By Lemma 2.3, each vertex of G − S is not adjacent to at least one vertex of S. Since δ(G) ≥ 3 and

k = 3, we have |V (Ci )| ≥ 3 for i = 1, 2, . . . , t . By Fact 3, there must exist a vertex x in some odd component of
G − S such that Dx 6⊆ S. Clearly, Dx ∩ S 6= ∅. Without loss of generality, let x ∈ V (C1) and Dx = {u, y}, where
u ∈ S and y ∈ V (G)− S. Since G is K1,5-free, by the parity, so t = 4 and G − S has at most one even component.

Claim 1. There exists an odd component C j ( j ≥ 2) such that C j is a complete graph and u dominates V (C j ).
If y ∈ V (C1) − {x}, then u is adjacent to every vertex of

⋃4
i=2 V (Ci ). Since G is K1,5-free, at least two

of C2, C3 and C4 are complete. If y ∈
⋃4

i=2 V (Ci ), say y ∈ V (C2), then u dominates all the vertices of
(V (C1)∪V (C3)∪V (C4))−{x}, and at least one of C3 and C4 is complete, by K1,5-freeness in G again. If G− S has
an even component E1 and y ∈ V (E1), then u is adjacent to every vertex of

⋃4
i=1 V (Ci )− {x}. Since G is K1,5-free,

C2, C3 and C4 are all complete. So Claim 1 is proved.

Without loss of generality, assume that C4 is complete and u dominates V (C4).

Claim 2. Each vertex of S − {u} is not adjacent to any vertex of V (C4).
Suppose to the contrary that va4 ∈ E(G) for some v ∈ S−{u} and a4 ∈ V (C4). Then Da4 ∩ ({u, v}∪V (C4)) = ∅,

as C4 is complete and ua4 ∈ E(G). Let S − {u, v} = {w}. Clearly, w ∈ Da4 . Then wa4 6∈ E(G) and w dominates
V (C4)−{a4}. Let b4 ∈ V (C4)−{a4}. Then ub4 ∈ E(G) and wb4 ∈ E(G). Consequently, Db4∩({u, w}∪V (C4)) = ∅

and v ∈ Db4 . So vb4 6∈ E(G) and v dominates V (C4)− {b4}. Now let c4 ∈ V (C4)− {a4, b4}, then c4 is adjacent to
every vertex of S, which contradicts Lemma 2.3.

From Claim 2, u is a cutvertex in G, which is against the fact that G is 2-connected.
Case 3. k = 4.
Thus, t ≥ 5. We first show that there exists some a ∈ S such that Da 6⊆ S. Otherwise, Db ⊆ S for each vertex

b ∈ S. By Lemma 2.2 and Fact 2, every vertex of S in G[S] has degree 0. It is easy to check that this is impossible.
So let u ∈ S such that Du 6⊆ S. Clearly, Du ∩ S 6= ∅. Let Du = {v, x}, where v ∈ S and x ∈ V (G)− S. Since G is

K1,5-free, t = 5 and G − S has no even components. Without loss of generality, let x ∈ V (C1), then v dominates all
vertices of

⋃5
i=2 V (Ci ). Moreover, by K1,5-freeness again, C2, C3, C4 and C5 are all complete, and v is not adjacent

to any vertex of V (C1).

Claim 3. Each vertex of S is adjacent to at least three odd components of G − S.
Otherwise, there exists a vertex c ∈ S such that c is adjacent to at most two odd components of G − S. Let

S′ = S − {c}. It is easy to see that S′ is a nonempty set which satisfies the condition that co(G − S′) ≥ |S′| + 1,
contradicting to the minimality of S.

Let S−{u, v} = {w, z}. By Claim 3, w is adjacent to at least two of C2, C3, C4 and C5. Without loss of generality,
let wci ∈ E(G), where ci ∈ V (Ci ) for i = 2, 3. Then z ∈ Dc2 . Otherwise, u ∈ Dc2 and Dc2 ∩ V (C1) 6= ∅

since ux 6∈ E(G). But then Dc2 cannot dominate v, a contradiction. Similarly, z ∈ Dc3 . Thus, zci 6∈ E(G) for
i = 2, 3. By Fact 3, then either Dc2 6= {u, z} or Dc3 6= {u, z}, say Dc2 6= {u, z}. Since zc3 6∈ E(G), it follows that
Dc2 ∩V (C3) 6= ∅ and z dominates every vertex of V (C1)∪V (C4)∪V (C5). By similar arguments, w ∈ Dc4 , w ∈ Dc5
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for some c4 ∈ V (C4) and c5 ∈ V (C5). Furthermore, wci 6∈ E(G) for i = 4, 5, and w is adjacent to all vertices of
V (C1) ∪ V (C2) ∪ V (C3).

We next show that C2 is a singleton. Otherwise, |V (C2)| ≥ 3 and let a2, b2 ∈ V (C2)−{c2}. By similar arguments as
above, z ∈ Da2 , z ∈ Db2 and either Da2 6= {u, z} or Db2 6= {u, z}. Assume that Da2 6= {u, z}. Then Da2 ∩ V (C3) 6= ∅,
since zc3 6∈ E(G). But then z is adjacent to all vertices of V (C2)− {a2} and this contradicts the fact that zc2 6∈ E(G).
Similarly, C3, C4 and C5 are all singletons of G−S. Since δ(G) ≥ 3, uci ∈ E(G) for i = 2, 3, 4, 5. As G is K1,5-free,
u is not adjacent to any vertex of V (C1).

Because δ(G) ≥ 3 and u, v are not adjacent to any vertex of V (C1), we have |V (C1)| ≥ 3. Moreover,
Dx ∩ (V (C1) − {x}) 6= ∅ and Dx ∩ {u, v} 6= ∅ (say, u ∈ Dx ). Recall that uv 6∈ E(G) and v is not adjacent to
any vertex of V (C1), thus v is not dominated by Dx , a contradiction.

Case 4. k = 5.

Claim 4. For every vertex x ∈ S, Dx ⊆ S.
Otherwise, Du 6⊆ S for some u ∈ S. Clearly, Du ∩ S 6= ∅. Let Du = {y, z}, where y ∈ S and z ∈ V (G)− S. Since

t ≥ 6, y must dominate at least 5 odd components of G − S, which contradicts the fact that G is K1,5-free.

Let S = {s1, s2, s3, s4, s5}. By Fact 3, there are
(

5
2

)
= 10 distinct pairs of vertices in S and at least 11 vertices in

G. So there must exist a vertex x in an odd component of G − S such that Dx 6⊆ S. Assume that x ∈ V (C1). Clearly,
Dx ∩ S 6= ∅. Since G is K1,5-free, we have t = 6 and G − S has no even components. By Claim 4 and Lemma 2.2,
each vertex of S in G[S] has degree 0 or 2. It is not hard to see that G[S] can only be a 5-cycle or a union of a 4-cycle
and an isolated vertex.

Case 4.1. G[S] is a 5-cycle.
Let s1s2s3s4s5s1 be the 5-cycle in the counterclockwise order and Dx = {s1, w}, where w ∈ V (G)− S. Since G is

K1,5-free, w 6∈ V (C1). Assume that w ∈ V (C2). Then s1 is adjacent to all vertices of
⋃6

i=3 V (Ci ) and w dominates
s3, s4. Moreover, K1,5-freeness of G implies that C3, C4, C5 and C6 are all complete, C1 is a singleton and s1 is not
adjacent to any vertex of V (C1) ∪ V (C2).

Since Ds3 = {s1, s5}, s5 is adjacent to each vertex of V (C1)∪V (C2). Similarly, since Ds4 = {s1, s2}, s2 is adjacent
to each vertex of V (C1) ∪ V (C2). Therefore, w is adjacent to all vertices of S − {s1}. Now consider Dw. Since
Dw ∩ S = {s1} and s1x 6∈ E(G), it follows that Dw = {s1, x}. Hence, x dominates s3, s4 and V (C2) = {w}. But then
{s1, s3} is a dominating set in G, contradicting the assumption that γ (G) = 3.

Case 4.2. G[S] is a union of a 4-cycle and an isolated vertex.
Let s1s2s3s4s1 be the 4-cycle in the counterclockwise order and s5 the isolated vertex in G[S]. Then Ds1 = {s3, s5},

Ds2 = {s4, s5}, Ds3 = {s1, s5}, and Ds4 = {s2, s5}.
Since G is K1,5-free, s5 is adjacent to at most 4 odd components of G−S. Without loss of generality, let C1, . . . ,Cr

be the components which are not adjacent to s5. Then t = 6 implies r ≥ 2. Thus si is adjacent to every vertex of⋃r
j=1 V (C j ) for i = 1, 2, 3, 4. Now consider Dy , y ∈ V (C1). Clearly, Dy ∩ S = {s5}. Since s5 cannot dominate

V (C2), Dy∩V (C2) 6= ∅. Therefore, r = 2 and s5 is adjacent to every vertex of
⋃6

i=3 V (Ci ). Moreover, V (C1) = {y}.
By a similar argument, C2 is also a singleton. For each vertex v ∈

⋃6
i=3 V (Ci ), we have Dv ∩ S 6= ∅ and Dv 6⊆ S,

since s5 6∈ Dv and the vertices in S − {s5} do not dominate s5. From K1,5-freeness of G, C3, C4, C5 and C6 are all
singletons, say V (Ci ) = {ci } for i = 3, 4, 5, 6.

Let H be the induced subgraph in G with vertex set {si , c j | 1 ≤ i ≤ 4, 3 ≤ j ≤ 6} by deleting the edges in G[S].
For 3 ≤ j ≤ 6, since δ(G) ≥ 3, c j is adjacent to at least two vertices of S − {s5}. On the other hand, since G is
K1,5-free, each vertex of S−{s5} is adjacent to at most two vertices of

⋃6
i=3{ci }. Thus H is a 2-regular bipartite graph

and hence consists of either a 8-cycle or a union of two 4-cycles. However, there are only four such graphs under the
isomorphism (see Figs. 1 and 2). It is easy to see that G3 and G4 are not 3-vertex-critical, since |γ (Gi − vi )| > 2 in
Gi for i = 3, 4. Therefore, G1 and G2 are two counterexamples to Conjecture 1.

Case 5. k ≥ 6.

Claim 5. For every vertex x ∈ V (G), Dx ⊆ S.
Suppose that Dx 6⊆ S for some x ∈ V (G). Clearly, Dx ∩ S 6= ∅. Let Dx = {y, z}, where y ∈ S and z ∈ V (G)− S.

Since t ≥ 7, y must dominate at least 5 odd components of G − S, a contradiction to K1,5-freeness.
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Fig. 2. The graphs G3 and G4.

Let w be any vertex in S, then Dw ⊆ S by Claim 5. Since G is K1,5-free, each vertex of Dw can dominate at
most 4 components of G − S, which implies that the number of components of G − S is at most 8 or t ≤ 8. That is,
6 ≤ k ≤ 7.

Let Si ⊆ S be the set of vertices in S which are adjacent to some vertex in Ci for i = 1, 2, . . . , t , and let
d = min{|Si |}. Without loss of generality, assume that |S1| = d. Note that for any vertex v ∈ V (G) − V (C1),
Dv ∩ S1 6= ∅. We call such a set Dv normal 2-set associated with v and S1, or normal set in short. By a simple

counting, we see that there are at most
(

k
2

)
−

(
k−d

2

)
normal sets. Since |V (G) − V (C1)| ≥ 2k, Fact 3 implies(

k
2

)
−

(
k−d

2

)
≥ 2k or d ≥ 3. On the other hand, since G is K1,5-free, each vertex of S is adjacent to at most 4

components of G − S, that is, d ≤ 4k
k+1 or d ≤ 3. Hence d = 3.

Case 5.1. k = 6.
Thus t = 7 and G − S has at most one even component. By Claim 5, there are

(
6
2

)
= 15 distinct pairs of vertices

in S and at least 13 vertices in G. So by Fact 3, |V (G)| = 13 or 15, and G − S has at least 6 singletons.
It is not hard to see that there exists at least four odd components whose corresponding Si ’s having the order exactly

3, and at least two of them are singletons. Without loss of generality, let C1 = {c1} and C2 = {c2} be two singletons.
Then, for every vertex v ∈ V (G) − {c1}, Dv ∩ S1 6= ∅. There are 12 normal sets associated with S1 in S, and thus
|V (G)| = 13. Next consider S2. If S2 = S1, then Dc2 cannot dominate c1, a contradiction. If |S2 ∩ S1| ≤ 2, however,
there must exist 2 normal sets associated with S1 which are not adjacent to c2, at most one can be realized as Dc2 , and
the other cannot dominate c2, again a contradiction.

Case 5.2. k = 7.
Thus t = 8 and G − S has no even components. By a similar argument that is used in the proof of Case 5.1, one

reaches the same contradiction.
This completes the proof of our theorem. �
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