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Abstract

For a graph G with vertex set V (G) and edge set E(G), let i(G)
be the number of isolated vertices in G, the isolated toughness of
G is defined as I(G) = min{|S|/i(G− S) | S ⊆ V (G), i(G− S) ≥
2}, if G is not complete; and I(Kn) = n − 1. In this paper,
we investigate the existence of [a, b]-factor in terms of this graph
invariant. We proved that if G is a graph with δ(G) ≥ a and
I(G) ≥ a, then G has a fractional a-factor. Moreover, if δ(G) ≥ a,
I(G) > (a−1)+ a−1

b and G−S has no (a−1)-regular component
for any subset S of V (G), then G has an [a, b]-factor. The later
result is a generalization of Katerinis’ well-known theorem about
[a, b]-factors (P. Katerinis, Toughness of graphs and the existence
of factors, Discrete Math. 80(1990), 81-92).

1 Introduction

All graphs considered in this paper are simple undirected graphs. Let G =
(V (G), E(G)) be a graph, where V (G) and E(G) denote vertex set and
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edge set of G, respectively. We use dG(x) and δ(G) to denote the degree of
x in G and the minimum degree of G. For any S ⊆ V (G), the subgraph of
G induced by S is denoted by G[S]. i(G) and c(G) are used for the number
of isolated vertices and the number of components in G, respectively. For
S, T ⊆ V (G) let E(S, T ) = {uv ∈ E(G) | u ∈ S, v ∈ T}, E(S) = {uv ∈
E(G) | u, v ∈ S}, and e(S, T ) = |E(S, T )|. Other notation and terminology
not defined in this paper can be found in [8].

Let g(x) ≤ f(x) be two nonnegative integer-valued functions defined on
V (G) and let H be a spanning subgraph of G. We call H a (g, f)-factor of
G if g(x) ≤ dH(x) ≤ f(x) holds for each x ∈ V (G). Similarly, for any two
nonnegative integers a and b, H is an [a, b]-factor of G if a ≤ dH(x) ≤ b
for each x ∈ V (G). Let a = b = k > 0 for each x ∈ V (G), it is called a
k-factor.

Fractional factors can be considered as the rationalization of the tra-
ditional factors by replacing integer-valued function by a more generous
“fuzzy” function (i.e., a [0, 1]-valued indicator function). It defined as
follows: let h : E(G) → [0, 1] be a real-value function and dh

G(x) =∑
e∈Ex

h(e), where Ex = {xy | xy ∈ E(G)}. Then dh
G(x) is called the frac-

tional degree of x under h in G and h is called an indictor function if g(x) ≤
dh

G(x) ≤ f(x) holds for each x ∈ V (G). Let Eh = {e | e ∈ E(G), h(e) 6= 0}
and Gh be a spanning subgraph of G such that E(Gh) = Eh. The Gh is
referred as a fractional (g, f)-factor. The fractional k-factors and fractional
[a, b]-factors can be defined similarly. For any function f(x), we denote
f(S) =

∑
x∈S f(x).

Since fractional factors are relaxations of usual factors, many results
about traditional factors also are valid for fractional factors. We quote
some of them used later below.

Lemma 1.1. (Heinrich et al. [4]) Let g(x) and f(x) be nonnegative
integral-valued functions defined on V (G). If either one of the following
conditions holds

(i) g(x) < f(x) for every vertex x ∈ V (G);
(ii) G is bipartite;

then G has a (g, f)-factor if and only if for any subset S of V (G)

g(T )− dG−S(T ) ≤ f(S)

where T = {x | x ∈ V (G)− S, dG−S(x) ≤ g(x)}.
Lemma 1.2. (Anstee [1]) Let G be a graph and let g(x) ≤ f(x) be two
nonnegative integer-valued functions on V (G). Then G has a fractional
(g, f)-factor if and only if for any S ⊆ V (G),

g(T )− dG−S(T ) ≤ f(S)

holds, where T = {x | x ∈ V (G)− S, dG−S(x) ≤ g(x)}.
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Lemmas 1.1 and 1.2 imply that when G is bipartite or g(x) < f(x) for
every vertex x ∈ V (G), then G has a fractional (g, f)-factor if and only if G
has a (g, f)-factor. This is an interesting phenomenon, which indicates that
a real (g, f)-factor polytope is integral under one of the given conditions.

Well-known Tutte’s Theorem states that G has a 1-factor if and only
if o(G − S) ≤ |S| for all S ⊆ V (G), where o(G − S) is the number of odd
components in G − S. The following theorem provides a characterization
of fractional 1-factors by using the number of isolated vertices. This result
has been one of most widely quoted results in fractional factor theory.

Lemma 1.3. (see [8]) A graph G has a fractional 1-factor if and only if
i(G− S) ≤ |S| holds for any S ⊆ V (G).

Chvátal [2] introduced the notion of toughness for studying hamiltonian
cycles and regular factors in graphs. The toughness of a graph G, t(G), is
defined as

t(G) =

{
min{ |S|

c(G−S) | S ⊆ V (G), c(G− S) ≥ 2} if G is not complete;
|V (G)| − 1 otherwise.

The toughness number has become an important graph invariant for study-
ing various fundamental properties of graphs. In particular, Chvátal con-
jectured that k-toughness implies a k-factor in graphs and this conjecture
was confirmed positively by Enomoto et al. [3]. In this paper, we investi-
gate the existence of fractional factors in relation to the isolated toughness
of G. The parameter of isolated toughness is motivated from Chvátal’s
toughness by replacing c(G− S) with i(G− S) in the definition. The iso-
lated toughness, I(G), was first introduced by Ma and Liu [7] and is defined
as

I(G) =

{
min{ |S|

i(G−S) | S ⊆ V (G), i(G− S) ≥ 2} if G is not complete;
n− 1 if G = Kn.

Since c(G− S) ≥ i(G− S) for any S ⊆ V (G), the isolated toughness is no
less than toughness for any graph. Therefore, to weaken a condition in a
theorem we could consider to replace the condition in terms of toughness by
isolated toughness. In this paper, we provide several sufficient conditions in
terms of isolated toughness for graphs to have fractional factors and [a, b]-
factors. We pursue Chvátal’s idea along the same line for fractional factors
and prove the following

Theorem 1.1. Let G be a graph and a be a positive integer. If δ(G) ≥ a
and I(G) ≥ a, then G has a fractional a-factor.
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In [5], Katerinis obtained a sufficient condition for the existence of [a, b]-
factor by using toughness and proved that if the toughness of G is at least
(a − 1) + a

b and a|V (G)| is even when a = b, then G has an [a, b]-factor.
We replace the condition in Katerinis’ result from toughness to isolated
toughness and prove the same conclusion. Thus, we generalize this well-
known result.

Theorem 1.2. Let G be a graph with δ(G) ≥ a and the isolated toughness
I(G) > (a− 1) + a−1

b (2 ≤ a < b). If, for any subset S of V (G), G−S has
no (a− 1)-regular subgraph as a component, then G has an [a, b]-factor.

In view of Lemmas 1.1 and 1.2, to show Theorem 1.2 we need only
to prove the existence of fractional [a, b]-factors. So in Section 3, we only
provide a proof for the following weaker version of Theorem 1.2.

Theorem 1.3. Let G be a graph with δ(G) ≥ a and the isolated toughness
I(G) > (a − 1) + a−1

b (2 ≤ a < b). If, for any subset S of V (G), G − S
has no (a − 1)-regular subgraph as a component, then G has a fractional
[a, b]-factor.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To do it, we require the
following lemma which is a necessary and sufficient condition for existence
of fractional [a, b]-factors given by Liu and Zhang [6].

Lemma 2.1. Let G be a graph and a ≤ b be positive integers. Then G has
fractional [a, b]-factors if and only if for any S ⊆ V (G)

a|T | − dG−S(T ) ≤ b|S|

where T = {x | x ∈ V (G)− S and dG−S(x) ≤ a}.

Proof of Theorem 1.1: When a = 1 the result is secured by Lemma 1.3.
Next we assume a ≥ 2. If G is a complete graph with at least a + 1
vertices, then G has a fractional a-factor by setting h(e) = a

|V (G)|−1 for
each e ∈ E(G).

Now suppose that G is not a complete and satisfies the hypothesis of
the theorem, but has no fractional a-factors. By Lemma 2.1, there exists a
vertex-set S0 ⊆ V (G) such that

a|T0| − dG−S0(T0) > a|S0| (2.1)

where T0 = {x| x ∈ V (G)− S0 and dG−S0(x) ≤ a}.
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If S0 = ∅, then a|T0| − dG(T0) = a|T0| − a|T0| = 0 > 0 = a|S0| as
δ(G) ≥ a, a contradiction. Thus S0 6= ∅. Let U0 = V (G) − (S0 ∪ T0),
n = eG(T0, U0) and m = eG(T0) = eG(T0, T0). Then (2.1) becomes

a|S0| − a|T0|+ dG−S0(T0) = a|S0| − a|T0|+ 2m + n < 0. (2.2)

Let A1 be a maximal independent subset of T0 and let T1 = T0 − A1.
Moreover, let Ai be a maximal independent subset of Ti−1 (2 ≤ i ≤ a),
where Ti−1 = Ti−2 − Ai−1. Since 4(G[T0]) ≤ a, we have Aa = ∅. So we
assume 2 ≤ i ≤ a− 1. At first we prove the following two claims.

Claim 1. |S0|+ |T1|+ eG(U0, A1) ≥ a|A1|.
Let U1 = {u | u ∈ U0, eG(u,A1) > 0}, U2 = {u | u ∈ U0, eG(u,A1) = 1}

and U3 = U1 − U2. Then |U1| ≤ eG(U1, A1) = eG(U0, A1) and |U3| ≤ |U1|.
Let G1 = G − (S0 ∪ T1 ∪ U1). Then i(G1) ≥ |A1| as A1 is a maximal
independent set of T0.

Case 1. i(G1) ≥ 2. We have |S0 ∪ T1 ∪ U1| ≥ a i(G1) ≥ a|A1| by the
assumption I(G) ≥ a. On the other hand, |S0∪T1∪U1| = |S0|+|T1|+|U1| ≤
|S0| + |T1| + eG(U0, A1). Therefore, |S0| + |T1| + eG(U0, A1) ≥ a|A1| and
Claim 1 follows.

Case 2. i(G1) = 1. In this case |A1| = 0 or 1 as i(G1) ≥ |A1|. When
|A1| = 0, Claim 1 clearly follows from A1 = T0 = ∅ = T1. When |A1| =
1, let A1 = {x}. Since |S0| + |T1| + eG(U0, A1) ≥ dG(x) ≥ a, we have
|S0|+ |T1|+ eG(U0, A1) ≥ a|A1| = a. Claim 1 holds.

Case 3. i(G1) = 0. That is, i(G − (S0 ∪ T1 ∪ U1)) = 0. Thus A1 = ∅
and T0 = ∅ as i(G1) ≥ |A1|. Claim 1 holds.

Claim 2. For all i, 2 ≤ i ≤ a − 1, |S0| + eG(T0 − Ti−1, Ai) + |Ti| +
eG(U0, Ai) ≥ a|Ai|.

If Ai = ∅, then Ti = ∅ and Claim 2 holds.
Assume that Ai 6= ∅ and let Xi = NG(Ai)∩(T0−Ti−1), Yi = NG(Ai)∪U0

and Gi = G−NG(Ai). Clearly, Ai is a subset of isolated vertices in Gi and
i(Gi) = i(G−NG(Ai)) ≥ |Ai|. Consider the following cases.

Case 1. i(Gi) ≥ 2. Since I(G) ≥ a, we have |S0 ∪ Xi ∪ Yi ∪ Ti| ≥
|NG(Ai)| ≥ a i(Gi) ≥ a|Ai|. On the other hand, |S0∪Xi∪Yi∪Ti| ≤ |S0|+
eG(T0− Ti−1, Ai) + eG(U0, Ai) + |Ti|. Therefore, |S0|+ eG(T0− Ti−1, Ai) +
eG(U0, Ai) + |Ti| ≥ a|Ai| and Claim 2 holds.

Case 2. i(Gi) = 1. Since Ai 6= ∅, we have |Ai| = 1. Let Ai = {xi}.
Then |S0|+ eG(T0−Ti−1, Ai)+ eG(U0, Ai)+ |Ti| ≥ dG(xi) ≥ a = a|Ai| and
Claim 2 follows.
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Combining Claim 1 and Claim 2, we have

a|T0| =
∑a−1

i=1 a|Ai|
≤ ∑a−1

i=1 |S0|+
∑a−1

i=1 |Ti|+
∑a−1

i=2 eG(T0 − Ti−1, Ai) +
∑a−1

i=1 eG(U0, Ai)
= (a− 1)|S0|+

∑a−1
i=1 |Ti|+ m + n.

(2.3)
(2.2) and (2.3) imply that

a|S0|+ 2m + n < a|T0| ≤ (a− 1)|S0|+
a−1∑

i=1

|Ti|+ m + n.

Thus
a−1∑

i=1

|Ti| > |S0|+ m ≥ m. (2.4)

On the other hand,

m = eG(T0) =
∑

1≤i<j≤a−1

eG(Ai, Aj) =
a−1∑

i=1

eG(Ai,∪a−1
j=i+1Aj) =

a−1∑

j=1

eG(Aj , Tj).

Since Aj is a maximal independent set of Tj−1, eG(Aj , x) ≥ 1 for any x ∈ Tj .
Therefore eG(Aj , Tj) ≥ |Tj | and m =

∑a−1
j=1 eG(Aj , Tj) ≥

∑a−1
j=1 |Tj |, a

contradiction to (2.4). The proof is complete.

3 Proof of Theorem 1.3

A vertex covering (or briefly, a covering) of a graph G is a subset C of V (G)
such that every edge of G has at least one end in C. To prove Theorem
1.3, we start with the following Lemma.

Lemma 3.1. Let H be a graph with 1 ≤ δ(H) ≤ 4(H) ≤ a−1 and a ≥ 3 be
a positive integer. Suppose that each component of H has at least one vertex
of degree no more than a−2. Let S1, S2, · · · , Sa−1 be the partition of V (H),
where x ∈ Sj iff dH(x) = j. Then there exists a maximal independent set
I and thus a covering C = V (H)− I such that

a−1∑

j=1

(a− j)cj ≤ (a− 2)
a−1∑

j=1

(a− j)ij

where |I ∩ Sj | = ij, |C ∩ Sj | = cj , j = 1, 2, · · · , a− 1.
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Proof. We proceed by induction on V (H).
If |V (H)| = 2, then H ∼= K2. Without loss of generality, let H = xy,

I = {x} and C = V (H)− {x} = {y}. Then

a−1∑

j=1

(a− j)cj = a− 1 ≤ (a− 2)(a− 1) = (a− 2)
a−1∑

j=1

(a− j)ij ,

so the lemma clearly holds.
Suppose the lemma holds for |V (H)| ≤ n−1. Now we consider |V (H)| =

n ≥ 3.
Let m = δ(G) = min{j | Sj 6= ∅}, so 1 ≤ m ≤ a−2. Choose y ∈ Sm and

let T = {x | NH(x) ⊂ NH(y)}∪{y}. Then |T | ≥ 1 and T is an independent
set.

If V (H) = T ∪NH(y), setting I = T and C = V (H)−T = NH(y), then
for any x ∈ T we have dH(x) = m and thus

a−1∑

j=1

(a− j)cj ≤ |T |m(a−m) ≤ |T |(a− 2)(a−m) = (a− 2)
a−1∑

j=1

(a− j)ij ,

the lemma holds.
If V (H) 6= T ∪NH(y), let H ′ = H − (T ∪NH(y)). Clearly, δ(H ′) ≥ 1,

4(H ′) ≤ a − 1 and for each component R of H ′, there is at least one
vertex v ∈ V (R) such that dR(v) ≤ a − 2. Define S′j = Sj ∩ V (H ′). From
the induction hypothesis, there exist a maximal independent set I ′ and a
covering set C ′ = V (H ′)− I ′ such that

a−1∑

j=1

(a− j)c′j ≤ (a− 2)
a−1∑

j=1

(a− j)i′j ,

where i′j = |S′j ∩ I ′|, c′j = |S′j ∩C ′| for all j = 1, 2, · · · , a− 1. Let I = I ′ ∪ T
and C = V (H)− I = C ′ ∪NH(y). Clearly, I is a maximal independent set
of H. Then

(a−2)
a−1∑

j=1

(a−j)ij = (a−2)
a−1∑

j=1

(a−j)i′j+|T |(a−2)(a−m) ≥
a−1∑

j=1

(a−j)c′j+|T |(a−2)(a−m).

Because dH(y) = m and m = min{j | Sj 6= ∅}, we have

a−1∑

j=1

(a−j)cj ≤
a−1∑

j=1

(a−j)c′j + |T |m(a−m) ≤
a−1∑

j=1

(a−j)c′j + |T |(a−2)(a−m).

The induction is complete.
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Now we proceed to the proof of Theorem 1.3.

Proof of Theorem 1.3: If I(G) ≥ a and δ(G) ≥ a, then, by Theorem
1.1, G has a fractional a-factors. From Lemma 1.2, for any S ⊆ V (G),
a|T | − dG−S(T ) ≤ a|S| ≤ b|S| since a < b, where T = {x | x ∈ V (G) −
S and dG−S(x) ≤ a− 1}. Therefore, G has a fractional [a, b]-factor.

Now assume a > I(G) ≥ (a − 1) + a−1
b . If there exists no fractional

[a, b]-factor in G. Then, by Lemma 1.2, there exists a vertex set S ⊂ V (G)
such that

a|T | − dG−S(T ) > b|S| (3.1)

where T = {x | x ∈ V (G) − S and dG−S(x) ≤ a}. Note that the set
T ′ = {x | x ∈ V (G)− S and dG−S(x) = a} ⊆ T and a|T ′| − dG−S(T ′) = 0,
so a|T | − dG−S(T ) = a|T − T ′| + a|T ′| − dG−S(T − T ′) − dG−S(T ′) =
a|T −T ′| − dG−S(T −T ′). Therefore, in the rest of the proof, we replace T
by T − T ′ = {x | x ∈ V (G)− S, dG−S(x) ≤ a− 1} instead.

If S = ∅, then clearly T = ∅ since δ(G) ≥ a. Thus by (3.1), we have
a|T | − dG−S(T ) = 0 > b|S| = 0, a contradiction. So assume S 6= ∅ from
now on.

For each i (0 ≤ i ≤ a − 1), let T i = {x | x ∈ T and dG−S(x) = i}
and |T i| = ti. So T 0 is the set of isolated vertices. Define a subgraph
H = G[T 1 ∪T 2 ∪ · · · ∪T a−1]. By the assumption, H has no (a− 1)-regular
subgraph as a component. Since dH(x) = i for any x ∈ T i, {T i | i =
1, 2, · · · a − 1} forms a vertex partition of H. Therefore, by Lemma 3.1,
there exists a maximal independent set I and a covering C = V (H) − I
such that

a−1∑

j=1

(a− j)cj ≤ (a− 2)
a−1∑

j=1

(a− j)ij (3.2)

where |I ∩ T j | = ij and |C ∩ T j | = cj (j = 1, 2, · · · , a− 1).
Set W = G− (S ∪ T ), U = S ∪ C ∪ (NG−S(I) ∩ V (W )). Then

|U | ≤ |S|+
a−1∑

j=1

jij (3.3)

and

i(G− U) ≥ t0 +
a−1∑

j=1

ij . (3.4)

Case 1. If i(G− U) ≥ 2, by the definition of I(G), then

|U | ≥ i(G− U)I(G). (3.5)
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Combining (3.3), (3.4) and (3.5), we obtain

|S| ≥ I(G)(t0 +
a−1∑

j=1

ij)−
a−1∑

j=1

jij . (3.6)

Since a|T | − dG−S(T ) = at0 +
∑a−1

j=1 (a − j)tj and tj = ij + cj . From
(3.1), we have

at0 +
a−1∑

j=1

(a− j)ij +
a−1∑

j=1

(a− j)cj > b|S|. (3.7)

Thus (3.6) and (3.7) imply

at0 +
∑a−1

j=1 (a− j)ij +
∑a−1

j=1 (a− j)cj

> b(I(G)t0 + I(G)
∑a−1

j=1 ij −
∑a−1

j=1 jij)
= bI(G)t0 +

∑a−1
j=1 (bI(G)− bj)ij .

(3.8)

Since I(G) > (a−1)+ a−1
b , we have bI(G)−a > ab−b−1 > 0 as 2 ≤ a < b

and thus ∑a−1
j=1 (a− j)cj

>
∑a−1

j=1 (bI(G)− bj − a + j)ij
>

∑a−1
j=1 (ab− b− 1− bj + j)ij .

(3.9)

From (3.2) and (3.9), there exist at least one index j0 (1 ≤ j0 ≤ a−1) such
that

(a− 2)(a− j) > ab− b− 1− bj + j.

However, this is impossible because ab− b− 1− bj + j − (a− 2)(a− j) =
(b− a− 1)(a− j − 1) ≤ 0 as 2 ≤ a < b and j ≤ a− 1.

Case 2. If i(G − U) = 0, then by (3.4), we have 0 = i(G − U) ≥
t0 +

∑a−1
j=1 ij , and so t0 = ij = 0 for all j = 1, 2, · · · a− 1. Thus T = ∅ and

a|T | − dG−S(T ) = 0 > b|S| ≥ b, a contradiction.
Case 3. If i(G−U) = 1, by (3.4), we have 1 = i(G−U) ≥ t0 +

∑a−1
j=1 ij .

If t0 = ij = 0 for all j = 1, 2, · · · , a− 1, we follow the same arguments as in
the case of i(G − U) = 0. If t0 = 1, then for all j = 1, 2, · · · , a − 1, ij = 0
and T is an isolated vertex. Thus, by (3.1), a|T |−dG−S(T ) = a > b|S| ≥ b,
a contradiction. If there is some j0 ∈ {1, 2, · · · , a − 1} such that ij0 = 1.
Then H is a complete graph and dH(v) ≤ a− 2 for each v ∈ V (H) because
G − S has no (a − 1)−regular subgraph as a component. Without loss of
generality, we assume that I = {v}. Clearly, I is a maximal independent
set of H. So

|U | = |S∪C∪(NG(v)∩V (W ))| ≥ |S|+dG−S(v) ≥ δ(G) ≥ a > I(G) (3.10)
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where C = V (H)− I. On the other hand, by (3.3), we have |U | ≤ |S|+ j0.
By (3.2) and (3.7), we obtain

∑a−1
j=1 (a− j)cj ≤ (a− 2)(a− j0) and b|S| <∑a−1

j=1 (a − j)cj + (a − j0), and thus by combining these inequalities and
(3.10), we have

a−1∑

j=1

(a− j)cj + (a− j0) > b(|U | − j0) > b(I(G)− j0),

which implies that

(a− 2)(a− j0) > b(I(G)− j0)− (a− j0),

a contradiction due to bI(G)−a > ba−b−1 and (a− j0−1)(b−a+1) > 0.
Hence, G has a fractional [a, b]-factor.

4 Remarks

In this section, we construct two families of graphs to show the hypotheses
in Theorem 1.3 can not be weakened. So the result is the best possible.

Remark 4.1. The condition of I(G) > (a− 1) + a−1
b can not be replaced

by I(G) ≥ (a− 1) + a−1
b . Consider a graph G constructed from Ka−1, bK1

and bKa−1 as follows: let V (bK1) = {v1, v2, · · · , vb} and {u1, u2, · · · , ub} ⊆
V (bKa−1) such that each ui is from a different copy of Ka−1. Set V (G) =
V (Ka−1) ∪ V (bK1) ∪ V (bKa−1) and E(G) = {uivi | i = 1, 2, · · · , b} ∪
E(bKa−1)∪E(Ka−1)∪E′, where E′ = {uvi | ∀u ∈ V (Ka−1)−{v} and i =
2, 3, · · · , b−1}∪{vv1} for a fixed vertex v in Ka−1. It is not hard to see that
I(G) = (a− 1) + a−1

b and for each subset S ⊆ V (G), G−S has no (a− 1)-
regular subgraph as a component. Choosing S = V (Ka−1) − {v}, then
T = {v2, v3, · · · , vb, v} if a = 2 and T = {v1, v2, v3, · · · , vb, v} if a > 2. In ei-
ther case, we have a|T |−dG−S(T ) = a(b+1)−b−2 ≥ ab−b > b(a−2) = b|S|,
this implies that G has no fractional [a, b]-factor.

Remark 4.2. If we delete the condition “for any subset S of V (G),
G − S has no (a − 1)-regular subgraph as component” in Theorem 1.3,
then a graph G might not have fractional [a, b]-factor, even if the conditions
I(G) > (a− 1) + a−1

b and δ(G) ≥ a hold. Consider a graph G constructed
from K(n−1)(a−1), (nb + 1)K1 and K(nb+3)(a−1) as follows: let V ((nb +
1)K1) = {v1, v2, · · · , vnb+1} and {u1, u2, · · · , unb+1} ⊂ V (K(nb+3)(a−1)).
Set V (G) = V (K(n−1)(a−1))∪V ((nb+1)K1)∪V (K(nb+3)(a−1)) and E(G) =
E(K(n−1)(a−1))∪E(K(nb+3)(a−1))∪{uivi | i = 1, 2, · · · , nb +1}∪ {vvi | v ∈
V (K(n−1)(a−1)) and i = 1, 2, · · · , nb + 1}. It is not hard to check that
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I(G) = |V (K(n−1)(a−1))∪V (K(nb+3)(a−1))|
|V ((nb+1)K1)| = a− 1 + (n+1)(a−1)

nb+1 > (a− 1) + a−1
b

and I(G) → (a − 1) + a−1
b when n → ∞. Let S = V (K(n−1)(a−1)),

then T = V ((nb + 1)K1) and thus a|T | − dG−S(T ) = (a − 1)(nb + 1) >
b(n− 1)(a− 1) = b|S|, this implies that G has no fractional [a, b]-factor.

Acknowledgement: The authors are indebted to the anonymous ref-
erees for their constructive suggestions.
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