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Abstract

A (k, g)-cage is a k-regular graph with girth g that has the fewest number of vertices.

It has been conjectured [Fu, Huang, and Rodger, Connectivity of cages, J. Graph

Theory 24 (1997), 187-191] that all (k, g)-cages are k-connected for k ≥ 3. A connected

graph G is said to be superconnected if every minimum cut-set S is the neighborhood

of a vertex of minimum degree. Moreover, if G − S has precisely two components,

then G is called tightly superconnected. It was shown [Xu, Wang, and Wang, On the

connectivity of (4, g)-cages, Ars Combin 64 (2002), 181-192] that every (4, g)-cage is

4-connected. In this paper, we prove that every (4, g)-cage is tightly superconnected

when g is even and g ≥ 12.
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1 Introduction

Throughout this paper, only undirected simple graphs are considered. Unless otherwise

defined, we follow [2] for terminologies and definitions.

Let G = (V,E) be a graph with vertex set V (G) and edge set E(G). Let dG(u, v) denote

the distance between two vertices u, v ∈ V (G). For vertex sets T1, T2 ⊆ V (G), E(T1, T2) is

the set of the edges between T1 and T2, and d(T1, T2) = dG(T1, T2) = min{d(t1, t2) | t1 ∈
T1, t2 ∈ T2} denotes the distance between T1 and T2. Let |Pk(T1, T2)| and |P≤k(T1, T2)|
denote the number of paths of length k and no more than k from T1 to T2, respectively. For

S ⊂ V (G), G[S] denotes the subgraph induced by vertex set S, and G − S is the subgraph

of G obtained by deleting the vertices in S and all the edges incident with them. The set of

vertices which are at distance r from S in G is denoted by Nr(S) = {v ∈ V (G) | d(v, S) = r},
where r is an integer. We use N(S) instead of N1(S). The length of a shortest cycle in G is

called the girth of G, denoted by g(G). The diameter of G is the maximum distance between

any two vertices in G. By connecting two vertices, we mean joining the two vertices by an

edge and connecting a vertex x to a vertex set R means joining x to every vertex in R.

A k-regular graph with girth g is called a (k, g)-graph. A (k, g)-cage is a (k, g)-graph with

the fewest number of vertices for given k and g. We use f(k, g) to denote the number of

vertices in (k, g)-cages. A cut-set X of G is called a trivial cut-set if X is the neighborhood

of a vertex of minimum degree. A k-connected (or k-vertex-connected) graph G is called

superconnected if for every vertex cut-set S ⊆ V (G) with |S| = k, S is a trivial cut-set.

Moreover, if G − S has precisely two components, then G is called tightly superconnected.

Provided that a non-trivial cut-set exists, the superconnectivity of G is denoted by κ1 =

κ1(G) = min{|X| | X is a non-trivial cut-set}. The edge-superconnectivity λ1 is defined

similarly.

Cages were introduced by Tutte in 1947, and have been extensively studied; we refer the

reader to the survey [17] for more detailed information. Recently, due to the importance

of cage connectivity in the design of efficient and reliable networks, several researchers have

studied the connectivity of cages; for example [3, 4, 6, 10, 9, 11, 12]. Fu, Huang and Rodger

[6] conjectured that (k, g)-cages are k-connected. Daven and Rodger [3], and independently
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Jiang and Mubayi [7], proved that all (k, g)-cages are 3-connected for k ≥ 3. Additionally, it

was proved that every (4, g)-cage is 4-connected [18]. For k ≥ 4, Marcote et al. [14] showed

that (k, g)-cages with g ≥ 10 are 4-connected. Recently, Lin, Miller and Balbuena [9] proved

that all (k, g)-cages are r-connected with r ≥
√

k + 1 for g ≥ 7 odd; Lin et al. [8] also proved

that all (k, g)-cages with even girth are (r +1)-connected, where r is the largest integer such

that r3 + 2r2 ≤ k. In this paper, we show that every (4, g)-cage with even girth g ≥ 12 is

tightly superconnected.

For the edge-connectivity of (k, g)-cages, Wang, Xu and Wang [16] showed that (k, g)-

cages are k-edge-connected when g is odd, and subsequently, Lin, Miller and Rodger [11]

proved that (k, g)-cages are k-edge-connected when g is even. Recently, Lin et al. [10, 13]

proved that (k, g)-cages are edge-superconnected.

2 Main Result

In this section, we prove that every (4, g)-cage with even girth g ≥ 12 is tightly supercon-

nected. To show our main result, we use the following known results.

Theorem 1. ([5, 6]) Let k ≥ 2 and g ≥ 3 be integers. The following statements hold:

(1) f(k, g) < f(k, g + 1);

(2) if D is the diameter of a (k, g)-cage, then D ≤ g.

Lemma 1. ([4]) Let G be a (k, g)-cage with k ≥ 3 and g ≥ 7. If S ⊆ V (G) and the diameter

of G[S] is at most ⌊g/2⌋ − 2, then G − S is 2-connected.

For edge-connectivity, Tang et al. [15] conjectured the following:

Conjecture 1. ([15]) Every (k, g)-cage of odd girth g ≥ 5 has λ1 = 2k − 2.

Lu et al. [12] showed the following result which supports Conjecture 1.

Lemma 2. ([12]) Every (4, g)-cage of girth g ≥ 5 has λ1 = 6.
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The following lemma is also required for the proof of our main result.

Lemma 3. ([1]) Let G be a (4, g)-cage with even girth g ≥ 6. Assume that X ⊆ V is

a minimum non-trivial cut-set such that |X| ≤ 4, and let C be a connected component of

G − X. Then there exists a vertex u ∈ V (C) such that d(u,X) ≥ g/2 − 1.

To prove that every (4, g)-cage G of even girth g ≥ 12 is tightly superconnected, we use

contrapositive arguments. We assume that there exists a non-trivial cut-set |S| = 4 in G;

since λ1 = 6, this implies that G − S contains only two components C1 and C2. Let C1

be the smaller one. Using C1, we construct a (4, g′)-graph of order less than |V (G)|, with

g′ ≥ g, which contradicts Theorem 1.

By Theorem 1 and Lemma 3, we have g/2 − 1 ≤ max {d(v, S) | v ∈ V (C1)} ≤ g/2 +

1. Denote S = {s1, s2, s3, s4}. In order to present our main results, we first present two

observations. In the following, we assume that all vertices in G[S] are independent, i.e.,

dG[S](si) = 0, i = 1, 2, 3, 4.

Observation 1. S can be partitioned into two disjoint vertex subsets S1 and S2 such that

dG(S1, S2) ≥ 3, where |S1| = |S2| = 2.

Proof. Let t be a vertex of G − S. Since S is a non-trivial cut-set, we have |N(t) ∩ S| ≤ 3.

Furthermore, if |N(t) ∩ S| = 3, then G − ((N(t) ∩ S) ∪ t) contains a cut-vertex, which is a

contradiction to Lemma 1. So |N(t) ∩ S| ≤ 2.

Let s be a vertex in S. We claim that there is at most one vertex in S − s at distance

two from s in G. Otherwise, suppose there are two distinct vertices t1 and t2 in G − S and

two vertices s′ and s′′ in S − s such that st1s
′ and st2s

′′ are two paths of length two. Then

G[{s, s′, s′′, t1, t2}] is a graph of diameter four, and so G − {s, s′, s′′, t1, t2} is 2-connected

by Lemma 1, since g ≥ 12. But, in fact, G − {s, s′, s′′, t1, t2} contains a cut-vertex, a

contradiction. Hence S can be partitioned into two disjoint vertex subsets, say {s1, s2} and

{s3, s4}, such that dG({s1, s2}, {s3, s4}) ≥ 3. 2

Observation 2. Let u ∈ V (C1), N(u) = {u1, u2, u3, u4} and Wi = N(ui)−u = {ui1, ui2, ui3}
(i = 1, 2, 3, 4). Suppose that for each si ∈ S there exists Tj ⊆ Wj such that |N(si)∩V (C2)| =
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|Tj | and d(Tj , S) ≥ g/2−1. If T1, T2, T3 and T4 are mutually disjoint, then G is not a (4, g)-

cage.

s1

s2

s3

s4

s∗1

s∗2

s∗3

s∗4
N N∗

Figure 1: Illustration of the construction in Observation 2.

Proof. Let N = G[(C1∪S)−(N(u)∪u)] and let N∗ be a copy of N . For every v ∈ V (N), let

v∗ denote the corresponding vertex in the copy of N∗. Now we construct a 4-regular graph

H (see Figure 1) of girth at least g by using N and N∗ and adding the following edges:

(a) connect si to T ∗
i and s∗i to Ti for i = 1, 2, 3, 4;

(b) connect r to r∗, where r is of degree three after the operation (a).

It is clear that any cycle entirely contained in either N or N∗ has length at least g. Any

new cycle C created in H must contain at least two new edges in (a) and (b). If C contains

two edges in (a), then C has length at least g, since d(Ti, S) ≥ g/2− 1 for all i. If C contains

two edges in (b), then its length is at least 2(g−4)+2 > g, since g ≥ 12. Finally, if C contains

one edge in (a) and one edge in (b), then its length is at least (g/2−1)+(g−4)+2 > g. Thus

H is a (4, g′)-graph with smaller order than G, where g′ ≥ g, a contradiction to Theorem 1.

2

We now prove several lemmas, based on max {d(v, S) | v ∈ V (C1)} and the degree dis-

tributions of the vertices of S in the component C2.

5



Lemma 4. If max {d(v, S) | v ∈ V (C1)} = g/2−1, |N(s1)∩V (C2)| = |N(s2)∩V (C2)| = 1

and |N(s3) ∩ V (C2)| = |N(s4) ∩ V (C2)| = 2, then G is not a (4, g)-cage.

Proof. Let d(u, S) = g/2 − 1, N(u) = {u1, u2, u3, u4} and Wi = N(ui) − u = {ui1, ui2, ui3}
(i = 1, 2, 3, 4). Then g/2 − 3 ≤ d(Wi, S) ≤ g/2 − 2. Due to the girth requirement, any two

paths of length g/2 − 3 from N2(u) to S can not share the same end vertex in S. Hence

|Pg/2−3(N2(u), S)| ≤ 4. So we only need to consider the following three cases.

Case 1. 3 ≤ |Pg/2−3(N2(u), S)| ≤ 4.

Since no path of length at most g/2 − 2, from N2(u) to S, can share the same ver-

tex in N(si) ∩ V (C1), we have |Pg/2−2(N2(u), si)| ≤ 3, as 2 ≤ |N(si) ∩ V (C1)| ≤ 3. If

|Pg/2−3(N2(u), S)| = 3, then |Pg/2−2(N2(u), S)| ≤ 3. If |Pg/2−3(N2(u), S)| = 4, then there are

no paths of length g/2 − 2 from N2(u) to S. As |N2(u)| = 12, there are at least six vertices

in N2(u) at distance g/2 − 1 from S. Since g/2 − 2 ≤ d(Wi, S) ≤ g/2 − 3, there exist two

distinct vertices r1, r2 ∈ N2(u) such that d(ri, S) ≥ g/2−1 and two vertex sets, say T1 ⊆ W1

and T2 ⊆ W2, such that d(Ti, S) ≥ g/2 − 1, where r1 /∈ Ti, r2 /∈ Ti and |Ti| = 2 for i = 1, 2.

Hence G is not a (4, g)-cage by Observation 2.

Case 2. Pg/2−3(N2(u), S) = 2 and Pg/2−3(Wi, S) ≤ 1 (i = 1, 2, 3, 4).

Subcase 2.1. The two paths of length g/2 − 3 are from N2(u) to {s1, s2}.

Without loss of generality, assume that d(u11, s1) = d(u21, s2) = g/2−3. Then d(N2(u)−
{u11, u21}, {s1, s2}) ≥ g/2 − 1. |N(s3) ∩ V (C1)| + |N(s4) ∩ V (C1)| = 4, so |Pg/2−2(N2(u) −
{u11, u21}, S)| ≤ 4. Hence there are at least six vertices in N2(u) at distance g/2 − 1 from

S. Using a similar argument as in Case 1, it follows that G is not a (4, g)-cage.

Subcase 2.2. The two paths of length g/2 − 3 are from N2(u) to {s3, s4}.

Suppose d(u31, s3) = d(u41, s4) = g/2 − 3, then d(N2(u) − {u31, u41}, {s3, s4}) ≥ g/2 − 1.

Let N = G[(C1 − {u, u3, u4}) ∪ S] and let N∗ be a copy of N . To derive a contradiction, we

construct a smaller (4, g′)-graph H = N ∪N∗ ∪M (see Figure 2), where M is the set of new

edges described below:

(a) connect si to u∗
i and s∗i to ui for i = 1, 2;
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s3

s4

s∗1

s∗2

s∗3

s∗4

u1

u2

u31

u41

u∗
1

u∗
2

u∗
31

u∗
41

Figure 2: Illustration of the construction in Subcase 2.2 of Lemma 4.

(b) connect si to {u∗
i2, u

∗
i3} and s∗i to {ui2, ui3} for i = 3, 4;

(c) connect ui1 to u∗
i1 for i = 3, 4.

Now we calculate the girth of the new graph. If a new cycle C goes through two edges in

(a), then its length is at least 2 + 2(1 + (g/2 − 2)) = g. If C goes through two edges in (b),

then its length is at least g, since d(N2(u)−{u31, u41}, {s3, s4}) ≥ g/2−1. If C goes through

two edges in (c), then C has length at least 2 + 2(g − 4) > g, since g ≥ 12. If C goes through

one edge in (a) and one edge in (b), then its length is at least (g/2− 2) + (g/2− 1) + 3 = g.

If it goes through one edge in (c) and one edge in (a) or (b), then taking into account that

g ≥ 12, the length of C is at least (g − 4) + (g/2− 2) + 2 ≥ g or (g − 2) + (g/2− 3) + 2 ≥ g.

Subcase 2.3. The two paths of length g/2 − 3 are from N2(u) to {s1, s2} and {s3, s4},
respectively.

Without loss of generality, assume that d(u13, s1) = g/2 − 3 and d(u33, s3) = g/2 − 3.

Clearly, no paths of length at most g/2−2, from N2(u) to S, can share the same end vertex in

N(si)∩V (C1). Since |N(s2)∩V (C1)|+|N(s4)∩V (C1)| = 5, we have |P≤g/2−2(N2(u), S)| ≤ 7.

If |P≤g/2−2(N2(u), S)| ≤ 6, then there are four vertex sets of N2(u) satisfying the conditions

in Observation 2 and we thus derive a contradiction. So we assume |P≤g/2−2(N2(u), S)| = 7.

Subsequently there exists a vertex v ∈ N(u) such that |P≤g/2−2(N(v) − u, S)| = 1 and
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|P≤g/2−2(N2(u)−N(v), S)| = 6. Note that
∑4

i=1 |N(si)∩ V (C1)| = 10, so |P≤g/2−2((N2(v)−
N(u)) ∪ (N2(u) − N(v)), S)| ≤ 10. In other words, |P≤g/2−2(N2(v) − N(u), S)| ≤ 4. As

mentioned above, |P≤g/2−2(N(u) − v, S)| ≤ 2. Hence there are at least six vertices in

N2(v) at distance g/2 − 1 from S. Denote N(v) = {u, v1, v2, v3} and W ′
i = N(vi) − v =

{vi1, vi2, vi3} (i = 1, 2, 3). If d(v, S) = g/2 − 1, since |P≤g/2−2(N(v) − u, S)| = 1 and

max {d(v, S) | v ∈ V (C1)} = g/2 − 1, then there exist two disjoint vertex subsets T1 ⊆ W ′
j1

and T2 ⊆ W ′
j2

such that |T1| = |T2| = 2 and d(Ti, S) ≥ g/2 − 1, where i = 1, 2, j1, j2 ∈
{1, 2, 3}. If d(v, S) = g/2 − 2, then v ∈ {u13, u23}, and there exists a vertex subset T1 ⊆ W ′

j

of order two such that d(T1, S) ≥ g/2−1, for some j. Note that there is also a vertex subset

T2 = {u2, u4} ⊆ N(u)− v of order two such that d(T2, S) ≥ g/2− 1. Thus, there are in total

at least six vertices at distance g/2 − 1 from N2(v) to S, so it is easy to find two vertices r1

and r2 in N2(v) − (T1 ∪ T2) such that d(r1, S) ≥ g/2 − 1 and d(r2, S) ≥ g/2 − 1. Then G is

not a (4, g)-cage by Observation 2.

Case 3. 1 ≤ |Pg/2−3(Wi, S)| ≤ 2 for some Wi.

Without loss of generality, assume d(u1, S) = g/2−2 and d(uj, S) = g/2−1, for j = 2, 3, 4.

With Cases 1 and 2 discussed, we can assume that there is exactly one vertex in Wj at

distance g/2− 2 from S, otherwise we can regard uj as u to show that G is not a (4, g)-cage

as in Cases 1 or 2. Then we can find two sets T1, T2 and two vertices r1, r2 in N2(u) satisfying

the conditions of Observation 2, thus G is not a (4, g)-cage. 2

Lemma 5. If max {d(v, S) | v ∈ V (C1)} = g/2 − 1, |N(si) ∩ V (C2)| = 2 (i = 1, 2, 3, 4),

then G is not a (4, g)-cage.

Proof. Let d(u, S) = g/2 − 1, N(u) = {u1, u2, u3, u4} and Wi = N(ui) − u = {ui1, ui2, ui3}
(i = 1, 2, 3, 4).

Case 1. d(ui, S) = g/2 − 2 (i = 1, 2, 3, 4).

Since no paths of length g/2 − 3, from N2(u) to S, can share the same end vertex in

S, there is exactly one vertex, say ui3, in Wi at distance g/2 − 3 from S. Due to the girth

requirement, we have d(Wi − ui3, S) ≥ g/2 − 1. So G is not a (4, g)-cage by Observation 2.

Case 2. There exists a vertex v ∈ N(u) such that d(v, S) = g/2 − 1.
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Suppose v = u4. Let N(v) = {v1, v2, v3, u} and W ′
i = N(vi) − v = {vi1, vi2, vi3}

(i = 1, 2, 3). Since
∑4

i=1 |N(si) ∩ V (C1)| = 8, so |P≤g/2−2(∪3
i=1(Wi ∪ W ′

i ), S)| ≤ 8. As

max {d(v, S) | v ∈ V (C1)} = g/2 − 1, without loss of generality, assume that d(Wi, S) =

d(ui3, S) ≤ g/2 − 2 and d(W ′
i , S) = d(vi3, S) ≤ g/2 − 2 (i = 1, 2, 3). Subsequently

|P≤g/2−2(∪3
i=1(Wi ∪ W ′

i ), S)| ≤ 2.

Subcase 2.1. |P≤g/2−2(∪3
i=1Wi, S)| ≤ 4 and |P≤g/2−2(∪3

i=1W
′
i , S)| ≤ 4.

We can choose four vertex subsets, say T1 ⊆ W1, T2 ⊆ W2, T3 ⊆ W ′
1, T4 ⊆ W ′

2, such

that |Ti| = 2 (i = 1, 2, 3, 4) and d(Ti, S) ≥ g/2 − 1. Without loss of generality, assume

T1 = {u11, u12}, T2 = {u21, u22}, T3 = {v11, v12} and T4 = {v21, v22}. By Observation 1, we

can assume d({s1, s2}, {s3, s4}) ≥ 3.

Let N = G[(C1 −{u, v, u1, u2, v1, v2})∪S] and let N∗ be a copy of N . Now we construct

a 4-regular graph G′ (see Figure 3) as follows:

(a) connect si to T ∗
i and s∗i to Ti for i = 1, 2, 3, 4;

(b) connect ui3 to u∗
i3 and vi3 to v∗

i3 for i = 1, 2;

(c) connect u3 to u∗
3 and v3 to v∗

3.

s1

s2

s3

s4

s∗1

s∗2

s∗3

s∗4

u13

u23

v13

v23

u∗
13

u∗
23

v∗13

v∗23

u3

v3

u∗
3

v∗3

Figure 3: Illustration of the construction in Lemma 5.

In the following, we examine the girth of G′. If the new cycle C contains two edges both

in (a) or (b), then its length is at least g, since d({s1, s2}, {s3, s4}) ≥ 3. If C contains two
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edges both in (c), then it has length at least 2 + 4 + 2(g − 5) > g. If C contains one edge

in (a) and another edge in (b), then its length is at least (g/2 − 3) + (g − 5) + 2 ≥ g, since

g ≥ 12. If C contains one edge in (a) and another edge in (c), then its length is at least

(g/2 − 3) + (g − 5) + 4 > g. If C contains one edge in (b) and another edge in (c), then its

length is at least 2(g − 4) + 2 > g. Now G′ is a (4, g′)-graph with girth g′ ≥ g and smaller

order than G, a contradiction.

Subcase 2.2. |P≤g/2−2(∪3
i=1Wi, S)| ≤ 5 or |P≤g/2−2(∪3

i=1W
′
i , S)| ≤ 5.

Without loss of generality, assume that |P≤g/2−2(∪3
i=1Wi, S)| ≤ 5. Then in this case,

|P≤g/2−2(∪3
i=1W

′
i , S)| = 3. Furthermore, there are at least two vertices in W1 and W2 at

distance less than g/2 − 1 from S, respectively. Otherwise, we can find four vertex sub-

sets as in Subcase 2.1 to obtain a contradiction. |P≤g/2−2(∪3
i=1(Wi ∪ W ′

i ), S)| = 8 and
∑4

i=1 |N(si) ∩ V (C1)| = 8. So if |Pg/2−3(∪3
i=1Wi, S)| ≥ 2, then |Pg/2−3(∪3

i=1Wi, S)| = 2 and

|Pg/2−3(∪3
i=1W

′
i , S)| = 1. Hence for each vertex v′ ∈ ∪3

i=1(W
′
i − vi3), d(v′, S) = g/2 − 1.

Assume d(v33, S) = g/2 − 3; then d(v1, S) = d(v2, S) = g/2 − 1 and d(v13, S) = d(v23, S) =

g/2 − 2. Since max {d(v, S) | v ∈ V (C1)} = g/2 − 1, each vertex in {v11, v12, v21, v22} is at

distance g/2−1 from S. Due to the girth requirement and
∑4

i=1 |N(si)∩V (C1)| = 8, besides

the shortest paths from each W ′
i to S (i = 1, 2, 3), there are at most six other paths of length

g/2− 1, not going through a vertex in N(v), from ∪3
i=1W

′
i to S. Hence there exists a vertex

vj, j ∈ {1, 2, 3}, such that for each vertex x ∈ N(vj) − v, there is only one path of length

less than g/2, not going through vj , from x to S. Then we can find some vi and four vertex

subsets in N2(vi) satisfying the conditions of Observation 2, so G is not a (4, g)-cage. If

|Pg/2−3(∪3
i=1Wi, S)| = 1, then we can also find four disjoint vertex subsets in N2(v) satisfying

the conditions of Observation 2, since there are two vertices in {u1, u2, u3} at distance g/2−1

from S and |P≤g/2−2(W
′
i , S)| = 1 for each W ′

i .

The proof is complete. 2

Lemma 6. If max {d(v, S) | v ∈ V (C1)} = g/2, |N(s1) ∩ V (C2)| = |N(s2) ∩ V (C2)| = 1

and |N(s3) ∩ V (C2)| = |N(s4) ∩ V (C2)| = 2, then G is not a (4, g)-cage.

Proof. Let d(u, S) = g/2, N(u) = {u1, u2, u3, u4} and Wi = N(ui) − u = {ui1, ui2, ui3}
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(i = 1, 2, 3, 4).

Claim. There exists a vertex v ∈ V (C1) such that |P≤g/2−2(N2(v), S)| ≤ 5.

If the claim is not true, then |Pg/2−2(N2(u), S)| ≥ 6. If there exists a vertex u′ ∈
N(u) such that d(u′, S) = g/2, then |Pg/2−2(N2(u), S)| ≤ 5 or |Pg/2−2(N2(u

′), S)| ≤ 5 as
∑4

i=1 |N(si) ∩ V (C1)| = 10. So we may assume d(ui, S) = g/2 − 1 for all neighbors ui of

u. Without loss of generality, assume that |Pg/2−2(W4, S)| ≤ |Pg/2−2(Wi, S)| (i = 1, 2, 3).

Let m = |Pg/2−2(W4, S)|. Since
∑4

i=1 |N(si) ∩ V (C1)| = 10, so m ≤ 2. If m = 2, then

|Pg/2−2(∪3
i=1Wi, S)| ≥ 6, and this yields |Pg/2−2(N2(u4), S)| ≤ 4 as |Pg/2−2((N2(u)−N(u4))∪

(N2(u4)−N(u)), S)| ≤ 10. If m = 1, then |Pg/2−2(∪3
i=1Wi, S)| ≥ 5 as |Pg/2−2(N2(u), S)| ≥ 6.

In other words, |P≤g/2−2(N2(u4), S)| ≤ 5. Thus the claim is proved.

From the claim it follows that there are at least seven vertices in N2(v) at distance at

least g/2 − 1 from S. Then we can find four disjoint vertex subsets of N2(v) such that

|T1| = |T2| = 1 and |T3| = |T4| = 2 which satisfy the conditions in Observation 2. Hence G

is not a (4, g)-cage. 2

Lemma 7. If max {d(v, S) | v ∈ V (C1)} = g/2, |N(si)∩V (C2)| = 2 (i = 1, 2, 3, 4), then G

is not a (4, g)-cage.

Proof. Let v be a vertex of V (C1), N(v) = {v1, v2, v3, v4} and Wi = N(vi)−v = {vi1, vi2, vi3}
(i = 1, 2, 3, 4).

Claim. If |P≤g/2−2(N2(v), S)| ≤ 4, then G is not a (4, g)-cage.

We may assume that there are at least two vertices in some particular Wi at distance

at most g/2 − 2 from S, otherwise G is not a (4, g)-cage by Observation 2. Consequently

there exists a set Wj such that d(Wj , S) ≥ g/2 − 1. Let k, l ∈ {1, 2, 3, 4}. If d(Wk, sl) =

d(vk1, sl) = g/2 − 2, then d(Wk − vk1, sl) ≥ g/2. If d(Wk, sl) = d(vk1, sl) = g/2 − 3, then

d(Wk − vk1, sl) ≥ g/2 + 1. Let N = G[(C1 ∪ S) − (N(v) ∪ v)] and let N∗ be a copy of N .

Based on the above facts and |N(si) ∩ V (C2)| = 2 for all i, it is easy to construct a new

(4, g′)-graph (where g′ ≥ g) using N and N∗ and with some additional edges. (To illustrate,

we show a special case of the construction in Figure 4; the other cases are easy to verify.)

Therefore G is not a (4, g)-cage by Theorem 1. The claim is proved.
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Figure 4: Illustration of the construction in Claim of Lemma 7.

Note that for each edge xy, |P≤g/2−2((N2(x) − N(y)) ∪ (N2(y) − N(x)), S)| ≤ 8 as
∑4

i=1 |N(si) ∩ V (C1)| = 8. Let d(u, S) = g/2. If there is a vertex v ∈ N(u) such that

d(v, S) = g/2, then |Pg/2−2(N2(u) − N(v), S)| ≤ 4 or |Pg/2−2(N2(v) − N(u), S)| ≤ 4.

Then G is not a (4, g)-cage by the claim above. Suppose d(ui, S) = g/2 − 1 for all ui.

Without loss of generality, assume that |Pg/2−2(W4, S)| ≤ |Pg/2−2(Wi, S)| for i = 1, 2, 3.

Let m = |Pg/2−2(W4, S)|. Since
∑4

i=1 |N(si) ∩ V (C1)| = 8, so m ≤ 2. If m = 2, then

|Pg/2−2(∪3
i=1Wi, S)| = 6. Since

∑4
i=1 |N(si) ∩ V (C1)| = 8, so |P≤g/2−2(N2(u4), S)| = 2. If

m = 1, then |P≤g/2−2(∪3
i=1Wi, S)| ≥ 4. Otherwise for each Wi, |Pg/2−2(Wi, S)| = 1, then by

Observation 2, G is not a (4, g)-cage. Hence |P≤g/2−2(N2(u4), S)| ≤ 4. In both cases, we see

that G is not a (4, g)-cage by the claim above. 2

Lemma 8. If max {d(v, S) | v ∈ V (C1)} = g/2 + 1, then G is not a (4, g)-cage.

Proof. Suppose d(u, S) = g/2 + 1. Then d(N2(u), S) ≥ g/2 − 1. It is straightforward to

obtain four vertex sets from N2(u) satisfying the conditions in Observation 2. Hence G is

not a (4, g)-cage. 2

With the preparation above, we are ready to show the main theorem.

Theorem 2. Every (4, g)-cage G with even girth g ≥ 12 is tightly superconnected.
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(a) (c)(b)
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C1 C1C1 C2 C2C2

S SS

Figure 5: The three cut-sets considered in the proof of Theorem 2.

Proof. Suppose G is not superconnected. Then we choose a non-trivial cut-set S of G such

that S minimizes the order of the smaller component C1 of G − S among all non-trivial

cut-sets. Set C2 = G − S − C1. Since 4|V (C1)| − E(S,C1) =
∑

v∈V (C1)
dC1

(v) ≡ 0 (mod 2),

we have E(S,C1) ≡ 0 (mod 2). Similarly, E(S,C2) ≡ 0 (mod 2). Since every (4, g)-cage

is edge-superconnected, we need only discuss the three cases for the cut-sets S shown in

Figure 5. Cases (a) and (b) are impossible by Lemmas 4 – 8. For case (c), we can simply

delete edge s1s2 from G[S] and obtain a contradiction as in Lemmas 5, 7 and 8. So G is

superconnected. From Lemma 2, G is tightly superconnected. 2
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