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a b s t r a c t

A k-edge-weighting w of a graph G is an assignment of an integer
weight, w(e) ∈ {1, . . . , k}, to each edge e. An edge weighting
naturally induces a vertex coloring c by defining c(u) =

∑
u∼e w(e)

for every u ∈ V (G). A k-edge-weighting of a graph G is vertex-
coloring if the induced coloring c is proper, i.e., c(u) ≠ c(v) for
any edge uv ∈ E(G).

Given a graph G and a vertex coloring c0, does there exist an
edge-weighting such that the induced vertex coloring is c0? We
investigate this problem by considering edge-weightings defined
on an abelian group.

It was proved that every 3-colorable graph admits a vertex-
coloring 3-edge-weighting (Karoński et al. (2004) [12]). Does every
2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-
edge-weighting?We obtain several simple sufficient conditions for
graphs to be vertex-coloring 2-edge-weighting. In particular, we
show that 3-connected bipartite graphs admit vertex-coloring 2-
edge-weighting.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider only finite, undirected and simple connected graphs. For a vertex v
of a graph G = (V , E),NG(v) denotes the set of vertices which are adjacent to v. If v ∈ V (G) and
e ∈ E(G), we use v ∼ e to denote that v is an end-vertex of e, ω(G) denotes the number of connected
components of G. An k-vertex coloring c of G is an assignment of k integers, 1, 2, . . . , k, to the vertices
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ofG, the color of a vertex v is denoted by c(v). The coloring is proper if no two distinct adjacent vertices
share the same color. A graph G is k-colorable if G has a proper k-vertex coloring. The chromatic number
χ(G) is theminimumnumber r such thatG is r-colorable. Notation and terminology that is not defined
here may be found in [6].

A k-edge-weighting w of a graph G is an assignment of an integer weight w(e) ∈ {1, . . . , k} to
each edge e of G. An edge weighting naturally induces a vertex coloring c(u) by defining c(u) =∑

u∼e w(e) for every u ∈ V (G). An k-edge-weighting of a graph G is vertex-coloring if for every edge
e = uv, c(u) ≠ c(v) and then we say G admitting a vertex-coloring k-edge-weighting. There are many
variations of vertex-coloring edge-weighting, for instance, a graph G is vertex-injective if for any pair
of vertices u, v, c(u) ≠ c(v). Another concept is irregularity strength, which is a different approach
but is similar enough. A multigraph is irregular if no two vertex degrees are equal. A multigraph can
be viewed as a weighted graph with nonnegative integer weights on the edges. The degree of a vertex
in a weighted graph is the sum of the incident weights. Chartrand et al. [9] defined the irregularity
strength of a graph G to be the minimum of the maximum edge weight in an irregular multigraph
with underlying graph G. Other related results and variations can be found in [1,4,5,7] and [10].

If a graph has an edge as a component, clearly it cannot have a vertex-coloring k-edge-weighting.
So in this paper, we only consider graphs without a K2 component and refer to such graphs as nice
graphs.

In [12], Karoński, Łuczak and Thomason initiated the study of vertex-coloring k-edge-weighting
and they brought forward a conjecture as following.

Conjecture 1.1 (1–2–3-Conjecture). Every nice graph admits a vertex-coloring 3-edge-weighting.

Furthermore, they proved that the conjecture holds for 3-colorable graphs (see Theorem 1 in [12]).
For other graphs, Addario-Berry et al. [2] showed that every nice graph admits a vertex-coloring 30-
edge-weighting. Addario-Berry et al. [3] improved the number of integers required to 16. Later, Wang
and Yu [13] improved this bound to 13. Recently, Kalkowski et al. [11] showed that every nice graph
admits a vertex-coloring 5-edge-weighting, which is a great leap towards the 1–2–3-Conjecture.

In this paper, we focus on vertex-coloring 2-edge-weighting. In Section 2, we present several new
results about vertex-coloring 2-edge-weighting.

Besides the existence problem of vertex-coloring k-edge-weighting, a natural question to ask is
that given a graph G and a vertex coloring c0, can we realize the coloring c0 by a k-edge-weighting, i.e.,
does there exist an edge-weighting such that the induced vertex coloring is c0? For general graphs, it
is not easy to find such an edge-weighting. However, by restricting edge weights to an abelian group,
we obtain a neat positive answer for this even for a non-proper coloring c0. In Section 3, we show that
every 3-connected nice bipartite graph admits a vertex-coloring 2-edge-weighting.

2. Vertex-coloring 2-edge-weighting

For a graph G, there is a close relationship between 2-edge-weightings and graph factors. Namely,
a 2-edge-weighting problem is equivalent to finding a special factor of graphs (see [2,3]). So to find
spanning subgraphs with pre-specified degree is an important part of edge-weighting. We shall use
some of these results in our proofs.

Lemma 2.1 ([3]). Given a graph G = (V , E), if for all v ∈ V , there are integers a−
v , a+

v such that
a−
v ≤

 1
2d(v)


≤ a+

v < d(v), and

a+

v ≤ min

1
2
(d(v) + a−

v ) + 1, 2(a−

v + 1) + 1


,

then there exists a spanning subgraph H of G such that dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1}.

Given an arbitrary vertex coloring c0, we want to find an edge-weighting such that the induced
vertex coloring is c0? Under a weak condition, the next two theorems show that there exists an
edge-weighting from an abelian group to E(G) to induce c0 for bipartite and non-bipartite graphs
respectively.
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Theorem 2.2. Let G be a non-bipartite graph and Γ = {g1, g2, . . . , gk} be a finite abelian group, where
k = |Γ |. Let c0 be any k-vertex coloring of G with color classes {U1, . . . ,Uk}, where |Ui| = ni (1 ≤ i ≤ k).
If there exists an element h ∈ Γ such that n1g1 + · · · + nkgk = 2h, then there is an edge-weighting with
the elements of Γ such that the induced vertex coloring is c0.
Proof. Let c0 be any k-vertex coloring with vertex partition {U1, . . . ,Uk}, where every element in Ui
is colored with gi (1 ≤ i ≤ k) such that n1g1 + · · · + nkgk = 2h.

Assign one edge with weight h and the rest with zero, so the sum of vertex colors is 2h. We now
adjust this initial weighting, while maintaining the sum of vertex weights, until all the vertices in
Ui have color gi (1 ≤ i ≤ k). Suppose there exists a vertex u ∈ Ui with the wrong color g ≠ gi.
Since n1g1 + · · · + nkgk = 2h, there must be another vertex v ∈ V (G) whose color is also wrong.
Since G is non-bipartite, we can choose a walk of even length from u to v, which is always possible
since k ≥ 3. Traverse this walk, adding gi − g, g − gi, gi − g, . . . alternately to the edges as they are
encountered. This operation maintains the sum of vertex weights, leaves the colors of all but u and
v unchanged, and yields one more vertex of the correct color. Hence, repeated applications give the
desired weighting. �

Note that in Theorem 2.2, the given vertex-coloring c0 can be either a proper or an improper
coloring.

Theorem 2.3. Let G be a nice bipartite graph and Z2 = {0, 1}. Let c0 be any 2-vertex coloring of G with
color classes {U0,U1}, where |Ui| = ni with c0(Ui) = i (i = 0, 1). If n1 is even, then there exists an
edge-weighting with the elements of Z2 such that the induced vertex coloring is c0.
Proof. Let g1 = 0 and g2 = 1. If there is a vertex u of color gi with the wrong color g ≠ gi, and
since n2 is even, then there must be another vertex v ∈ V (G) whose color is also wrong. Since G is
connected, then there is a path from u to v. Traverse this walk and add 1, 1, 1, . . . to the edges as they
are encountered. This operation always maintains the sum of vertex colors, leaves the colors of all but
u and v unchanged, and yields one more vertex of the correct weight. �

Remark. The edge-weighting problem on groups has been studied by Karoński et al. in [12]. They
proved that for each |Γ |-colorable graph G, there exists an edge-weighting with the elements of Γ

such that the induced vertex-coloring is proper. Our proofs of Theorems 2.2 and 2.3 are modifications
of that result.

For the convenience of applying Theorem 2.3, we restate it in terms of 1, 2 as follows.

Corollary 2.4. Let G be a nice bipartite graph. Let U ⊆ V (G) and U = V (G) − U, where |U| = n1 and
U = n2. If n1 is even, then there exists an edge-weighting with the elements from {1, 2} such that the
induced vertex coloring c satisfies that c(x) is odd for all x ∈ U and c(y) is even for all y ∈ U.
Proof. Let c0 : V (G) → {0, 1} such that c0(U) = {1} and c0(U) = {0}. By Theorem 2.3, there exists
an edge-weighting, say w, with the elements of Z2 such that the induced vertex coloring is c0. Let
w′

: E(G) → {1, 2} be defined as follows:

w′(e) =


2 if w(e) = 0,
1 if w(e) = 1.

Then w′ is a desired edge-weighting. �
It was proved in [12] that every 3-colorable graph has a vertex-coloring 3-edge-weighting. A

natural question to ask iswhether every 2-colorable graph (i.e., bipartite graphs) has a vertex-coloring
2-edge-weighting. But the answer is no, since C6 and C10 do not admit vertex-coloring 2-edge-
weightings. In fact, Chang et al. [8] proved the following results.

Lemma 2.5 ([8]). Every connected nice bipartite graph admits a vertex-coloring 2-edge-weighting if one
of following conditions holds:
(1) |A| or |B| is even;
(2) δ(G) = 1;
(3) ⌊d(u)/2⌋ + 1 ≠ d(v) for any edge uv ∈ E(G).
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An interesting corollary of Lemma 2.5 is that every r-regular nice bipartite graph (r ≥ 3) admits
a vertex-coloring 2-edge-weighting. More generally, every bipartite [r, r + 1]-graph G (i.e., dG(v) ∈

{r, r + 1} for any v ∈ V (G)) with r ≥ 4 admits a vertex-coloring 2-edge-weighting.

Theorem 2.6. Let G be a nice graph. If δ(G) ≥ 8χ(G), then G admits a vertex-coloring 2-edge-weighting.

Proof. Let {V1, . . . , Vχ(G)} be a partition of V (G) into independent sets. For each v ∈ Vi, choose a−
v

such that


d(v)

4


≤ a−

v ≤


d(v)

2


, a−

v + dG(v) ≡ 2i (mod 2χ(G)), and a−
v + 2χ(G) ≥


d(v)

2


. Such

choice for a−
v exists as δ(G) ≥ 8χ(G). Set a+

v = a−
v + 2χ(G).

Furthermore, such a choices of a−
v and a+

v satisfy the conditions of Lemma 2.1, i.e.,

1
2
(d(v) − a−

v − 2χ(G)) − χ(G) =
1
2
(d(v) − a+

v ) − χ(G)

≥
d(v)

8
− χ(G),

thus there is a subgraph H such that for all v, dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1}. Set w(e) = 2 for
e ∈ E(H) and w(e) = 1 for e ∈ E(G) − E(H). If v ∈ Vi, we have−

v∼e

w(e) = 2dH(v) + dG−H(v) = dG(v) + dH(v) ∈ {2i, 2i + 1} (mod 2χ(G)).

Thus adjacent vertices in different parts of {V1, . . . , Vχ(G)} have different arities. As each Vi is an
independent set, these weights form a vertex-coloring 2-edge-weighting of G. �

Theorem 2.7. Given a nice bipartite graph G = (U,W ), if there exists a vertex v such that dG(v) ∉

{dG(x) | x ∈ N(v)} and G − v − N(v) is connected, then G admits a vertex-coloring 2-edge-weighting.

Proof. If |U| · |W | is even, by Lemma 2.5, the result follows. So we may assume that both |U| and |W |

are odd. Let v ∈ U satisfy dG(v) ∉ {dG(x) | x ∈ N(v)}. Since G − v − N(v) is connected and |U − v|

is even, by Corollary 2.4, G − v − N(v) has a vertex-coloring 2-edge-weighting such that c(x) is odd
for all x ∈ U − v and c(y) is even for all y ∈ W − N(v). Now we assign every edge of E[N(v),U] with
weight 2. Clearly c(x) is odd for all x ∈ U − v and c(y) is even for all y ∈ W . Note that c(v) = 2dG(v)
and c(u) = 2dG(u) for all u ∈ N(v). Since dG(u) ≠ dG(v), so c(v) ≠ c(u) for all u ∈ N(v). Thus we
obtain a vertex-coloring 2-edge-weighting of G. �

Theorem 2.8. Given a nice bipartite graph G = (U,W ), if there exists a vertex v of degree δ(G) such that
dG(v) ∉ {dG(x) | x ∈ N(v)} and G − v is connected, then G admits a vertex-coloring 2-edge-weighting.

Proof. If |U| · |W | is even, by Lemma 2.5, the result follows. So we may assume that both |U| and |W |

are odd. Let v ∈ U satisfy dG(v) = δ(G) and dG(v) ∉ {dG(x) | x ∈ N(v)}. Now we consider two cases.

Case 1. δ(G) is even.
In this case, |(U − v) ∪ N(v)| is even and |W − N(v)| is odd. By Corollary 2.4, G − v has a vertex-

coloring 2-edge-weighting such that c(x) is odd for all x ∈ (U − v) ∪ N(v) and c(y) is even for all
y ∈ W − N(v). Assigning the edges incident to v with weight 1. Then c(w) is even for all w ∈ W and
c(u) is odd for all u ∈ U − v. Note that c(v) = δ(G) < dG(u) ≤ c(u) for all u ∈ N(v), so we obtain a
vertex-coloring 2-edge-weighting of G.

Case 2. δ(G) is odd.
In this case, |(U − v) ∪ N(v)| is odd and |W − N(v)| is even. By Corollary 2.4, G − v has a vertex-

coloring 2-edge-weighting such that c(x) is even for all x ∈ (U − v) ∪ N(v) and c(y) is odd for all
y ∈ W − N(v). Since dG(v) ∉ {dG(x) | x ∈ N(v)}, similar to Case 1, assigning the edges incident to v
with weight 1 induces a vertex-coloring 2-edge-weighting of G. �
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3. 3-connected bipartite graphs

In this section, we continue the research in this direction and prove that there exists a vertex-
coloring 2-edge-weighting in every 3-connected bipartite graph. The following lemma is an important
step in proving this result.

Lemma 3.1. Let G be a 3-connected non-regular bipartite graph with bipartition (U,W ). Let u ∈ U with
d(u) = δ(G) and t ≤ δ − 1. Denote Nδ(u) = {v | d(v) = δ, v ∈ NG(u)} = {u1, . . . , ut}. Then there
exist e1, . . . , et , where ei is incident to vertex ui in G − u (i = 1, . . . , t), such that G − u − {e1, . . . , et}
is connected.

Proof. Let C1, . . . , Cs be the components of G−u−Nδ(u). If we shrink each component Ci to a vertex
ci, then we obtain a bipartite multi-graph H = (X, Y ) associated with G − u as follows:

X = {u1 . . . , ut}, Y = {c1, . . . , cs} and |EH(ui, cj)| = |EG(ui, Cj)| for 1 ≤ i ≤ t and 1 ≤ j ≤ s.
Clearly, dH(ui) = δ − 1 for every ui ∈ X .

Claim. H contains a connected spanning subgraph T such that dT (v) ≤ δ − 2 for every v ∈ X.

Suppose that the claim does not hold. Let R be a connected induced subgraph of H satisfying
(i) R contains a connected spanning subgraphM such that dM(v) ≤ δ − 2 for every v ∈ V (M) ∩ X;
(ii) |V (R)| is maximum.

It is easy to see that V (R) ≠ ∅ and R ≠ H . Let R = (A, B), where A ⊆ X and B ⊆ Y .
By the maximality of R, we have dR(v) ≥ δ − 2 for every v ∈ A and EH(B, X − A) = ∅. Let
L = {v | dR(v) = δ − 2, v ∈ A}. We see |L| ≥ 2 since G is 3-connected. Let M∗ be a connected
spanning subgraph of R such that dM∗(v) = δ − 2 for every v ∈ A. Note that for every connected
spanning subgraph N∗ of M∗, we have dN∗(w) = δ − 2 for w ∈ L by the maximality of R. So every
edge incident with w in M∗, where w ∈ L, is a cut-edge of M∗. Let |L| = l and |E(R) − E(M∗)| = m.
Then l + m ≤ t ≤ δ − 1. We have

ω(M∗
− L) = ω(H − L − (E(R) − E(M∗))) − 1 ≥ (δ − 3)l + 1.

So ω(H − L) ≥ (δ − 3)l + 2 − m, which implies

ω(G − u − L) ≥ (δ − 3)l + 1 − m + 1
≥ (δ − 3)l + 2 − (δ − 1 − l)
= (δ − 2)l + 3 − δ.

Since G is 3-connected, then

3ω(G − u − L) ≤ (δ − 1)l + δ − l.

It follows that

ω(G − u − L) ≤


(δ − 1)l + δ − l

3


.

However

(δ − 2)l + 3 − δ −
(δ − 1)l + δ − l

3
=

2δl
3

−
4δ
3

−
4l
3

+ 3 > 0,

a contradiction. So we complete the claim and thus obtain a connected spanning subgraph T of H .
Let E ′ denote the set of corresponding edges of E(T ) in G. Then we obtain a spanning subgraph

T ∗
=

s
i=1 Ci ∪ Nδ(u) ∪ E ′ of G − u such that dT∗(v) ≤ δ − 2 for every v ∈ Nδ(u). Thus the proof is

complete. �

The following theorem is the main result of this section.

Theorem 3.2. Let G = (U,W ) be a nice bipartite graph. If G is 3-connected, then G admits a vertex-
coloring 2-edge-weighting.
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Proof. If G is a regular graph, the result follows from Lemma 2.5(3). So we may assume that G is a
3-connected non-regular bipartite graph with bipartition (U,W ). Let u ∈ U with d(u) = δ(G) and
Nδ(u) = {v | d(v) = δ, v ∈ NG(u)} = {u1, . . . , ut}, where t ≤ δ − 1. Then by Lemma 3.1, there exist
e1, . . . , et , where ei is incident to vertex ui in G − u for i = 1, . . . , t , such that G − u − {e1, . . . , et} is
connected.

By Lemma 2.5, we can assume that |U| |W | is odd. Now we consider two cases.
Case 1. δ(G) is even.

Then |N(u) ∪ (U − u)| is even. By Corollary 2.4, G− u− {e1, . . . , et} has a vertex-coloring 2-edge-
weighting such that c(x) is odd for all x ∈ N(u) ∪ (U − u) and c(y) is even for all y ∈ W − N(u). We
assign every edge of {e1, . . . , et} with weight 2 and every edge of {uui | i = 1, . . . , t} with weight 1.
Then c(x) is odd for all x ∈ U−u, and c(y) is even for all y ∈ W . Moreover, c(ui) > d(ui) = d(u) = c(u)
for all i = 1, . . . , t . Note that c(y) ≥ d(y) > d(u) = c(u) for all y ∈ N(u) − Nδ(u). Hence we obtain a
vertex-coloring 2-edge-weighting of G.
Case 2. δ(G) is odd.

Then |W − N(u)| is even. By Corollary 2.4, G − u − {e1, . . . , et} has a vertex-coloring 2-edge-
weighting such that c(x) is even for all x ∈ N(u) ∪ (U − u) and c(y) is odd for all y ∈ W − N(u).
We again assign every edge of {e1, . . . , et} with weight 2 and every edge of {uui | i = 1, . . . , t} with
weight 1. Similar to Case 1, c(u) = d(u) and c(u) < c(ui) for i = 1, . . . , t . Moreover, c(ui) is odd for
i = 1, . . . , t . Then we obtain a vertex-coloring 2-edge-weighting of G.

We complete the proof. �

Based on the proof of Theorem 3.2, we can easily obtain the following corollary.

Corollary 3.3. Let G = (U,W ) be a bipartite graph with δ(G) ≥ 3. If there exists a vertex of degree δ(G)
such that G − u − N(u) is connected, then G admits a vertex-coloring 2-edge-weighting.

4. Conclusions

Karoński et al. [12] showed that for any fixed p ∈ (0, 1) the random graph Gn,p of order n almost
surely admits a vertex-coloring 2-edge-weighting. That is, the edges of almost all graphs can be labeled
with 1 or 2 to induce a proper vertex-coloring. So a natural question is to classify all graphs which
admit vertex-coloring 2-edge-weighting.

As an initial step towards this investigation, one may study bipartite graphs first. Since there
exist families of infinite bipartite graphs (e.g., the generalized θ-graphs) which only admit vertex-
coloring 3-edge-weightings, it is nontrivial to classify all bipartite graphswith vertex-coloring 2-edge-
weighting. In light of Theorem 3.2, it remains an open problem to classify all 2-connected bipartite
graphs which admit a vertex-coloring 2-edge-weighting.
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