Maximum fractional factors in graphs ${ }^{\text {® }}$

Guizhen Liu ${ }^{\text {a }}$, Qinglin $\mathrm{Yu}^{\text {b,c,* }}$, Lanju Zhang ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Shandong University at Weihai, Weihai, Shandong 264209, PR China
${ }^{\mathrm{b}}$ Center for Combinatorics, LPMC, Nankai University, Tianjing 300071, PR China
${ }^{\mathrm{c}}$ Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, B. C., V2C 5N3, Canada
${ }^{d}$ Department of Mathematics and Statistics, University of Maryland at Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA

Received 19 September 2005; received in revised form 23 December 2006; accepted 6 February 2007

Abstract

We prove that fractional k-factors can be transformed among themselves by using a new adjusting operation repeatedly. We introduce, analogous to Berge's augmenting path method in matching theory, the technique of increasing walk and derive a characterization of maximum fractional k-factors in graphs. As applications of this characterization, several results about connected fractional 1-factors are obtained.

(C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Fractional k-factor; Connected fractional factor; Increasing walk; 1-factor; Toughness

1. Introduction

We study the fractional factor problem in graphs, which can be considered as a relaxation of the well-known cardinality matching problem. The fractional factor problem has wide-ranging applications in areas such as network design, scheduling and the combinatorial polyhedron. For instance, in a communication network if we allow several large data packets to be sent to various destinations through several channels, the efficiency of the network will be improved if we allow the large data packets to be partitioned into small parcels. The feasible assignment of data packets can be seen as a fractional flow problem and it becomes a fractional matching problem when the destinations and sources of a network are disjoint (i.e., the underlying graph is bipartite).

In this work, we consider undirected finite simple graphs only. Denote a graph with vertex set $V(G)$ and edge set $E(G)$ by $G=(V(G), E(G))$. Let x be an end vertex of an edge e; we denote the incidence relation between x and e by $x \sim e$ or $e \sim x$.

Let $f: E(G) \rightarrow[0,1]$ be a real-valued function from the edge set $E(G)$ to the real number interval [0, 1]. For any $e \in E(G), f(e)$ is referred to as the weight of the edge e. Define $E_{f}=\{e \in E(G): f(e)>0\}$ and let $G\left[E_{f}\right]$ be the subgraph of G induced by E_{f}. If $\sum_{e \sim v} f(e)=k$ is satisfied for each vertex $v \in V(G)$, then $G\left[E_{f}\right]$, or G_{f} for

[^0]short, is called a fractional k-factor of G with indicator function f. A fractional 1-factor is also called a fractional perfect matching in [7]. On restricting $f: E(G) \rightarrow\{0,1\}$, fractional k-factors and fractional 1-factors are precisely the conventional k-factors and perfect matchings.

A walk W is a sequence of edges $e_{1}, e_{2}, \ldots, e_{m}$ so that each pair of any two consecutive edges are incident and each edge appears no more than twice. Sometimes, for convenience, we also use the vertices to represent a walk, e.g., $W=\left(x_{1}, x_{2}, \ldots, x_{m}, x_{m+1}\right)$ where $e_{i}=x_{i} x_{i+1}, 1 \leq i \leq m$. A closed walk is a walk with $x_{1}=x_{m+1}$. A path is a walk such that all vertices are distinct and a cycle is a closed path.

Let G_{f} and G_{g} be two fractional k-factors of G with indicator functions f and g, respectively. Define $E^{+}=\{e \in$ $E(G): f(e)-g(e)>0\}$ and $E^{-}=\{e \in E(G): f(e)-g(e)<0\}$. A sign-alternating walk of G with respect to f and g is a closed walk of even length with its edges alternately in E^{+}and in E^{-}.

Given a sign-alternating walk of G, one of the major techniques in this work is to adjust weights of the edges on a walk so that either $\left|E^{+}\right|$or $\left|E^{-}\right|$decreases. This process is referred as an adjusting operation and the details of this process are described below:

Let $C=\left(e_{1}, e_{2}, \ldots, e_{2 m}\right)$ be a sign-alternating walk with respect to f and g and $w=f-g$. If an edge e is used twice, we use two parallel edges e^{\prime} and $e^{\prime \prime}$ to replace e and assign the weight $\frac{1}{2} w(e)$ to e^{\prime} and $e^{\prime \prime}$, respectively. Set

$$
\varepsilon=\min _{e \in E(C)}\{|w(e)|\} .
$$

Without loss of generality, assume that $w\left(e_{1}\right)>0$. Define a new indicator function $f_{1}: f_{1}\left(e_{i}\right)=f\left(e_{i}\right)-\varepsilon$ for i odd, $f_{1}\left(e_{i}\right)=f\left(e_{i}\right)+\varepsilon$ for i even and $f_{1}(e)=f(e)$ for any $e \in E(G)-E(C)$.

After the adjusting operation, collapse the parallel edges e^{\prime} and $e^{\prime \prime}$ back to e and let $f_{1}(e)=f_{1}\left(e^{\prime}\right)+f_{1}\left(e^{\prime \prime}\right)$. Now $G_{f_{1}}$ is a fractional k-factor of G with indicator function f_{1}. Obviously, the cardinality of $E_{f_{1}-g}$ is smaller than that of E_{f-g}.

Applying the adjusting operation, we can obtain the following result which is a generalization of the transformation theorem proven in [4].

Theorem 1.1. Let G_{f} and G_{g} be two fractional k-factors of G with indicator functions f and g, respectively. Then G_{g} can be obtained from G_{f} through performing finitely many adjusting operations repeatedly.

Let G_{f} be a fractional k-factor of G with indicator function f. If $\left|E_{f}\right| \geq\left|E_{g}\right|$ holds for any fractional k-factor G_{g} with indicator function g, then G_{f} is called a maximum fractional k-factor (i.e., with the maximum number of non-zero edges).

An increasing walk W of a graph G with respect to f is a closed walk of even length so that the weights of its edges are greater than zero or less than one alternately and with at least one edge of weight zero. So if we denote an increasing walk by a sequence of edges, $W=\left(e_{0}, e_{1}, \ldots, e_{2 m-1}, e_{0}\right)$, then $f\left(e_{2 r}\right)<1$ and $f\left(e_{2 r+1}\right)>0$ for $0 \leq r \leq m-1$ and $f\left(e_{2 i}\right)=0$ for some i. One example of increasing walks is the graph consisting of two odd cycles joined by a single edge e, where $f(e)=0$ and the weights of all edges on two odd cycles are positive but less than one. It is easy to see that no two incident edges of the weight zero can appear in an increasing walk.

Using Theorem 1.1 we characterize maximum fractional k-factors as follows.
Theorem 1.2. Let G_{f} be a fractional k-factor of a graph G with indicator function f. Then G_{f} is a maximum fractional k-factor of G if and only if G has no increasing walk with respect to f.

In fact, Theorem 1.2 is a fractional version of the well-known Berge theorem regarding maximum matchings [1]. One may use Theorem 1.2 to design an efficient algorithm to find a maximum fractional k-factor starting with an arbitrary fractional k-factor.

A connected fractional factor of G is a fractional factor G_{f} if G_{f} is connected. Finding sufficient conditions for the existence of connected factors has attracted much attention recently (see [2] and [3]). The authors are not aware of any research done for connected fractional factors.

On the basis of Theorem 1.2 we obtain a toughness condition for the existence of connected fractional 1-factors.
For $S \subseteq V(G)$, let $\omega(G-S)$ denote the number of components of $G-S$. The toughness of G is defined by

$$
t(G)=\left\{\begin{array}{l}
+\infty \\
\min \left\{\frac{|S|}{\omega(G-S)}: \emptyset \subseteq S \subseteq V(G) \text { and } \omega(G-S)>1\right\}
\end{array}\right.
$$

if G is complete;
otherwise.

If $t(G)=k$, we say that G is k-tough. The concept of toughness was introduced by Chvátal [5] as a new graphic parameter for studying Hamilton cycles in graphs. Toughness has become an effective tool for investigating many other graph theory problems. In particular, Enomoto et al. [6] showed that if a graph G is k-tough, then it has k factors. Furthermore, we propose the following conjecture.

Conjecture 1. Let G be a k-tough graph (k is an integer and $k \geq 1$). Then G contains a connected fractional k-factor.
Using Theorem 1.2, we confirm this conjecture for the case $k=1$ and obtain the following result.

Theorem 1.3. Let G be a graph with $t(G) \geq 1$. Then G has a connected fractional 1-factor.

Note that, unlike that of the usual 1-factor, the existence of the fractional 1-factor may not imply evenness of $|V(G)|$. The toughness condition in Theorem 1.3 is seen to be sharp by noting the graph $G=K_{n} \bigvee(n+1) K_{1}$, i.e., the complete join between a complete graph K_{n} and an independent set $(n+1) K_{1}$.

We investigate the properties of connected fractional 1-factors in Theorems 1.4 and 1.5.
Theorem 1.4. Let G_{f} be a bipartite connected fractional 1-factor of a graph G. Then G_{f} is 2-connected.
Theorem 1.5. Let G be a graph of order at least 5 and let G_{f} be a connected fractional 1-factor of G with the minimum number of edges. Then G_{f} contains no 4-cycles.

The proofs of Theorems 1.1 and 1.2 are presented in Section 2. In Section 3 we prove Theorem 1.3. Finally, we provide the proofs of Theorems 1.4 and 1.5 in Section 4.

2. Proofs of Theorems 1.1 and 1.2

Applying the adjusting operation introduced in Section 1, we here provide a proof of Theorem 1.1.
Proof of Theorem 1.1. Let G_{f} and G_{g} be two fractional k-factors of G with indicator functions f and g, respectively. Assume that $f \not \equiv g$. Define an edge set

$$
E_{f \neq g}=\{e \in E(G): f(e)-g(e) \neq 0\} .
$$

Then $E_{f \neq g} \neq \emptyset$. Let H be the subgraph of G induced by $E_{f \neq g}$. Assign each edge $e \in E(H)$ the weight $w(e)=f(e)-g(e)$. Define $E_{H}^{+}=E^{+}=\{e \in E(H): w(e)>0\}$ and $E_{H}^{-}=E^{-}=\{e \in E(H): w(e)<0\}$. Let $E_{x}=\{e \in E(G): e$ is incident with $x\}$ for a vertex $x \in V(G)$. It is easy to see that for any $x \in V(H),\left|E_{H}^{+} \cap E_{x}\right| \geq 1$ and $\left|E_{H}^{-} \cap E_{x}\right| \geq 1$. Thus $\delta(H) \geq 2$.

Next we show the existence of a sign-alternating walk in H with respect to f and g. If there does not exist a sign-alternating cycle in H, we choose a longest sign-alternating path P in H, say $P=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$.
Case 1. m is odd.
Without loss of generality, assume $w\left(x_{1} x_{2}\right)>0$, then $w\left(x_{m-1} x_{m}\right)<0$. Since $\delta(H) \geq 2$, there exist $i, j \in$ $\{1,2, \ldots, m\}$ such that $w\left(x_{1} x_{i}\right)<0$ and $w\left(x_{m} x_{j}\right)>0$. Thus $C_{1}=\left(x_{1}, \ldots, x_{i}, x_{1}\right)$ and $C_{2}=\left(x_{j}, \ldots, x_{m}, x_{j}\right)$ are odd cycles. If $i>j$, then $C=\left(x_{1}, \ldots, x_{j}, x_{m}, \ldots, x_{i}, x_{1}\right)$ is a sign-alternating cycle of H; we are done. If $i \leq j$, then $C=\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{m}, x_{j}, \ldots, x_{i}, x_{1}\right)$ is a sign-alternating walk of H.
Case 2. m is even.
Like for Case 1 , we may assume that $w\left(x_{1} x_{2}\right)>0$. Then $w\left(x_{m-1} x_{m}\right)>0$. Since $\delta(H) \geq 2$, there exist $i, j \in\{1,2, \ldots, m\}$ such that $w\left(x_{1} x_{i}\right)<0$ and $w\left(x_{m} x_{j}\right)<0$. Thus cycles $C_{1}=\left(x_{1}, \ldots, x_{i}, x_{1}\right)$ and $C_{2}=$ $\left(x_{j}, \ldots, x_{m}, x_{j}\right)$ are odd. If $i>j$, then $\left(x_{1}, \ldots, x_{j}, x_{m}, \ldots, x_{i}, x_{1}\right)$ is a sign-alternating cycle of H. If $i \leq j$, then $C=\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{m}, x_{j}, \ldots, x_{i}, x_{1}\right)$ is a sign-alternating walk of H.

In both cases we can find a sign-alternating walk in H. Using the adjusting operation introduced in Section 1, we obtain a fractional k-factor of G with indicator function f_{1} and $\left|E_{f_{1}-g}\right|<\left|E_{f-g}\right|$. Repeating the adjusting operation on f_{1} and g, and so on, thus we obtain a series of fractional k-factors with indicator functions $f=$ $f_{0}, f_{1}, \ldots, f_{s-1}, f_{s}=g$, where $\left|E_{f_{i+1}-g}\right|<\left|E_{f_{i}-g}\right|$ for $i=0,1, \ldots, s-1$. The proof is complete.

Proof of Theorem 1.2. Let G_{f} be a maximum fractional k-factor of G with indicator function f. Suppose that G has an increasing walk $C=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$. Let $E^{\prime}(C)=\{e \in E(C): 0<f(e)<1\}$. Assume that the occurrence of each edge on C is no more than p times. Set

$$
\varepsilon=\frac{1}{2 p} \min _{e \in E^{\prime}(C)}\{\min \{f(e), 1-f(e)\}\}
$$

Without loss of generality, assume that $f\left(e_{1}\right)=0$. Let $g\left(e_{i}\right)=\varepsilon$ for i odd, $g\left(e_{i}\right)=-\varepsilon$ for i even, and $g(e)=0$ for $e \in E(G)-E(C)$. Then $f+g$ is still a fractional k-factor of G, but $\left|E_{f+g}\right|>\left|E_{f}\right|$, a contradiction.

Conversely, suppose that G has no increasing walk with respect to f. We show that G_{f} is a maximum fractional k-factor. Otherwise, let G_{g} be a maximum fractional k-factor with indicator function g and $\left|E_{g}\right|>\left|E_{f}\right|$. Then there exists at least one edge $e_{1} \in E(G)$ such that $g\left(e_{1}\right)>0$ and $f\left(e_{1}\right)=0$. By Theorem 1.1, we can obtain G_{g} from G_{f} through a series of adjusting operations. Let $f=f_{0}, f_{1}, \ldots, f_{s-1}, f_{s}=g$ be the indicator functions generated by the already mentioned adjusting operations and r the smallest subscript such that $f_{r-1}\left(e_{1}\right)=0$ and $f_{r}\left(e_{1}\right)>0(r \geq 1)$. Then in $G_{f_{r-1}}$ there exists a sign-alternating walk C containing e_{1}, say $C=\left(e_{1}, e_{2}, \ldots, e_{m}\right)$. By the definition of sign-alternating walk, it is easy to see that

$$
\begin{equation*}
f_{r-1}(e)<f_{r}(e), \quad \text { if } f(e)-g(e)<0 \text { for any } e \in E(C) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{r-1}(e)>f_{r}(e), \quad \text { if } f(e)-g(e)>0 \text { for any } e \in E(C) . \tag{2}
\end{equation*}
$$

The adjusting operations imply the following inequalities:

$$
\begin{equation*}
f_{i}(e) \leq f_{i+1}(e) \text { for } i=0, \ldots, s-1, \text { if } f(e)-g(e)<0 \text { for any } e \in E(G) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(e) \geq f_{i+1}(e) \text { for } i=0, \ldots, s-1 \text {, if } f(e)-g(e)>0 \text { for any } e \in E(G) \tag{4}
\end{equation*}
$$

From (1) and (3), we have $f\left(e_{j}\right) \leq f_{r-1}\left(e_{j}\right)<f_{r}\left(e_{j}\right) \leq g\left(e_{j}\right) \leq 1$, for $j \equiv 1(\bmod 2)$. Similarly, from (2) and (4), we obtain $f\left(e_{j}\right) \geq f_{r-1}\left(e_{j}\right)>f_{r}\left(e_{j}\right) \geq g\left(e_{j}\right) \geq 0$, for $j \equiv 0(\bmod 2)$. By the choice of e_{1}, we see that C is an increasing walk of G with respect to f, a contradiction to the choice of G_{f}.

3. Proof of Theorem 1.3

Let G be a graph with the connectivity $\kappa(G)$ and S, T be two disjoint subsets of $V(G)$. Denote the set of edges from S to T by $E_{G}(S, T)$. To prove Theorem 1.3, we need the following lemmas.

Lemma 3.1 (See [7]). A graph G has a fractional 1-factor if and only if for any $S \subseteq V(G)$,

$$
i(G-S) \leq|S|
$$

where $i(G-S)$ denotes the number of isolated vertices in $G-S$.
Lemma 3.2. Let G be a graph with $t(G) \geq 1$. If $|V(G)| \geq 2$, then G has a fractional 1-factor.
Proof. If G is complete, obviously G has a fractional 1-factor. Otherwise, suppose that $|V(G)| \geq 2$ and $t(G) \geq 1$ but G has no fractional 1-factors. From Lemma 3.1, there exists a subset S of $V(G)$ such that

$$
i(G-S)>|S|
$$

Since G is connected and $S \neq \emptyset$, we have $\omega(G-S) \geq i(G-S) \geq 2$. Therefore

$$
t(G) \leq \frac{|S|}{\omega(G-S)} \leq \frac{|S|}{i(G-S)}<1
$$

a contradiction to $t(G) \geq 1$.
Lemma 3.3 (See [7]). A bipartite graph G has a fractional 1-factor if and only if it has a 1-factor.

Fig. 1. Illustration of Case 1 , where ' + ' and ' - ' represent weights greater than zero and less than one, respectively.
Now we are ready to prove Theorem 1.3.
Proof of Theorem 1.3. By Lemma 3.2, G has fractional 1 -factors. Suppose that G has no connected fractional 1factors. Let $F=G_{f}$ be a maximum fractional 1-factor. By Theorem 1.2, there exists no increasing walk in G with respect to f. Assume that the components of F are $F_{1}, \ldots, F_{m}(m \geq 2)$. It is easy to see that if $F_{i}\left(\nexists K_{2}\right)$ is a component of F, then $0<f(e)<1$ for each $e \in E\left(F_{i}\right)$ and F_{i} must contain cycles.

Because $t(G) \geq 1$, we have $\kappa(G) \geq 2$. In particular, G is connected. Denote a bipartite component with bipartition X_{i} and Y_{i} by $F_{i}=\left(X_{i}, Y_{i}\right)$.

Now we construct a new graph $G^{\prime}=(V, E)=\left(V_{1} \cup V_{2}, E_{1} \cup E_{2} \cup E_{3}\right)$, where $V_{1}=\bigcup\left\{x_{i}, y_{i}: F_{i}=\right.$ $\left(X_{i}, Y_{i}\right)$ is bipartite $\}$ and $V_{2}=\bigcup\left\{z_{i}: F_{i}\right.$ is non-bipartite $\}$, and $E_{1}=\bigcup\left\{x_{i} y_{i}: F_{i}=\left(X_{i}, Y_{i}\right)\right.$ is bipartite $\}, E_{2}=$ $\bigcup\left\{u_{i} v_{j}: E_{G}\left(U_{i}, V_{j}\right) \neq \emptyset, U_{i} \in\left\{X_{i}, Y_{i}\right\}, V_{j} \in\left\{X_{j}, Y_{j}\right\}\right.$ for $\left.i \neq j\right\}$, where U_{i} and V_{j} are the bipartition corresponding to u_{i} and v_{i}, and $E_{3}=\bigcup\left\{u_{i} z_{j}: E_{G}\left(U_{i}, F_{j}\right) \neq \emptyset, U_{i} \in\left\{X_{i}, Y_{i}\right\}, F_{j}\right.$ is a non-bipartite component $\}$. The edges in E_{1} are called F-edges and the edges in $E_{2} \cup E_{3}$ are called G-edges. Clearly, each F-edge corresponds to an odd path in a bipartite component of G_{f} and each G-edge corresponds to the edge(s) in $E(G) \backslash E(F)$. An $F-G$ alternating path in G^{\prime} is a path whose edges are alternately F-edges and G-edges. It is not hard to verify that a closed alternating path of even length in G^{\prime} corresponds to an increasing walk with respect to f in G.

Let $P_{G^{\prime}}=\left(u_{1}, \ldots, u_{k}\right)$ be a longest $F-G$ alternating path in G^{\prime} (i.e., weights of the edges are greater than zero and less then one alternately). Then $P_{G^{\prime}}$ corresponds to an alternating path P_{G} with respect to f in G. Moreover, if the end vertex u_{1} of $P_{G^{\prime}}$ is incident to a G-edge, then u_{1} is in V_{2}.

Now we consider three cases.
Case 1. $u_{1} \in V_{2}$ and $u_{k} \in V_{2}$.
In this case, since $u_{1} \in V_{2}$ and $u_{k} \in V_{2}, u_{1}$ is connected to an odd cycle C_{1} of F_{1} by a path $P_{u_{1}}$ and u_{k} is connected to an odd cycle C_{k} of F_{k} by a path $P_{u_{k}}$. Then $C_{1}, P_{u_{1}}, P_{G}, P_{u_{k}}$ and C_{k} form an increasing walk in G with respect to f (see Fig. 1), a contradiction.
Case 2. $u_{1} \in V_{1}$ and $u_{k} \in V_{1}$.
Without loss of generality, assume $u_{1}=x_{1}$ and $u_{k}=y_{k}$. Then either X_{1} or Y_{k} is independent in G. Otherwise, let e_{1} be an edge joining two vertices in X_{1} and e_{k} be an edge joining two vertices in Y_{k}. Let the odd cycle containing e_{1} be C_{1} and the odd cycle containing e_{k} be C_{k}. Then the odd cycles C_{1}, C_{k} and the path P_{G} can form an increasing walk in G with respect to f, a contradiction. Assume that X_{1} is independent in G. If a vertex v of X_{1} is adjacent to a vertex w outside of the path P_{G}, then the edge $v w$ corresponds to a G-edge of G^{\prime} which contradicts the fact that $P_{G^{\prime}}$ is the longest $F-G$ alternating path. If a vertex v of X_{1} is adjacent to a vertex w on the path P_{G}, then there is a cycle C_{1} in G containing the edge $v w$. If the cycle C_{1} is even, then it is an increasing walk in G, a contradiction. If C_{1} is odd, then Y_{k} must be an independent set in G. Applying the same argument as to X_{1}, we see that no vertex in Y_{k} is adjacent to a vertex outside P_{G} and the length of cycle C_{k} which contains an edge from Y_{k} to a vertex on P_{G} is odd. Thus C_{1}, C_{k} and an alternating path form an increasing walk in G again, a contradiction. Therefore, the vertices in Y_{k} are not adjacent to other vertices besides those in X_{k}. In other words, X_{k} is a cut set of G. By Lemma 3.3, we have $\left|X_{k}\right|=\left|Y_{k}\right|$. Let $S=X_{k}$. Then $\omega(G-S) \geq\left|Y_{k}\right|+1=|S|+1$ and thus

$$
1 \leq t(G) \leq \frac{|S|}{\omega(G-S)} \leq \frac{|S|}{|S|+1}<1
$$

a contradiction.

Case 3. $u_{1} \in V_{1}$ and $u_{k} \in V_{2}$.
Without loss of generality, assume $u_{1}=x_{1}$. The arguments in this case are similar to those for Case 2. First, we show that X_{1} is independent in G. Otherwise, let e_{1} be an edge joining two vertices in X_{1} and let an odd cycle C_{k} in F_{k} be connected by a path P_{k} to the path P_{G}. Then the odd cycle C_{1}, the paths P_{G}, P_{k} and C_{k} can form an increasing walk in G with respect to f, a contradiction. If a vertex v of X_{1} is adjacent to a vertex w outside of the vertices of the path P_{G}, then the edge $v w$ corresponds to a G-edge of G^{\prime} which contradicts the fact that $P_{G^{\prime}}$ is the longest $F-G$ alternating path. Next, if a vertex v of X_{1} is adjacent to a vertex w on the path P_{G}, then it creates a cycle C_{1} in G with odd length. Otherwise, if the cycle C_{1} has even length, then it is an even alternating cycle and thus an increasing walk in G, a contradiction. Then C_{1} and an odd cycle in the non-bipartite component F_{k} together with an alternating path form an increasing walk in G again, a contradiction. Therefore, the vertices in X_{1} is not adjacent to other vertices besides those in Y_{1} or Y_{1} is a cut set of G. By Lemma 3.3, we have $\left|X_{1}\right|=\left|Y_{1}\right|$. Let $S=Y_{1}$. Then

$$
1 \leq t(G) \leq \frac{|S|}{\omega(G-S)} \leq \frac{|S|}{|S|+1}<1
$$

a contradiction.
The proof is complete.

4. Proofs of Theorems 1.4 and 1.5

Two of basic properties of fractional 1-factors were given in [7]; one is Lemma 3.3 and the other is the following lemma.

Lemma 4.1 (See [7]). If a non-bipartite graph G has fractional 1-factors, then it has a fractional 1-factor G_{f} with indicator function f such that $f(e) \in\left\{0, \frac{1}{2}, 1\right\}$ for any $e \in E(G)$.

Lemmas 3.3 and 4.1 imply that if G has a fractional 1-factor, then there exists a fractional 1-factor consisting of K_{2} 's and odd cycles only. In fact, the fractional 1-factor stated in Lemma 3.3 is a fractional 1-factor of G with the minimum number of edges. Due to the simplicity, such fractional factors are particularly interesting and important. In this section we investigate the properties of connected 1-factors with the minimum number of edges.

Proof of Theorem 1.4. Let $G_{f}=(X, Y)$ be a bipartite connected fractional 1-factor of G. Then $|X|=|Y|$ from Lemma 3.3. Let $v \in X$ be a cut vertex of G_{f} and $G_{i}=\left(X_{i}, Y_{i}\right)(1 \leq i \leq m)$ be the components of $G_{f}-v$. Obviously, $m \geq 2$ and $N(v) \cap Y_{i} \neq \emptyset$ for $i=1, \ldots, m$, where $N(v)$ denotes the set of neighbors of v in G_{f}. However, for any G_{i},

$$
\sum_{e \in E\left(G_{i}\right)} f(e)=\sum_{x \in X_{i}}\left(\sum_{e \sim x} f(e)\right)=\sum_{x \in X_{i}} 1=\left|X_{i}\right| .
$$

Similarly,

$$
\sum_{e \in E\left(G_{i}\right)} f(e)<\sum_{y \in Y_{i}}\left(\sum_{e \sim y} f(e)\right)=\sum_{y \in Y_{i}} 1=\left|Y_{i}\right| .
$$

Thus, $\left|X_{i}\right| \leq\left|Y_{i}\right|-1$. But

$$
|X|=\sum_{i=1}^{m}\left|X_{i}\right|+1 \leq \sum_{i=1}^{m}\left(\left|Y_{i}\right|-1\right)+1=|Y|-m+1<|Y|,
$$

a contradiction. Therefore G_{f} has no cut vertex or G_{f} is 2-connected.
Next we prove Theorem 1.5.
Proof of Theorem 1.5. Let G be a graph of order at least 5 and let G_{f} be a connected fractional 1-factor with the minimum number of edges in G. We prove that G_{f} has no 4 -cycles. Suppose that G_{f} has a 4 -cycle $C=$ $\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{1}\right)$.

We consider two cases.
Case 1. The cycle C contains at least one chord.
Suppose that $v_{1} v_{3} \in E\left(G_{f}\right)$. Since $f\left(v_{1} v_{3}\right)>0$, then at least one of v_{2} and v_{4} is of degree at least 3 in G_{f}. If only one of them, say v_{4}, is of degree at least 3 in G_{f}, then $\varepsilon=f\left(v_{3} v_{4}\right)<f\left(v_{1} v_{2}\right)$. Starting from $v_{1} v_{2}$, we alternately decrease and increase the weights on C by ε and then it results in a connected fractional 1-factor of G with fewer edges (we say that G_{f} can be improved through C from now on), a contradiction to the choice of G_{f}. Similarly, if both v_{2} and v_{4} are of degree at least 3 in G_{f}, then G_{f} can be improved through C, a contradiction again.
Case 2 . The cycle C contains no chord.
There are at least one pair of adjacent vertices on C, say v_{1} and v_{2}, that have neighbors outside C. If v_{4} or v_{3} is of degree 2 in G_{f}, say $d_{G_{f}}\left(v_{4}\right)=2$, then $f\left(v_{1} v_{2}\right)<f\left(v_{3} v_{4}\right)$. Let $f\left(v_{1} v_{2}\right)=\varepsilon$. Replacing $f\left(v_{2} v_{3}\right)$ and $f\left(v_{1} v_{4}\right)$ by $f\left(v_{2} v_{3}\right)+\varepsilon$ and $f\left(v_{1} v_{4}\right)+\varepsilon$, and $f\left(v_{1} v_{2}\right)$ and $f\left(v_{3} v_{4}\right)$ by 0 and $f\left(v_{1} v_{4}\right)-\varepsilon$. Then we obtain a connected fractional 1 -factor with one edge fewer, a contradiction. Suppose that $d_{G_{f}}\left(v_{3}\right) \geq 3$ and $d_{G_{f}}\left(v_{4}\right) \geq 3$. If $f\left(v_{1} v_{2}\right) \neq f\left(v_{3} v_{4}\right)$, $f\left(v_{1} v_{4}\right) \neq f\left(v_{2} v_{3}\right)$ or $G_{f}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$ or $G_{f}-\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$ is connected, then G_{f} can be improved through C. Otherwise, $f\left(v_{1} v_{2}\right)=f\left(v_{3} v_{4}\right)$, and $f\left(v_{1} v_{4}\right)=f\left(v_{2} v_{3}\right)$ and both $G_{f}-\left\{v_{1} v_{2}, v_{3} v_{4}\right\}$ and $G_{f}-\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$ are disconnected. Let G_{1} and G_{2} be the components of $G_{f}-\left\{v_{1} v_{4}, v_{2} v_{3}\right\}$ such that $v_{1} v_{2}$ and $v_{3} v_{4}$ are in G_{1} and G_{2}, respectively. If one of the components, say G_{1}, is bipartite, then $v_{1} v_{2}$ is contained in an even cycle C_{1} of G_{1}. We can alternately increase and decrease a small positive value on the edges of C_{1} such that $f\left(v_{1} v_{2}\right)$ decreases. Then G_{f} can be improved, a contradiction. So G_{1} and G_{2} are non-bipartite. Then we can form a closed even walk W by using two odd cycles, from G_{1} and G_{2} respectively, and a path through $v_{1} v_{4}$ connecting them. Now we can adjust on W to make $f\left(v_{1} v_{4}\right)$ decrease and then G_{f} can be improved again. This last contradiction leads to the conclusion of the proof.

Finally, we present two open problems.
Problem 1. Find a characterization of the connected fractional k-factors with the minimum number of edges.
Problem 2. Is it true that a connected bipartite fractional 1-factor with the minimum number of edges is a minimally 2-connected graph?

Acknowledgments

The authors are indebted to the anonymous referees who pointed out a gap in the proof of Theorem 1.3 and made valuable comments and suggestions. We also wish to thank Dr. Yinghong Ma for constructive discussions during the preparation of the work.

References

[1] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. USA 43 (1957) 842-844.
[2] M. Cai, A degree condition for the existence of connected [$k, k+1]$-factors, Syst. Sci. Math. Sci. 8 (1995) 364-368.
[3] M. Cai, Connected [k,k+1]-factors of graphs, Discrete Math. 169 (1997) 1-16.
[4] W.Y.C. Chen, Maximum (g, f)-factors of a general graph, Discrete Math. 91 (1991) 1-7.
[5] V. Chvátal, Tough graphs and hamiltonian circuits, Discrete Math. 5 (1973) 215-228.
[6] H. Enomoto, B. Jackson, P. Katerinis, A. Saito, Toughness and the existence of k-factors, J. Graph Theory 9 (1985) 87-95.
[7] E.R. Scheinerman, D.H. Ullman, Fractional Graph Theory, John Wiley and Sons, Inc., New York, 1997.

[^0]: *This work was supported by NSF of China, Discovery Grant of NSERC of Canada and National 973 Project of China.
 ${ }^{*}$ Corresponding author at: Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, B. C., V2C 5N3, Canada. Fax: +1 2503715675 .

 E-mail address: yu@tru.ca (Q. Yu).

