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Abstract

We prove that fractional k-factors can be transformed among themselves by using a new adjusting operation repeatedly. We
introduce, analogous to Berge’s augmenting path method in matching theory, the technique of increasing walk and derive a
characterization of maximum fractional k-factors in graphs. As applications of this characterization, several results about connected
fractional 1-factors are obtained.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

We study the fractional factor problem in graphs, which can be considered as a relaxation of the well-known
cardinality matching problem. The fractional factor problem has wide-ranging applications in areas such as network
design, scheduling and the combinatorial polyhedron. For instance, in a communication network if we allow several
large data packets to be sent to various destinations through several channels, the efficiency of the network will be
improved if we allow the large data packets to be partitioned into small parcels. The feasible assignment of data
packets can be seen as a fractional flow problem and it becomes a fractional matching problem when the destinations
and sources of a network are disjoint (i.e., the underlying graph is bipartite).

In this work, we consider undirected finite simple graphs only. Denote a graph with vertex set V (G) and edge set
E(G) by G = (V (G), E(G)). Let x be an end vertex of an edge e; we denote the incidence relation between x and e
by x ∼ e or e ∼ x .

Let f : E(G) → [0, 1] be a real-valued function from the edge set E(G) to the real number interval [0, 1]. For
any e ∈ E(G), f (e) is referred to as the weight of the edge e. Define E f = {e ∈ E(G) : f (e) > 0} and let G[E f ] be
the subgraph of G induced by E f . If

∑
e∼v f (e) = k is satisfied for each vertex v ∈ V (G), then G[E f ], or G f for
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short, is called a fractional k-factor of G with indicator function f . A fractional 1-factor is also called a fractional
perfect matching in [7]. On restricting f : E(G) → {0, 1}, fractional k-factors and fractional 1-factors are precisely
the conventional k-factors and perfect matchings.

A walk W is a sequence of edges e1, e2, . . . , em so that each pair of any two consecutive edges are incident and
each edge appears no more than twice. Sometimes, for convenience, we also use the vertices to represent a walk,
e.g., W = (x1, x2, . . . , xm, xm+1) where ei = xi xi+1, 1 ≤ i ≤ m. A closed walk is a walk with x1 = xm+1. A path
is a walk such that all vertices are distinct and a cycle is a closed path.

Let G f and Gg be two fractional k-factors of G with indicator functions f and g, respectively. Define E+
= {e ∈

E(G) : f (e) − g(e) > 0} and E−
= {e ∈ E(G) : f (e) − g(e) < 0}. A sign-alternating walk of G with respect to f

and g is a closed walk of even length with its edges alternately in E+ and in E−.
Given a sign-alternating walk of G, one of the major techniques in this work is to adjust weights of the edges on a

walk so that either |E+
| or |E−

| decreases. This process is referred as an adjusting operation and the details of this
process are described below:

Let C = (e1, e2, . . . , e2m) be a sign-alternating walk with respect to f and g and w = f − g. If an edge e is used
twice, we use two parallel edges e′ and e′′ to replace e and assign the weight 1

2w(e) to e′ and e′′, respectively. Set

ε = min
e∈E(C)

{|w(e)|}.

Without loss of generality, assume that w(e1) > 0. Define a new indicator function f1: f1(ei ) = f (ei ) − ε for i odd,
f1(ei ) = f (ei ) + ε for i even and f1(e) = f (e) for any e ∈ E(G) − E(C).

After the adjusting operation, collapse the parallel edges e′ and e′′ back to e and let f1(e) = f1(e′) + f1(e′′). Now
G f1 is a fractional k-factor of G with indicator function f1. Obviously, the cardinality of E f1−g is smaller than that of
E f −g .

Applying the adjusting operation, we can obtain the following result which is a generalization of the transformation
theorem proven in [4].

Theorem 1.1. Let G f and Gg be two fractional k-factors of G with indicator functions f and g, respectively. Then
Gg can be obtained from G f through performing finitely many adjusting operations repeatedly.

Let G f be a fractional k-factor of G with indicator function f . If |E f | ≥ |Eg| holds for any fractional k-factor
Gg with indicator function g, then G f is called a maximum fractional k-factor (i.e., with the maximum number of
non-zero edges).

An increasing walk W of a graph G with respect to f is a closed walk of even length so that the weights of its
edges are greater than zero or less than one alternately and with at least one edge of weight zero. So if we denote
an increasing walk by a sequence of edges, W = (e0, e1, . . . , e2m−1, e0), then f (e2r ) < 1 and f (e2r+1) > 0 for
0 ≤ r ≤ m − 1 and f (e2i ) = 0 for some i . One example of increasing walks is the graph consisting of two odd cycles
joined by a single edge e, where f (e) = 0 and the weights of all edges on two odd cycles are positive but less than
one. It is easy to see that no two incident edges of the weight zero can appear in an increasing walk.

Using Theorem 1.1 we characterize maximum fractional k-factors as follows.

Theorem 1.2. Let G f be a fractional k-factor of a graph G with indicator function f . Then G f is a maximum
fractional k-factor of G if and only if G has no increasing walk with respect to f .

In fact, Theorem 1.2 is a fractional version of the well-known Berge theorem regarding maximum matchings [1].
One may use Theorem 1.2 to design an efficient algorithm to find a maximum fractional k-factor starting with an
arbitrary fractional k-factor.

A connected fractional factor of G is a fractional factor G f if G f is connected. Finding sufficient conditions for
the existence of connected factors has attracted much attention recently (see [2] and [3]). The authors are not aware
of any research done for connected fractional factors.

On the basis of Theorem 1.2 we obtain a toughness condition for the existence of connected fractional 1-factors.
For S ⊆ V (G), let ω(G − S) denote the number of components of G − S. The toughness of G is defined by

t (G) =

+∞ if G is complete;

min
{

|S|

ω(G − S)
: ∅ ⊆ S ⊆ V (G) and ω(G − S) > 1

}
otherwise.
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If t (G) = k, we say that G is k-tough. The concept of toughness was introduced by Chvátal [5] as a new graphic
parameter for studying Hamilton cycles in graphs. Toughness has become an effective tool for investigating many
other graph theory problems. In particular, Enomoto et al. [6] showed that if a graph G is k-tough, then it has k-
factors. Furthermore, we propose the following conjecture.

Conjecture 1. Let G be a k-tough graph (k is an integer and k ≥ 1). Then G contains a connected fractional k-factor.

Using Theorem 1.2, we confirm this conjecture for the case k = 1 and obtain the following result.

Theorem 1.3. Let G be a graph with t (G) ≥ 1. Then G has a connected fractional 1-factor.

Note that, unlike that of the usual 1-factor, the existence of the fractional 1-factor may not imply evenness of
|V (G)|. The toughness condition in Theorem 1.3 is seen to be sharp by noting the graph G = Kn

∨
(n + 1)K1,

i.e., the complete join between a complete graph Kn and an independent set (n + 1)K1.
We investigate the properties of connected fractional 1-factors in Theorems 1.4 and 1.5.

Theorem 1.4. Let G f be a bipartite connected fractional 1-factor of a graph G. Then G f is 2-connected.

Theorem 1.5. Let G be a graph of order at least 5 and let G f be a connected fractional 1-factor of G with the
minimum number of edges. Then G f contains no 4-cycles.

The proofs of Theorems 1.1 and 1.2 are presented in Section 2. In Section 3 we prove Theorem 1.3. Finally, we
provide the proofs of Theorems 1.4 and 1.5 in Section 4.

2. Proofs of Theorems 1.1 and 1.2

Applying the adjusting operation introduced in Section 1, we here provide a proof of Theorem 1.1.

Proof of Theorem 1.1. Let G f and Gg be two fractional k-factors of G with indicator functions f and g, respectively.
Assume that f 6≡ g. Define an edge set

E f 6=g = {e ∈ E(G) : f (e) − g(e) 6= 0}.

Then E f 6=g 6= ∅. Let H be the subgraph of G induced by E f 6=g . Assign each edge e ∈ E(H) the weight
w(e) = f (e) − g(e). Define E+

H = E+
= {e ∈ E(H) : w(e) > 0} and E−

H = E−
= {e ∈ E(H) : w(e) < 0}. Let

Ex = {e ∈ E(G) : e is incident with x} for a vertex x ∈ V (G). It is easy to see that for any x ∈ V (H), |E+

H ∩ Ex | ≥ 1
and |E−

H ∩ Ex | ≥ 1. Thus δ(H) ≥ 2.
Next we show the existence of a sign-alternating walk in H with respect to f and g. If there does not exist a

sign-alternating cycle in H , we choose a longest sign-alternating path P in H , say P = (x1, x2, . . . , xm).

Case 1. m is odd.
Without loss of generality, assume w(x1x2) > 0, then w(xm−1xm) < 0. Since δ(H) ≥ 2, there exist i, j ∈

{1, 2, . . . , m} such that w(x1xi ) < 0 and w(xm x j ) > 0. Thus C1 = (x1, . . . , xi , x1) and C2 = (x j , . . . , xm, x j ) are
odd cycles. If i > j , then C = (x1, . . . , x j , xm, . . . , xi , x1) is a sign-alternating cycle of H ; we are done. If i ≤ j ,
then C = (x1, . . . , xi , . . . , x j , . . . , xm, x j , . . . , xi , x1) is a sign-alternating walk of H .

Case 2. m is even.
Like for Case 1, we may assume that w(x1x2) > 0. Then w(xm−1xm) > 0. Since δ(H) ≥ 2, there exist

i, j ∈ {1, 2, . . . , m} such that w(x1xi ) < 0 and w(xm x j ) < 0. Thus cycles C1 = (x1, . . . , xi , x1) and C2 =

(x j , . . . , xm, x j ) are odd. If i > j , then (x1, . . . , x j , xm, . . . , xi , x1) is a sign-alternating cycle of H . If i ≤ j ,
then C = (x1, . . . , xi , . . . , x j , . . . , xm, x j , . . . , xi , x1) is a sign-alternating walk of H .

In both cases we can find a sign-alternating walk in H . Using the adjusting operation introduced in Section 1,
we obtain a fractional k-factor of G with indicator function f1 and |E f1−g| < |E f −g|. Repeating the adjusting
operation on f1 and g, and so on, thus we obtain a series of fractional k-factors with indicator functions f =

f0, f1, . . . , fs−1, fs = g, where |E fi+1−g| < |E fi −g| for i = 0, 1, . . . , s − 1. The proof is complete. �
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Proof of Theorem 1.2. Let G f be a maximum fractional k-factor of G with indicator function f . Suppose that G has
an increasing walk C = (e1, e2, . . . , em). Let E ′(C) = {e ∈ E(C) : 0 < f (e) < 1}. Assume that the occurrence of
each edge on C is no more than p times. Set

ε =
1

2p
min

e∈E ′(C)
{min{ f (e), 1 − f (e)}}.

Without loss of generality, assume that f (e1) = 0. Let g(ei ) = ε for i odd, g(ei ) = −ε for i even, and g(e) = 0 for
e ∈ E(G) − E(C). Then f + g is still a fractional k-factor of G, but |E f +g| > |E f |, a contradiction.

Conversely, suppose that G has no increasing walk with respect to f . We show that G f is a maximum fractional
k-factor. Otherwise, let Gg be a maximum fractional k-factor with indicator function g and |Eg| > |E f |. Then there
exists at least one edge e1 ∈ E(G) such that g(e1) > 0 and f (e1) = 0. By Theorem 1.1, we can obtain Gg from G f
through a series of adjusting operations. Let f = f0, f1, . . . , fs−1, fs = g be the indicator functions generated by the
already mentioned adjusting operations and r the smallest subscript such that fr−1(e1) = 0 and fr (e1) > 0 (r ≥ 1).
Then in G fr−1 there exists a sign-alternating walk C containing e1, say C = (e1, e2, . . . , em). By the definition of
sign-alternating walk, it is easy to see that

fr−1(e) < fr (e), if f (e) − g(e) < 0 for any e ∈ E(C) (1)

and

fr−1(e) > fr (e), if f (e) − g(e) > 0 for any e ∈ E(C). (2)

The adjusting operations imply the following inequalities:

fi (e) ≤ fi+1(e) for i = 0, . . . , s − 1, if f (e) − g(e) < 0 for any e ∈ E(G) (3)

and

fi (e) ≥ fi+1(e) for i = 0, . . . , s − 1, if f (e) − g(e) > 0 for any e ∈ E(G). (4)

From (1) and (3), we have f (e j ) ≤ fr−1(e j ) < fr (e j ) ≤ g(e j ) ≤ 1, for j ≡ 1 ( mod 2). Similarly, from (2) and (4),
we obtain f (e j ) ≥ fr−1(e j ) > fr (e j ) ≥ g(e j ) ≥ 0, for j ≡ 0 ( mod 2). By the choice of e1, we see that C is an
increasing walk of G with respect to f , a contradiction to the choice of G f . �

3. Proof of Theorem 1.3

Let G be a graph with the connectivity κ(G) and S, T be two disjoint subsets of V (G). Denote the set of edges
from S to T by EG(S, T ). To prove Theorem 1.3, we need the following lemmas.

Lemma 3.1 (See [7]). A graph G has a fractional 1-factor if and only if for any S ⊆ V (G),

i(G − S) ≤ |S|

where i(G − S) denotes the number of isolated vertices in G − S.

Lemma 3.2. Let G be a graph with t (G) ≥ 1. If |V (G)| ≥ 2, then G has a fractional 1-factor.

Proof. If G is complete, obviously G has a fractional 1-factor. Otherwise, suppose that |V (G)| ≥ 2 and t (G) ≥ 1 but
G has no fractional 1-factors. From Lemma 3.1, there exists a subset S of V (G) such that

i(G − S) > |S|.

Since G is connected and S 6= ∅, we have ω(G − S) ≥ i(G − S) ≥ 2. Therefore

t (G) ≤
|S|

ω(G − S)
≤

|S|

i(G − S)
< 1

a contradiction to t (G) ≥ 1. �

Lemma 3.3 (See [7]). A bipartite graph G has a fractional 1-factor if and only if it has a 1-factor.
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Fig. 1. Illustration of Case 1, where ‘+’ and ‘−’ represent weights greater than zero and less than one, respectively.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.2, G has fractional 1-factors. Suppose that G has no connected fractional 1-
factors. Let F = G f be a maximum fractional 1-factor. By Theorem 1.2, there exists no increasing walk in G with
respect to f . Assume that the components of F are F1, . . . , Fm(m ≥ 2). It is easy to see that if Fi ( 6∼= K2) is a
component of F , then 0 < f (e) < 1 for each e ∈ E(Fi ) and Fi must contain cycles.

Because t (G) ≥ 1, we have κ(G) ≥ 2. In particular, G is connected. Denote a bipartite component with bipartition
X i and Yi by Fi = (X i , Yi ).

Now we construct a new graph G ′
= (V, E) = (V1 ∪ V2, E1 ∪ E2 ∪ E3), where V1 =

⋃
{xi , yi : Fi =

(X i , Yi ) is bipartite} and V2 =
⋃

{zi : Fi is non-bipartite}, and E1 =
⋃

{xi yi : Fi = (X i , Yi ) is bipartite}, E2 =⋃
{uiv j : EG(Ui , V j ) 6= ∅, Ui ∈ {X i , Yi }, V j ∈ {X j , Y j } for i 6= j}, where Ui and V j are the bipartition

corresponding to ui and vi , and E3 =
⋃

{ui z j : EG(Ui , F j ) 6= ∅, Ui ∈ {X i , Yi }, F j is a non-bipartite component}.
The edges in E1 are called F-edges and the edges in E2 ∪ E3 are called G-edges. Clearly, each F-edge corresponds to
an odd path in a bipartite component of G f and each G-edge corresponds to the edge(s) in E(G) \ E(F). An F − G
alternating path in G ′ is a path whose edges are alternately F-edges and G-edges. It is not hard to verify that a closed
alternating path of even length in G ′ corresponds to an increasing walk with respect to f in G.

Let PG ′ = (u1, . . . , uk) be a longest F − G alternating path in G ′ (i.e., weights of the edges are greater than zero
and less then one alternately). Then PG ′ corresponds to an alternating path PG with respect to f in G. Moreover, if
the end vertex u1 of PG ′ is incident to a G-edge, then u1 is in V2.

Now we consider three cases.
Case 1. u1 ∈ V2 and uk ∈ V2.

In this case, since u1 ∈ V2 and uk ∈ V2, u1 is connected to an odd cycle C1 of F1 by a path Pu1 and uk is connected
to an odd cycle Ck of Fk by a path Puk . Then C1, Pu1 , PG , Puk and Ck form an increasing walk in G with respect to
f (see Fig. 1), a contradiction.
Case 2. u1 ∈ V1 and uk ∈ V1.

Without loss of generality, assume u1 = x1 and uk = yk . Then either X1 or Yk is independent in G. Otherwise, let
e1 be an edge joining two vertices in X1 and ek be an edge joining two vertices in Yk . Let the odd cycle containing
e1 be C1 and the odd cycle containing ek be Ck . Then the odd cycles C1, Ck and the path PG can form an increasing
walk in G with respect to f , a contradiction. Assume that X1 is independent in G. If a vertex v of X1 is adjacent to a
vertex w outside of the path PG , then the edge vw corresponds to a G-edge of G ′ which contradicts the fact that PG ′

is the longest F − G alternating path. If a vertex v of X1 is adjacent to a vertex w on the path PG , then there is a cycle
C1 in G containing the edge vw. If the cycle C1 is even, then it is an increasing walk in G, a contradiction. If C1 is
odd, then Yk must be an independent set in G. Applying the same argument as to X1, we see that no vertex in Yk is
adjacent to a vertex outside PG and the length of cycle Ck which contains an edge from Yk to a vertex on PG is odd.
Thus C1, Ck and an alternating path form an increasing walk in G again, a contradiction. Therefore, the vertices in Yk
are not adjacent to other vertices besides those in Xk . In other words, Xk is a cut set of G. By Lemma 3.3, we have
|Xk | = |Yk |. Let S = Xk . Then ω(G − S) ≥ |Yk | + 1 = |S| + 1 and thus

1 ≤ t (G) ≤
|S|

ω(G − S)
≤

|S|

|S| + 1
< 1,

a contradiction.
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Case 3. u1 ∈ V1 and uk ∈ V2.
Without loss of generality, assume u1 = x1. The arguments in this case are similar to those for Case 2. First, we

show that X1 is independent in G. Otherwise, let e1 be an edge joining two vertices in X1 and let an odd cycle Ck in
Fk be connected by a path Pk to the path PG . Then the odd cycle C1, the paths PG , Pk and Ck can form an increasing
walk in G with respect to f , a contradiction. If a vertex v of X1 is adjacent to a vertex w outside of the vertices of the
path PG , then the edge vw corresponds to a G-edge of G ′ which contradicts the fact that PG ′ is the longest F − G
alternating path. Next, if a vertex v of X1 is adjacent to a vertex w on the path PG , then it creates a cycle C1 in G
with odd length. Otherwise, if the cycle C1 has even length, then it is an even alternating cycle and thus an increasing
walk in G, a contradiction. Then C1 and an odd cycle in the non-bipartite component Fk together with an alternating
path form an increasing walk in G again, a contradiction. Therefore, the vertices in X1 is not adjacent to other vertices
besides those in Y1 or Y1 is a cut set of G. By Lemma 3.3, we have |X1| = |Y1|. Let S = Y1. Then

1 ≤ t (G) ≤
|S|

ω(G − S)
≤

|S|

|S| + 1
< 1,

a contradiction.
The proof is complete. �

4. Proofs of Theorems 1.4 and 1.5

Two of basic properties of fractional 1-factors were given in [7]; one is Lemma 3.3 and the other is the following
lemma.

Lemma 4.1 (See [7]). If a non-bipartite graph G has fractional 1-factors, then it has a fractional 1-factor G f with
indicator function f such that f (e) ∈ {0, 1

2 , 1} for any e ∈ E(G).

Lemmas 3.3 and 4.1 imply that if G has a fractional 1-factor, then there exists a fractional 1-factor consisting of
K2’s and odd cycles only. In fact, the fractional 1-factor stated in Lemma 3.3 is a fractional 1-factor of G with the
minimum number of edges. Due to the simplicity, such fractional factors are particularly interesting and important. In
this section we investigate the properties of connected 1-factors with the minimum number of edges.

Proof of Theorem 1.4. Let G f = (X, Y ) be a bipartite connected fractional 1-factor of G. Then |X | = |Y | from
Lemma 3.3. Let v ∈ X be a cut vertex of G f and Gi = (X i , Yi ) (1 ≤ i ≤ m) be the components of G f − v.
Obviously, m ≥ 2 and N (v) ∩ Yi 6= ∅ for i = 1, . . . , m, where N (v) denotes the set of neighbors of v in G f .
However, for any Gi ,∑

e∈E(Gi )

f (e) =

∑
x∈X i

(∑
e∼x

f (e)

)
=

∑
x∈X i

1 = |X i |.

Similarly,∑
e∈E(Gi )

f (e) <
∑
y∈Yi

(∑
e∼y

f (e)

)
=

∑
y∈Yi

1 = |Yi |.

Thus, |X i | ≤ |Yi | − 1. But

|X | =

m∑
i=1

|X i | + 1 ≤

m∑
i=1

(|Yi | − 1) + 1 = |Y | − m + 1 < |Y |,

a contradiction. Therefore G f has no cut vertex or G f is 2-connected. �

Next we prove Theorem 1.5.

Proof of Theorem 1.5. Let G be a graph of order at least 5 and let G f be a connected fractional 1-factor with
the minimum number of edges in G. We prove that G f has no 4-cycles. Suppose that G f has a 4-cycle C =

(v1, v2, v3, v4, v1).
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We consider two cases.
Case 1. The cycle C contains at least one chord.

Suppose that v1v3 ∈ E(G f ). Since f (v1v3) > 0, then at least one of v2 and v4 is of degree at least 3 in G f . If only
one of them, say v4, is of degree at least 3 in G f , then ε = f (v3v4) < f (v1v2). Starting from v1v2, we alternately
decrease and increase the weights on C by ε and then it results in a connected fractional 1-factor of G with fewer
edges (we say that G f can be improved through C from now on), a contradiction to the choice of G f . Similarly, if
both v2 and v4 are of degree at least 3 in G f , then G f can be improved through C , a contradiction again.
Case 2. The cycle C contains no chord.

There are at least one pair of adjacent vertices on C , say v1 and v2, that have neighbors outside C . If v4 or v3 is
of degree 2 in G f , say dG f (v4) = 2, then f (v1v2) < f (v3v4). Let f (v1v2) = ε. Replacing f (v2v3) and f (v1v4) by
f (v2v3)+ ε and f (v1v4)+ ε, and f (v1v2) and f (v3v4) by 0 and f (v1v4)− ε. Then we obtain a connected fractional
1-factor with one edge fewer, a contradiction. Suppose that dG f (v3) ≥ 3 and dG f (v4) ≥ 3. If f (v1v2) 6= f (v3v4),
f (v1v4) 6= f (v2v3) or G f − {v1v2, v3v4} or G f − {v1v4, v2v3} is connected, then G f can be improved through C .
Otherwise, f (v1v2) = f (v3v4), and f (v1v4) = f (v2v3) and both G f − {v1v2, v3v4} and G f − {v1v4, v2v3} are
disconnected. Let G1 and G2 be the components of G f − {v1v4, v2v3} such that v1v2 and v3v4 are in G1 and G2,
respectively. If one of the components, say G1, is bipartite, then v1v2 is contained in an even cycle C1 of G1. We can
alternately increase and decrease a small positive value on the edges of C1 such that f (v1v2) decreases. Then G f can
be improved, a contradiction. So G1 and G2 are non-bipartite. Then we can form a closed even walk W by using two
odd cycles, from G1 and G2 respectively, and a path through v1v4 connecting them. Now we can adjust on W to make
f (v1v4) decrease and then G f can be improved again. This last contradiction leads to the conclusion of the proof.

�

Finally, we present two open problems.

Problem 1. Find a characterization of the connected fractional k-factors with the minimum number of edges.

Problem 2. Is it true that a connected bipartite fractional 1-factor with the minimum number of edges is a minimally
2-connected graph?
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