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Abstract

Proposed as a general framework, Liu and Yu [Generalization of matching extensions in graphs, Discrete Math. 231 (2001)
311-320.] introduced (n, k, d)-graphs to unify the concepts of deficiency of matchings, n-factor-criticality and k-extendability. Let
G be a graph and let n, k and d be non-negative integers such that n + 2k +d <|V(G)| — 2 and |V (G)| — n — d is even. If when
deleting any n vertices from G, the remaining subgraph H of G contains a k-matching and each such k-matching can be extended
to a defect-d matching in H, then G is called an (n, k, d)-graph. Liu and Yu’s Papee’s paper, the recursive relations for distinct
parameters 7, k and d were presented and the impact of adding or deleting an edge also was discussed for the case d = 0. In this
paper, we continue the study begun by Liu and Yu and obtain new recursive results for (n, k, d)-graphs in the general case d > 0.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider only finite, undirected and simple graphs. Denote by Ng (x) set of neighbors of a vertex x
in G. If no confusion occurs, we write N (x) for Ng(x). Let G be a graph with vertex set V(G) and edge set E(G). A
matching M of G is a subset of E(G) such that any two edges of M have no vertices in common. A matching of k edges
is called a k-matching. Let d be a non-negative integer. A matching is called a defect-d matching of G if it covers exactly
|V (G)| — d vertices of G. Clearly, a defect-0 matching is a perfect matching. A necessary and sufficient condition for
a graph to have a defect-d matching was given by Berge [1].

Theorem 1.1 (Berge [1]). Let G be a graph and let d be an integer such that 0 <d <|V(G)| and |V (G)| =d (mod 2).
Then G has a defect-d matching if and only if for any S C V(G)

o(G — $)K|S| +d.

For a subset S of V(G), we denote by G[S] the subgraph of G induced by S and we write G — S for G[V (G)\S].
The number of odd components of G is denoted by o(G). Let M be a matching of G. If there is a matching M’ of G
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such that M C M’, then we say that M can be extended to M’ or M’ is an extension of M. If each k-matching can be
extended to a perfect matching in G, then G is called k-extendable. To avoid triviality, we require that |V (G)| > 2k + 2
for k-extendable graphs. This family of graphs was introduced by Plummer [6] and studied extensively by Lovész and
Plummer [5].

A graph G is called n-factor-critical if after deleting any n vertices the remaining subgraph of G has a perfect
matching. This concept is introduced by Favaron [2] and Yu [8], independently, which is a generalization of the notions
of the well-known factor-critical graphs and bicritical graphs (the cases of n = 1 and 2). Characterizations of n-factor-
critical graphs, properties of n-factor-critical graphs and its relationships with other graphic parameters (e.g., degree
sum, toughness, binding number, connectivity, etc.) have been discussed in [2,3,8].

Let G be a graph and let n, k and d be non-negative integers such that |V (G)|>n +2k+d +2and |V(G)| —n —d
is even. If when deleting any n vertices from G, the remaining subgraph of G contains a k-matching and each of such
k-matchings can be extended to a defect-d matching in the subgraph, then G is called an (n, k, d)-graph. This term was
introduced by Liu and Yu [4] as a general framework to unify the concepts of defect-d matchings, n-factor-criticality and
k-extendability. In particular, (2, 0, 0)-graphs are exactly n-factor-critical graphs and (0O, k, 0)-graphs are just the same
as k-extendable graphs. This framework enables the authors to prove a series of general results which include many
earlier results of matching theory as special cases. In [4], Liu and Yu provided the following necessary and sufficient
conditions for a graph to be an (n, k, d)-graph.

Theorem 1.2. A graph G is an (n, k, d)-graph if and only if the following conditions are satisfied:
(1) Forany S C V(G) and |S|>n, then
o(G—-95)<|S|—n+d.
(i1) Forany S € V(G) such that |S| >n + 2k and G[S] contains a k-matching,
o(G—-9<|S|—n—2k+d.

Besides necessary and sufficient conditions, one interesting problem is to find recursive relations for different
parameters n, k and d. Here, we list some of the relevant results (i.e., Theorems 1.3-1.6) presented in [4] for the
convenience of the reader.

Theorem 1.3. Every (n, k, d)-graph G is also an (n', k', d)-graph where 0<n’' <n, 0<k' <k and n’ = n (mod 2).

In particular, for d = 0, the following result was proved.

Theorem 1.4. If G is an (n, k,0)-graphandn>1,k>2, then Gisan (n + 2, k — 2, 0)-graph.

The authors in [4] also considered other recursive properties of (n, k, d)-graphs, for instance, determining the
parameters n , k and d such that, when adding or deleting an edge from an (n, k, d)-graph, the resulting graph is an
(n , k ,d)-graph. The focus in [4] is mostly on the case of d = 0 and obtained several interesting results. For graphs
obtained by adding an edge to an (n, k, d)-graph, the following result was shown.

Theorem 1.5. Let G be an (n, k, 0)-graph with n, k > 1. Then for any edge e ¢ E(G), GUe is an (n, k — 1, 0)- graph.

Moreover, for graphs obtained by deleting an edge from an (n, k, d)-graph, there is the following result.

Theorem 1.6. Let G be an (n, k, 0)-graph, n >2 and k > 1. Then for any edge e of G,

(i) G—eisan (n — 2, k, 0)-graph.
(i) G —eisan (n,k — 1,0)-graph.

Note that the recursive results for d > 0 are not investigated in [4]. In this paper, our main focus is to extend Theorems
1.4-1.6 to the case of d > 0. The results are natural extensions of those in the case of d =0, but the proofs are somewhat
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more involved. Section 2 is devoted to recursive relations for graphs obtained by adding an edge to an (n, k, d)-graph.
Section 3 presents a recursive relation for graphs obtained by adding a vertex. Similar recursive results for graphs
obtained by deleting an edge from an (n, k, d)-graph are presented in Section 4.

2. Recursive relations for adding an edge

In this section, we consider recursive relations for graphs obtained by adding an edge to an (n, k, d)-graph. First we
have the following result.

Theorem 2.1. Foranyn>d>0and k> 1, if G is an (n, k, d)-graph, then G U e is an (n, k — 1, d)-graph for any
e ¢ E(G).

Proof. For k = 1, since G is an (n, 1, d)-graph, by Theorem 1.3, it is also an (n, 0, d)-graph. Hence G U e is an
(n, 0, d)-graph.

So assume that k >2. If G U e is not an (n, k — 1, d)-graph for some edge e ¢ E(G), then there exists an n-subset
S’ C V(G) and a (k — 2)-matching M" = {x1y1, x2y2, ..., Xr—2Yk—2} such that the (k — 1)-matching e U M’ cannot
be extended to a defect-d matching of G — §’. Let e = xy and §” = V(M’). By Theorem 1.1, there exists a vertex set
S1CG—-8—8"—x—ysuchthato(G—S8" —S"—x—y—S1)>|S1|+d+1. Since Gis an (n, k, d)-graph, according
to Theorem 1.3, it is also an (n, k — 2, d)-graph. From Theorem 1.2(ii), o(G — ' — 8" —x —y — S})<o(G — §' —
S” — 81) +2<|81| +d + 2. By a simple parity argument, we have o(G — S’ — S§” —x —y — S1) = |S|| +d + 2. Let
S =S U {x, y}.Then, o(G — §' — S” — $5) = |S5| +d.

Claim 1. S’ U S is an independent set in G.

Suppose e; =uv is an edge in G[S’U S>]. Then uv UM’ is a (k — 1)-matching. Let S=(S'US, —u —v) U (8" U{u, v})
which is of order |S>| +n + 2(k — 1) — 2 and contains a (k — 1)-matching. Since G is an (n, k, d)-graph, according to
Theorem 1.3, G is also an (n, k — 1, d)-graph. Then from Theorem 1.2(ii) and recalling the fact that | S>| >2, we have

oG-S —8"—8)=0(G—H<KIS|—n—2(k —1)+d =S| +d—2,

a contradiction.
LetH=G -5 —-5"—5,.

Claim 2. No even component of H is connected to S’ U .

Assume that there is an edge, say e; = uv, joining an even component C of H to S, U §’, where u € S" U S, and
v € V(C).Thenep UM’ isa (k—1)-matching. Let S =(S'US, —u)U(S”U{u, v}) whichis of ordern—1+4|S|+2(k—1)
and contains a (k — 1)-matching. Since G is an (n, k, d)-graph, it is also an (n, k — 1, d)-graph. Hence Theorem 1.2(ii)
implies thato(G —§) <|S|—n—2(k—1)+d=|S2| — 1+d. However, since the total number of odd components increases
by at least one upon deleting v from the even component C, we have that o(G —S) >0(G—S8' — 8" —$) +1=|8,|+d +1,
a contradiction.

Claim 3. For every odd component O of H, there do not exist two independent edges e3 = uv| and e4 = upvy joining
OtoS' US,, whereuy,ur € S'"US, and vy, vy € V(O).

Suppose, to the contrary, that e3 and e4 are two such edges. Then e3 U e4 U M’ is a k-matching. Let S = (§' U
S" —uy —up) U (S” U{uy, uz, vy, va}) which is of order |S>| +n — 2 + 2k and contains a k-matching. Since G is an
(n, k, d)-graph, then according to Theorem 1.2(ii), we have

olG=9<KIS|—n=2k+d=1S]4+n—-24+2k—n—-2k+d=|5|—-2+4d.

However, since the total number of odd components does not decrease by deleting v; and v, from the odd component
0, we have o(G — S)>0(G — §' — §" — S») =|S»| + d, a contradiction.
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According to Claim 3, we conclude that for any odd component O of H, if it is connected to S, or S’ in graph G — S”,
then either IN(V(0O))N(S"US)|=1or [N S'US)NV(0)| =1.

Since G is an (n, k, d)-graph, G — S” is an (n, 2, d)-graph by Theorem 1.6(ii). Suppose that there are 7 odd
components connected to neither S’ nor S>, and 7 odd components Cy, Ca, ..., C; with [N(§' U $) N V(Cy)| =1,
1<i<t,and p=|S>|+d —h —t odd components Dy, D3, ..., D, with [N(V(D;)) N (S"US2)| =1, 1 <i < p. Then
h+t+p=|S|+d. LetU = UleN(V(D,-)) N(S"US2) ={ui,us, ..., uy}. We consider the following three cases:

Case I:n<t.Let S3=J'_,V(Ci)NN(S'US,). Then | S3| =n. Now we consider the n-set S3 and (k — 2)-matching
M. From Claim 1, ' U S, is an independent set in G — S”. In G — §” — S3, §’ U S, must be matched by vertices
of [S2| +d — h — n odd components from Cy,41, Cpi2,...,C;, D1, Dy, ..., Dy and any maximum matching of
G — §” — §3 must miss at least one vertex from each of & odd components which is connected to neither S nor S”.
Altogether, a maximum matching of G — S§” — §3 will miss at least

h+1S)+n— (S| +d—h—n)=2n+2h—d>d+2

vertices (recall that n > d >0), which contradicts the fact that G — S” is an (n, 2, d)-graph.

Case2:t <n<q+t.Let S3=(J'_; V(C;)) N N(S'US2)) U{u1, ua, . .., uy—}. Now we consider the n-set S3 and
(k — 2)-matching M. Suppose that there are f odd components D;,, D;,, ..., D,-f among D1, Dy, ..., D, which are
connected to {uy, uz, ..., un,—¢}in G — S”. It is obvious that f >n — . Note that each vertex of (S’ U S>) — S3 can
only be matched by vertices from [Sz| +d — h —t — f odd components {D1, D3, ..., Dy}\{D;,, D;,, ..., D,-f} in
G — §” — S§3. Furthermore, any maximum matching of G — §” — S3 must miss at least one vertex from D, 1<j< f,
and at least one vertex from each of & odd components which is connected to neither §” nor S”.Thus any maximum
matching of G — §” — §3 must miss at least

fHh+1S204n—n—0—(S)+d—h—f—1)=2h+2+2f —d
S2h+2t+2n—2t—d
>d+2

vertices, which implies that G — S” is not an (n, 2, d)-graph, a contradiction again.

Case3:n>q+t.LetS3= (Ui, V(C)HNN(S' US2)) JU | Ss, where S4 € S'US, — U and |S4| =n —q — t.
Now we consider the n-set S3 and (k — 2)-matching M ". Note that any maximum matching of G — §” — S3 must miss
at least one vertex from each of the 4 odd components connected to neither S” nor S and at least one vertex from
|S2] +d — h — t odd components Dy, Dy, ..., D,. Furthermore, |S>| +n — (n — 1) vertices of S’ U S, — S3 must be
missed by any maximum matching of G — §” — §3. Thus any maximum matching of G — S” — S3 must miss at least

h+ 1S +d—h—t+|S)+n—(n—1)=2S|+d>d+4

vertices (]S2| > 2), which implies that G — S” is not an (1, 2, d)-graph, a contradiction again.
This completes the proof. [J

Suppose n, k > 1. Clearly Theorem 1.5 is a special case of Theorem 2.1. Note that the additional condition n > d in
Theorem 2.1 is necessary. For example, consider a complete bipartite graph K3 442 with bipartition U = {uy, uz, u3}
and W={w1, wa, ..., wg+2}. Let Hbe a graph obtained by replacing each w; by a complete graph Ko, 41, 1 <i <d+2.
Obviously, His a (1, 2, d)-graph, but H Uujuy isnota (1, 1, d)-graph for d > 0. An interesting property of the graph
His that His a (1, 2, d)-graph, but not a (3, 0, d)-graph for d > 0. So the conclusion of Theorem 1.4 does not always
hold forn >d > 0.

Similarly, under the additional condition n > d, we have the following result which extends Theorem 1.4 to the case
ofd > 0.

Theorem 2.2. Foranyn>d>0and k=2 ,if G is an (n, k, d)-graph, then G is also an (n + 2, k — 2, d)-graph.
Proof. Suppose that G is not an (n + 2, k — 2, d)-graph. Then there exist a vertex set S’ of order n 4+ 2 and (k — 2)-

matching M’ such that M’ cannot be extended to a defect-d matching of G — §’, i.e., G — S’ — S” has no defect-d
matchings.
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Claim. S’ is an independent set in G.

If e = uv is an edge in G[S’], then e U M’ can be extended to a defect-d matching of G — (S" — u — v) since G is an
(n,k — 1, d)-graph, i.e., G — 8’ — V(M’) has a defect-d matching, a contradiction.

Let u, v be two vertices in S’ and G’ = G U uv. By Theorem 2.1, G is an (n, k — 1, d)-graph. That is, uv U M’
can be extended to a defect-d matching M of G — (8’ — {u, v}). Then M is also a defect-d matching of G — S’ which
contains M’, a contradiction.

This completes the proof. [J

3. Recursive relation for adding a vertex

Let G be a graph and x ¢ V(G). Denote by G + x the graph obtained by joining each vertex of G to x. Here we
consider the recursive result of adding a vertex to an (n, k, d)-graph.

Theorem 3.1. Let G be an (n, k, d)-graph with k >0 and n > d. Then G + x is an (n + 1,k — 1, d)-graph for any
vertex x ¢ V(G).

Proof. Denote G’ = G + x. Let S be an (n + 1)-set of V(G’) and M’ a (k — 1)-matching of G’ — S. We consider the
following cases:

Case I: x € S. Since G is an (n, k, d)-graph, it is also an (n, k — 1, d)-graph. Let ' = S — {x}. Then M’ can
be extended to a defect-d matching M of G — S’ and M is also a defect-d matching of G’ — S which contains the
(k — 1)-matching M’.

Case 2: x € V(M'). Let xy be an edge of the (k — 1)-matching M". If N(y) NS # @, say z € N(y) N S, then
M" = (M’ — xy) U yzis a (k — 1)-matching and S” = S — {z} is an n-set. Hence M"” can be extended to a defect-d
matching M of G — S”. It follows that (M — {yz}) U {xy} is also a defect-d matching of G’ — S which contains M’. If
N(y) NS =@, we choose z to be any vertex of S. According to Theorem 2.1, G U yz is an (n, k — 1, d)-graph. Since
M" = (M' —xy)U yzisa(k — 1)-matching and S” = § — {z} is an n-set, M"” can be extended to a defect-d matching
M of (G U yz) — S”. Then (M — {yz}) U {xy} is also a defect-d matching of G’ — S which contains M’.

Case 3:x € V(G) — S — V(M'). Since G is an (n, k, d)-graph, G is also an (n, k — 1, d)-graph. Let y be any vertex
of S and set S’ =S — y. Then M’ can be extended to a defect-d matching M of G — S" and dy;(y) =0 or dy(y) = 1.
If dyp;(y) = 0, then it is obvious that M is also a defect-d matching of G’ — § which contains M’. If dy(y) = 1, let
Nuy(y) =z. Then (M — yz) U xz is a defect-d matching of G’ — S.

4. Recursive relations for deleting an edge

By presenting an example H ~d K 5,41 U K>, m > 1, Liu and Yu [4] observed that Theorem 1.6(i) does not hold for
d > 01in general. Clearly His a (2, 1, d)-graph. But H — e isnota (0, 1, d)-graph, where e is the edge in the component
K> of H. Furthermore, the graph H implies that Theorem 1.6(ii) does not hold for d > 0 as well. Note that the graph H
constructed above is not connected. We present a connected example by modifying H as follows. Let H' = H + u. It is
obvious that H' is a (3, 1, d)-graph, but H' — e is not a (1, 1, d)-graph. Moreover, H' is a connected counterexample
to Theorem 1.6(ii) for d > 0.

In this section, we provide structural theorems for G — e to be an (n — 2, k, d)-graph and an (n, k — 1, d)-graph,
respectively. Also, we discuss the impact of deleting an edge from bipartite (n, k, d)-graphs.

Theorem 4.1. Let G be an (n, k, d)-graph with n > 2. Then, for an edge uv € E(G), G — uv isnotan (n — 2, k, d)-
graph if and only if there exists a vertex subset S C V (G) with |S| =n — 2 + 2k such that G[S] contains a k-matching
and G — S is the union of d odd components, each of which is factor-critical, and the single edge uv.

Proof. (<) The sufficient condition is obvious.

(=)LetG'=G —uv.If G’ isnotan (n—2, k, d)-graph, then there exists a (n —2)-set S’ C V(G’) and a k-matching M’
which cannot be extended to a defect-d matching of G’ — §’. Let S” =V (M’). Then, by Theorem 1.1, there exists a vertex
setS] € V(G')—S'—S" suchthato(G'—S'—S"—S1) > |S1|+d+1. Then we have {u, v}N(S'US"U;)=0, for otherwise,
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since G is an (n, k, d)-graph, from Theorem 1.2(ii), we have o(G' — §' — " — §1) =o(G — §' — 8" — §1) <|S1| +d,

a contradiction. Since G is an (n, k, d)-graph, we have o(G' — 8’ — §" — §1)<0o(G — 8§ — S — S)) +2<|S| +d + 2.

By a simple parity argument, we have o(G’ — S’ — §” — S1) = |S1| + d + 2. Furthermore, since |S;| +d +2=0(G’ —

S —8"—8S)<o(G - S — 8" —8))+2,wehave o(G — §" — §” — §1) = |S1| + d. Thus uv must be a bridge of an

even component of G — S’ — §” — 8}, which implies that G — S — §” — S contains at least one even component.
Let H=G - S — 8" - §].

Claim 1. H has exactly one even component.

Suppose that H has more than one even component. Let C; and C» be two such even components of Hand x; € V(Cy),
x3 € V(C»). Since o(H) =S| +d and, by deleting x; and x; from C| and C», the total number of the odd components
increases by at least two, we have o(H — x1 — x2) >|S1| + d + 2. However, G is an (n, k, d)-graph, from Theorem
1.2(11), s0 o(G — (8’ U {x1, xo}) — 8" — S1) = o(H — x1 — x2) <|S1| + d, a contradiction.

Claim 2. |S;| =0.

Suppose |S1|>1. Let C be the even component of H, x € S1, and y € V(C). Since G is an (n, k, d)-graph, from
Theorem 1.2(ii), we have o(H — y) =0o(G — (8’ U {x, y}) — 8" — (S — x)) <|S1| +d — 1. However, the total number
of the odd components increases when deleting the vertex y from the even component C. Since o(H) = |S| + d, we
have o(H — y) >|S1| +d + 1, a contradiction. Thus |S1| = 0.

Let S =8 US”. Then G — S is the union of one even component C which contains edge uv and d odd components
01,03, ...,04.Since o(G' — 8" — §” — §1) =|S1| +d + 2 and uv is a bridge of C, without loss of generality, we may
assume that C — uv = Oy11 U Og42. Then G’ — S is the union of d + 2 odd components O1, Oa, ..., Og12. Without
loss of generality, assume u € Og41 and v € Og4.

Claim 3. C =~ K3 and each odd component O;, 1 <i <d, is factor-critical.

Suppose that |V (C)| > 4. Without loss of generality, assume that x is a vertex different from « in O441. Since G is an
(n, k, d)-graph, from Theorem 1.2(ii), we have o(G — (S’ U {u, x}) — S”) <d. However, the total number of the odd
components does not decrease by deleting u and x from Oy, which implies that o(G — (S" U {u, x}) — §”) =0o(G’ —
(8" U{u, x}) — 8"y =d + 2, a contradiction. So |V (C)| =2 and E(C) = {uv}.

If |0;|=1, for all j, we are done. So suppose that for some j (1< j <d),|0;| >3 and there exists a vertex x € V(0;)
such that O; — x has no perfect matching. Then any maximum matching of G — (S" U {u, x}) — S” will miss at
least d + 2 vertices. However, since G is an (n, k, d)-graph, G — (S8’ U {u, x}) — S” has a defect-d matching, a
contradiction. []

From the definition of (n, k, d)-graphs, there exists no such vertex set S mentioned in Theorem 4.1 for d = 0. So
Theorem 1.6 follows from Theorem 4.1.

Though Theorem 1.6(i) may not hold for d > 0 in general, but there are classes of graphs for which Theorem 1.6(i)
holds for d > 0 without the additional condition n > d. We will see that bipartite graphs are one of such classes.

Theorem 4.2. Let G be a bipartite (n, k, d)-graph withn > 2. Then, foreach edge e of G,G—eisan (n—2, k, d)-graph.

Proof. Let e = uv € E(G). Suppose that G — uv is not an (n — 2, k, d)-graph. Then, by Theorem 4.1, there exists a
vertex set S € V(G), |S|=n — 2+ 2k, such that G[S] contains a k-matching and G — S is the union of d-factor-critical
components and the single edge e = uv since a bipartite graph of order more than 1 is not factor-critical, each odd
component is a singleton, i.e., |V (G)| =|S| +d + 2 =n + 2k + d. However, from the definition of the (n, k, d)-graph,
we have n + 2k + d <|V(G)| — 2, a contradiction. [

Theorem 1.6(ii) does not directly extend to the case d > 0 in general. However, sometimes we can characterize the
edges which cause the statement in Theorem 1.6(ii) to fail.
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Theorem 4.3. Let G be an (n, k, d)-graph with k > 1, and uv € E(G) such that
max{dg (u), dc(v)} = 2k.

Then G — uv is not an (n, k — 1, d)-graph if and only if there exists a vertex subset S C V(G) with |S|=n — 2 + 2k
such that G[S] contains a (k — 1)-matching and G — S is the union of d factor-critical odd components and the single
edge uv.

Proof. (<) The sufficient condition is obvious.

(=) Let G’ = G — uv. Suppose that G’ is not an (n, k — 1, d)-graph. Then there exist an n-set S’ C V(G) and
a (k — 1)-matching M’ which cannot be extended to a defect-d matching of G' — §’. Denote V(M’) by S”. By
Theorem 1.1, there exists a vertex set S| € V(G' — 8’ — §”) such that o(G' — §" — S§” — S1)>|S1| +d + 1. Then
we have {u, v} N (S’ U S” U S1) = @, for otherwise, since G is an (n, k, d)-graph, from Theorem 1.2(ii), we have
oG =8 —8"—=8)=0(G — S — 8" — 8§1)<|S1| + d, a contradiction. Moreover, that G is an (n, k, d)-graph
implies o(G’ — §' — 8" — S1)<0o(G — &' — §” — §1) + 2<|S1| + d + 2. By a simple parity argument, we conclude
oG =8 —-8"—=8)=|S81l+d+2and o(G — 8" — 8" — 8§1) = |S1| + d. Thus uv must be a bridge of an even
component C of G — §' — §” — S|, which implies that G — §’ — S” — S| contains at least one even component.

Claim 1. ((Ng () U Ng(v)) N (V(G) =S = 8")) — {u, v} =0.

Suppose that ux is an edge in G — 8§’ — §” — v. Since G is an (n, k, d)-graph, ux U M is a k-matching of G — §’
which can be extended to a defect-d matching M of G — §’. Then M is a defect-d matching which contains M’ but not
uv, a contradiction.

Claim 1 implies that C is a complete graph consisting of the single edge uv.

Claim 2. S| =0.

Without loss of generality, assume that dg (1) > 2k (i.e., dg (1) > |S”|+|{v}]). Thus N(u)NS" # Bor N(u)NS; # @.
Consider the case of N(u) N'S" # #. Letx € N(u)NS" and y € S| # @. Since G is an (n, k, d)-graph, the k-matching
M’ Uux can be extended to a defect-d matching of G —(S’Uy—x). Thus o(G — (S'Uy—x) — (8" Uux)—(S1 —y)) <|S1|—
1+d. On the other hand, since o(G — S’ —S” —S|)=|S||+d and Cis asingle edge, G — (§'Uy—x)— (S"Uux)—(S; —y)
has |S{| + d + 1 odd components, a contradiction. For the case of N (u) N S| # (J, we obtain a similar contradiction.

Claim 3. C is the only even component of G — S" — §”.

The arguments are similar to that of Claim 2. Suppose that there is another even component C’ in G — S’ — §”.
Let y € V(C'). Then there exists an edge ux € E(C, S’) so that the k-matching M’ U ux can be extended to a
defect-d matching of G — (8’ U y — x) which implies that o(G — (8’ Uy — x) — (§” U ux) — S1)<|81| + d.
However, since o(G — 8" — S§” — 81) = |S1| + d and the number of odd components increases upon deleting y from
C',G—(§Uy—x)— (8" Uux) — S; has at least |S;| + d + 2 odd components, a contradiction.

Claim 4. Each odd component of G — S" — 8" is factor-critical.

Suppose that O is an odd component of G — S’ — S” which is not factor-critical. Hence there exists a vertex y € V(O)
such that O — y has no perfect matching. Since G is an (n, k, d)-graph, G — S” is an (n, 1, d)-graph. Thus, for any
x € Ng(u) NS, ux can be extended to a defect-d matching of G — (S’ U y — x) — S”, which is impossible since such
a matching will miss at least d + 2 vertices.

Let S = S U S”. From the claims above, G — S is the union of d factor-critical odd components and a single
edge uv. 0O

Finally, we present an example to show that the condition max{dg («), dg(v)} > 2k in Theorem 4.3 is necessary. Let
G be the graph with vertices x1, x2, x3, x4, x5 and the edges x1x2, X2X3, X3X4, X4X5, X5X1, X2X4, X3X5. Taking n disjoint
copies of G and an edge e = uv, join the vertices u and v to x3 and x4 in each copy of G. Denote the resulting graph
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by H. Then max{dy (1), dy(v)} =2n + 1 <2(n + 1). One can verify that His a (1,n + 1, n + 1)-graph and H — uv
isnot a (1, n, n + 1)-graph. However, for any vertex subset S € V(H) with |S| = 2nr + 1 such that H[S] contains an
n-matching, H — § is not the union of n 4 1 factor-critical odd components and a single edge uv.

This article is merely the first of a series of investigations of a general framework to unify the various extendabilities
and factor-criticalities. So far we have discussed the characterization of (n, k, d)-graphs and the recursive relations
only. The important aspects of (1, k, d)-graphs, such as decomposition procedure, Gallai-type structural theorems and
algorithms for finding (n, k, d)-graphs, have not been explored yet. More research on this subject will follow.
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