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Abstract

It is known that the chromatic polynomial and flow polynomial of a graph are two important evaluations of its Tutte polynomial,
both of which contain much information of the graph. Much research is done on graphs determined entirely by their chromatic
polynomials and Tutte polynomials, respectively. Oxley asked which classes of graphs or matroids are determined by their
chromatic and flow polynomials together. In this paper, we found several classes of graphs with this property. We first study
which graphic parameters are determined by the flow polynomials. Then we study flow-unique graphs. Finally, we show that
several classes of graphs, ladders, Möbius ladders and squares of n-cycle are determined by their chromatic polynomials and
flow polynomials together. A direct consequence of our theorem is a result of de Mier and Noy [A. de Mier, M. Noy, On graphs
determined by their Tutte polynomial, Graphs Comb. 20 (2004) 105–119] that these classes of graphs are Tutte polynomial unique.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of graph polynomials has been an active research topic for many years. It serves as a bridge
between graph theory and traditional algebra. Since the coefficients of polynomials often contain rich combinatorial
information, the study of graph polynomials provides new avenues to understand the complicated structures of graphs
and graphic parameters. It is natural to ask what kind of graphs are determined by their polynomials. In particular, what
kind of graphs have their structures entirely encoded in a graph polynomial? In other words, can we find families of
graphs that are uniquely determined by a given polynomial? There is extensive research on graphs uniquely determined
by their chromatic polynomials and more recently on their Tutte polynomials, but rather spotty research on graphs
uniquely determined by their flow polynomials or the combination of both chromatic and flow polynomials. This
article is an initiation of investigation on graphs uniquely determined by their chromatic and flow polynomials and in
the hope that this research will foster further research in this direction.
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Given x ∈ N+ and a graph G, the value PG(x) is the number of proper colorings f : V (G) → [x] = {1, 2, . . . , x},
called the chromatic polynomial of G. Chromatic polynomials were introduced by Birkhoff [1] precisely in an attempt
to solve the Four-Color Problem, since the problem is equivalent to the fact that PG(4) > 0 for every planar graph G.
The chromatic number of G is defined as min{x : x ∈ N+ and PG(x) > 0}.

Let G be any bridgeless graph, D be the set of directed edges of G after implementing arbitrary orientation, and
A be an Abelian group. An A-flow on G is a map f : D → A such that the total flow out of a vertex is equal to the
total flow into the vertex, i.e., for each vertex v ∈ V (G),

∑
w∈N+(v) f (vw) =

∑
u∈N−(v) f (uv). An A-flow f is a

nowhere-zero flow (NZF) if f (uv) 6= 0 for any uv ∈ D.
For an Abelian group A, the number of NZF A-flows on G is independent of the structure of A, and depends only

of the order of A, x = |A| (see [2]). This number is a polynomial of x , called the flow polynomial of G and denoted
by QG(x). The flow number of G is defined as min{x : x ∈ N+ and QG(x) > 0}.

Let G be a graph with vertex set V and edge set E . We assume that G has no isolated vertices, but loops and
multiple edges are allowed. We use d(v) to denote the number of edges incident with a vertex v in G, and use δ(G) to
denote min{d(v) : v ∈ V (G)}. We use k(G) and λ(G) to denote the number of components and the edge connectivity
of G, respectively. The rank of a subset S of E is defined as the number of edges in the spanning forest of the subgraph
induced by S in G, i.e., r(S) = |V | − k(G[S]), where k(G[S]) denotes the number of components of the spanning
subgraph G[S] induced by S in G. The Tutte polynomial of G is given by

TG(x, y) =

∑
S⊆E

(x − 1)r(E)−r(S)(y − 1)|S|−r(S).

The Tutte polynomial was introduced in 1954 by Tutte [17] with the initial name dichromate polynomial. It is an
important research tool and has many applications in graph theory, matroid theory and many other fields such as knot
theory and statistical mechanics [5].

For the notation of matroids, we follow Oxley [15]. Let M be a matroid, the Tutte polynomial TM (x, y) of a matroid
M is defined as

TM (x, y) =

∑
F⊆E(M)

(x − 1)r(E)−r(F)(y − 1)|F |−r(F)

and the chromatic polynomial of the matroid M (see [18]) is defined as

χM (x) =

∑
F⊆E(M)

(−1)|F |(x − 1)r(M)−r(F)

where r(F) denotes the rank of the subset F .
The chromatic polynomial of a matroid M is related to the Tutte polynomial of M by χM (x) = (−1)r(M)TM (1 −

x, 0) (see, for example, [18]). Moreover, χM (x) = 0 if and only if M has a loop.
Clearly, any graph G = (V, E) determines a unique matroid with ground set E(G). This matroid is denoted by

M(G) and matroids of this kind are called graphic matroids. A base of M(G) is a spanning forest and a circuit
corresponds to a cycle in G. Moreover, TG(x, y) = TM(G)(x, y).

It is shown that the chromatic polynomial of a graph G is a special evaluation of its Tutte polynomial and in
addition, is closely related to the chromatic polynomial of M(G):

PG(x) = (−1)r(G)xk(G)TM(G)(1 − x, 0) and PG(x) = xk(G)χM(G)(x).

For the flow polynomial, the following facts are well known:

(i) The flow polynomial of a graph G is also an evaluation of the Tutte polynomial. Indeed, QG(x) =

(−1)n(G)TG(0, 1 − x), where n(G) = |E(G)| − r(G);
(ii) QG(x) = χM∗(G)(x), where M∗(G) is the dual matroid of M(G);

(iii) QG(x) = 0 if G contains a bridge (coloop); and
(iv) Let G be a graph obtained by sticking two vertex-disjoint graphs G1 and G2 at a vertex or by performing the

direct sum of G1 and G2. Then QG(x) = QG1(x)QG2(x).

For a graph G, if a graph H having the same Tutte polynomial with G implies that H ∼= G, then G is called Tutte
polynomial unique (T -unique). Similarly, we say that a matroid M is Tutte polynomial unique (T -unique) if whenever
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TM (x, y) = TN (x, y) for a matroid N , we have that M ∼= N . Recently, several classes of matroids and graphs are
proven to be T -unique, see [4,11–13]. Two graphs H1 = (V1, E1) and H2 = (V2, E2) are 2-isomorphic if there is a
bijection ψ : E1 → E2 such that the edge set E ′

1 ⊆ E1 is a cycle in H1 if and only if ψ(E ′

1) is a cycle in H2. Two
2-isomorphic graphs have the same Tutte polynomial (see [15]), and thus have the same flow polynomial.

A bond of a graph is a minimal edge cut. A graph G is called cosimple if the dual matroid M∗(G) is simple, i.e.,
it has no bonds of size less than three. Apparently, adding parallel edges to a graph will not change the chromatic
polynomials and subdividing an edge will not change the flow polynomial. Therefore, graphs are assumed simple
when chromatically unique (or χ -unique) graphs were defined in [6]. Here a simple graph G is χ -unique if whenever
PG(x) = PH (x) for any simple graph H , we have that G ∼= H . Two simple graphs G and H are called χ -equivalent
if PG(x) = PH (x). Similarly, we assume that our graphs are both connected and cosimple when we define the flow-
unique graphs next. A connected cosimple graph G is called flow-unique if whenever QG(x) = Q H (x) for any
connected cosimple graph H , we have that G ∼= H . Two connected cosimple graphs are called flow-equivalent if
QG(x) = Q H (x). The problem of determining the χ -unique graphs was first introduced by Chao and Whitehead [6].
Since then much research is done on this subject. Many classes of graphs have been shown to be χ -unique, for
example, the complete graphs Kn , cycles Cn , wheels Wn (where n is the number of spokes) for even n, and complete
bipartite graphs K p,q for p, q ≥ 2. For a comprehensive survey on this topic, the reader is referred to [9,10].

For flow-unique graphs, however, very little is known. In Section 2, we first study some properties of the flow-
unique graphs. Using the properties, we show that several classes of graphs are flow-unique in Section 3.

Since both the chromatic and flow polynomials are evaluations of the Tutte polynomial, they contain less
information of the graphs than that of the Tutte polynomial. Bonin pointed out (through personal communication
with the second author [3]) that Oxley had asked the following question: when is a graph or matroid completely
determined by its chromatic and flow polynomials together? In this paper, we focus on graphs only. A graph G (not
necessarily simple or cosimple) is (P, Q)-unique if whenever PG(x) = PH (x) and QG(x) = Q H (x), we have that
G ∼= H . Two graphs G and H are called (P, Q)-equivalent if both PG(x) = PH (x) and QG(x) = Q H (x) hold.
Therefore, the (P, Q)-unique graphs are precisely those graphs determined by the chromatic and flow polynomials
together. Clearly, a (P, Q)-unique graph is also T -unique. In Section 4, we will show that several classes of graphs,
ladders, Möbius ladders and squares of n-cycles, are (P, Q)-unique. This result not only answers Oxley’s question
for these classes of graphs, but also implies the corresponding results of Mier and Noy [11]. The proof of the above
result will appear in Section 4.

2. Preliminaries

In this section, we will prove some lemmas which will be needed in later sections. In proving χ -uniqueness, the
main tool is the following lemma (see [9]).

Lemma 2.1. Let G and H be two simple graphs such that PG(x) = PH (x). Then

(i) |V (G)| = |V (H)| and |E(G)| = |E(H)|;
(ii) G and H have the same girth, i.e., g(G) = g(H). Furthermore, they have the same number of the shortest cycles;

(iii) t1(G) = t1(H) and t2(G) − 2t3(G) = t2(H) − 2t3(H), where t1(G), t2(G) and t3(G) denote the number of
triangles, the number of 4-element cycles without chords, and the number of K4’s of G, respectively;

(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected;

(vi) G and H have the same chromatic number.

Let M be a matroid with m elements. Suppose that f is an arbitrary bijection from E(M) to {1, 2, . . . ,m}. Let C be
any circuit of M and c be an element of C such that f (c) > f (e) for all e ∈ C −c. Then C −c is called a broken circuit
of M . (For brevity, we use C − c instead of C −{c}.) Given a graph G, since both the chromatic and flow polynomials
can be reduced to the chromatic polynomial of the matroids M(G) and M∗(G), respectively, the following result of
Heron [7] is a very useful tool. It generalized the well-known Broken Cycle Theorem of Whitney [19] for chromatic
polynomials of graphs.

Theorem 2.2. Let M be a matroid with rank r. Then χM (x) =
∑r

i=0(−1)i bi xr−i , where bi is the number of i-subsets
of E(M) containing no broken circuits.
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(a) W5. (b) G. (c) G∗.

Fig. 1. Examples showing that cosimplicity (simplicity) of a graph cannot be deduced from its chromatic (flow) polynomial.

It is easy to see that b0 = 1 unless M has a loop. In the following corollary, we use cg to denote the number of
circuits of M with girth g.

Proposition 2.3. Let M be a matroid with m elements and girth g(M) = g. Suppose that χM (x) =∑r
i=0(−1)i bi xr−i . Then g(M) is determined by χM (x) and m. In addition, if M is a simple binary matroid, then

(i) bg−1 =

(
m

g−1

)
− cg;

(ii) cg is determined by χM (x) and m.

Proof. A matroid M has a loop if and only if χM (x) = 0. Thus if M has a loop, then g is clearly determined by
χM (x). If M has parallel elements, then by Theorem 2.2, b1 < m. Hence one can determine that g = 2 from χM (x)

and m. When M is simple, in this case, by Theorem 2.2, bi =
(m

i

)
for 0 ≤ i ≤ g − 2 and bg−1 <

(
m

g−1

)
. Hence g

determined by χM (x) and m.
Now suppose that M is a simple binary matroid. According to Theorem 2.2, bg−1 is the number of (g−1)-subsets of

E(M) containing no broken circuits of E(M). We need only show that M has exactly cg broken circuits of size g − 1.
Let C1 −a and C2 −b be two broken circuits of M with size g −1 such that C1 6= C2. We claim that C1 −a 6= C2 −b.
Otherwise, since M is binary, the set C14C2 contains a circuit. We conclude that M has a 2-element circuit {a, b}, a

contradiction to the assumption that M is simple. Thus (i) holds. Moreover, from (i), cg = bg−1 +

(
m

g−1

)
, which is

determined by χM (x) and m. This completes the proof of the proposition. �

As QG(x) = χM∗(G)(x), the next result follows from Theorem 2.2 and Proposition 2.3. It was also obtained by
Jin [8] using different proof techniques.

Corollary 2.4. Let G be a connected graph with n vertices, m edges and edge connectivity λ. Then QG(x) =∑n(G)
i=0 (−1)i hi xn(G)−i is a polynomial of degree n(G) = m − n + 1. Moreover, when λ ≥ 3, the following are true:

(i) hi =
(m

i

)
for 0 ≤ i ≤ λ− 2;

(ii) hλ−1 =

(
m
λ−1

)
− cλ, where cλ is the number of λ-element bonds.

Corollary 2.5. Let G be a graph with chromatic polynomial PG(x) and flow polynomial QG(x). Then,

(i) Whether G is simple is determined by PG(x) and |E(G)|;
(ii) Whether G is cosimple is determined by QG(x) and |E(G)|.

Proof. Recall that PG(x) = xk(G)χM(G)(x). From Proposition 2.3, g(M(G)) is determined by χM(G)(x) and
|E(M(G))|. Since g(M(G)) ≥ 3 if and only if G is simple, we conclude that whether G is simple is determined
by PG(x) and |E(G)|.

Similarly, using Proposition 2.3 on QG(x) = χM∗(G)(x), we deduce that g(M∗) is determined by χM∗(G)(x) and
|E(M∗(G))| = |E(G)|, i.e., λ(G) is determined by QG(x) and |E(G)|. �

It should be pointed out that cosimplicity of a graph cannot be deduced from its chromatic polynomial, and
simplicity of a graph cannot be deduced from its flow polynomial either. For example, Chao and Whitehead (see [9])
proved that the graph G in Fig. 1(b) is χ -equivalent to the five-spoked wheel W5 (Fig. 1(a)). Note that G is not
cosimple. On the other hand, since both G and W5 are planar, a geometric dual G∗ of G (Fig. 1(c)) and W ∗

5 = W5
have the same flow polynomial. As G∗ is not simple, the simplicity of a graph cannot be deduced from the flow
polynomial of the graph either.
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3. Flow-unique graphs

In this section, we first study some properties of graphs which are determined by their flow polynomials. Then we
use this information to prove that several classes of graphs are flow-unique. According to [14], there is no systematic
study for flow-unique graphs yet.

Theorem 3.1. Let G and H be connected cosimple graphs with at least one edge such that QG(x) = Q H (x). Then
the following hold:

(i) |E(G)| = |E(H)| and |V (G)| = |V (H)|;
(ii) G is 2-connected and loopless if and only if H is 2-connected and loopless;

(iii) λ(G) = λ(H);
(iv) G and H have the same number of minimum bonds;
(v) The flow number of G is equal to the flow number of H.

Proof. Let QG(x) =
∑n(G)

i=0 (−1)i hi (G)xn(G)−i and Q H (x) =
∑n(H)

i=0 (−1)i hi (H)xn(H)−i .
(i) Note that QG(x) and Q H (x) are polynomials of degree n(G) and n(H), respectively. As QG(x) = Q H (x), we

deduce that n(G) = n(H), i.e., |E(G)| − |V (G)| + 1 = |E(H)| − |V (H)| + 1. As both graphs are cosimple, we
have λ(G), λ(H) ≥ 3. By Corollary 2.4(i), h1(G) = |E(G)| and h1(H) = |E(H)|. Since QG(x) = Q H (x), we have
h1(G) = h1(H), and hence |E(M)| = |E(H)| and |V (G)| = |V (H)|.

(ii) Let TM(G)(x, y) =
∑

ti j x i y j . From the deletion–contraction formula of the Tutte polynomial, it is easy to
see that there is no constant term, i.e., t00 = 0, therefore y is a factor of TM(G)(0, y), and thus 1 − x is a factor of
QG(x) = (−1)n(G)TG(0, 1 − x). The graph G is 2-connected and loopless if and only if M(G) is 2-connected. It
is known that M(G) is 2-connected if and only if t10 = t01 > 0 (see [5]). Moreover whether t01 = 0 is completely
determined by QG(x) (in QG(x), let x = 1 − y, then we will get (−1)n(G)T (0, y) and t01 is the coefficient of y). In
particular, M(G) is not 2-connected if and only if t01 = 0, which is equivalent to the fact that (x −1)2 divides QG(x).
Thus M(G) is 2-connected if and only if M(H) is 2-connected. That is, G is 2-connected and loopless if and only if
H is 2-connected and loopless.

(iii) By Proposition 2.3, λ(G) = g(M∗(G)) is determined by QG(x) and |E(G)|. From (i), |E(G)| = |E(H)| and
hence λ(G) = λ(H).

(iv) Again, by (i), (iii) and Corollary 2.4(ii), we see that cλ(G) = cλ(H), or G and H have the same number of
minimum bonds. Note that (v) is clearly true. This completes the proof of the theorem. �

In the following, we use the information contained in the flow polynomial to prove the flow-uniqueness of several
classes of graphs.

Let θ(k1, k2, . . . , ks) denote the graph constructed by joining two vertices with s internally disjoint paths of length
k1, k2, . . . , ks , respectively. The graph θ(k1, k2, . . . , ks) is called an s-bridge graph. If k1 = k2 = k3 = 1 and s = 3,
the graph is called a θ -graph. When s = 3, the graph is referred as a generalized θ -graph.

The generalized θ -graph θ(d,e, f ) is known to be χ -unique when at most one of d, e, f is one (see [9]). Let θ∗

(d,e, f )
denote the dual graph of θ(d,e, f ). Next we prove the following result:

Proposition 3.2. Suppose that at most one of d, e and f is one. Then θ∗

(d,e, f ) is flow-unique.

Proof. θ∗(d, e, f ) is a graph constructed from a triangle by replacing every edge by multiple edges with multiplicities
d, e, f , respectively. Since at most one of d, e and f is one, it is a connected cosimple graph. Suppose that G is a
connected cosimple graph which is flow-equivalent to θ∗(d, e, f ). By Theorem 3.1, |V (G)| = 3, |E(G)| = d +e + f
and G is a loopless 2-connected graph. Hence G is planar. Now as QG(x) = Qθ∗(d,e, f )(x) we deduce that
PG∗(x) = Pθ(d,e, f )(x). Since θ(d, e, f ) is χ -unique, G∗ ∼= θ(d, e, f ). Now it is straightforward to see that
G ∼= θ∗(d, e, f ). �

In the above result, the dual graph of a planar chromatically unique graph is flow-unique. It is natural to ask
whether this is true in general. In other words, is a dual graph of a χ -unique planar graph always flow-unique?
Unfortunately, it is not the case. It was noted in [10] that there are many χ -unique s-bridge graphs θ(k1, k2, . . . , ks)

(s ≥ 4), where the set {k1, k2, . . . , ks} contains at least three distinct integers. (A reader may look at a special
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case, for example, θ(4, 6, 7, 8).) Now we describe a class of graphs D such that each graph in the class is a dual
graph of θ(k1, k2, . . . , ks). Let C be a cycle with s edges with labels 1, 2, . . . , s, respectively. For any permutation
(t1, t2, . . . , ts) of (k1, k2, . . . , ks), we obtain a graph in D by making the multiplicity of i in C to be ti for
i ∈ {1, 2, . . . , s}. It is straightforward to see that each graph in D is a dual of θ(k1, k2, . . . , ks). Moreover, all graphs
inD are clearly 2-isomorphic; thus they have the same flow (and Tutte) polynomial. Therefore, each graph inD is not
flow-unique, while it is a dual graph of a planar χ -unique graph.

We believe that the dual graphs of flow-unique planar graphs may not be χ -unique, although we have not found an
example yet. (Indeed, we do not know many flow-unique graphs.)

Next we consider the important forbidden subgraphs of non-planar graphs, K5 and K3,3. We use the information
contained in their flow polynomials to show that they are flow-unique. The following lemma will be useful in the
paper. A graph G is called super-edge-connected if every minimum bond of G is trivial, i.e., it is a bond consisting of
all edges incident to a single vertex. Clearly, if a connected graph G is super-edge-connected, then λ(G) = δ(G).

Lemma 3.3. Let G be a connected, cosimple, and r-regular super-edge-connected graph for some r ≥ 3. If H is also
connected and cosimple, and G and H are flow-equivalent, then H is also an r-regular super-edge-connected graph.

Proof. Since G is a connected r -regular super-edge-connected graph, we deduce that λ(G) = r . Hence,
by Theorem 3.1, λ(H) = r and G and H have the same number of vertices and edges, respectively. Furthermore, H
is also r -edge-connected and the number of minimum bonds of H is n = |V (G)|.

Then δ(H) ≥ λ(H) = r . In addition, we have

r · n ≤ δ(H) · n ≤

∑
v∈V (H)

d(v) = 2|E(H)| = 2|E(G)| = rn.

Therefore each inequality above becomes an equality, and hence d(v) = r for every vertex v ∈ V (H). Thus H
is r -regular. As λ(H) = r , each vertex of H is corresponding to a minimum bond, and therefore H has at least n
minimum bonds. By Theorem 3.1, G and H have the same number of minimum bonds. Therefore, H has only trivial
minimum bonds, and hence H is also a super-edge-connected graph. �

Theorem 3.4. Both K5 and K3,3 are flow-unique.

Proof. (i) Let G be a connected cosimple graph such that QG(x) = QK5(x). Then |V (G)| = 5, |E(G)| = 10,
G is loopless, 2-connected, 4-edge-connected and the number of 4-element bonds is 5. Lemma 3.3 yields that G is
4-regular and every 4-element bond is trivial. In addition, G has no multiple edge. Otherwise, it is easy to see that G
has a non-trivial bond of size at most four. Thus, G is simple and it is clear that G ∼= K5.

(ii) Let G be a cosimple connected graph such that QG(x) = QK3,3(x). Then by Theorem 3.1, |V (G)| = 6,
|E(G)| = 9, G is loopless, 2-connected, 3-edge-connected and the number of 3-element bonds is 6. By Lemma 3.3,
we deduce that G is 3-regular and every 3-element bond is trivial. Moreover, G is simple (otherwise, G would have a
bond of size at most two).

We see that g(G) ≥ 4 as G has no non-trivial 3-element bonds. On the other hand, since G is simple, 2-connected
and is 3-regular, we deduce that g(G) ≤ 4. Thus g(G) = 4. Let C = v1v2v3v4 be a 4-cycle of G and v5 and v6 be
the other two vertices. If v5v6 6∈ E(G), then v5 is incident to three vertices of C , a contradiction to g(G) = 4. Hence
v5v6 ∈ E(G). As d(v5) = 3 and G is a simple graph with girth 4, v5 is incident to exactly two non-adjacent vertices
of C , say v1 and v3; similarly, v6 is adjacent to v2 and v4. We conclude that G ∼= K3,3. This completes the proof of
the theorem. �

It is known that the complete graphs Kn and the complete bipartite graphs Km,n (m, n ≥ 2) are χ -unique (see [9]).
However, for larger m and n, the flow-uniqueness of Kn and Km,n is still unknown.

4. (P, Q)-unique graphs

In this section, we study the graphs determined by their chromatic and flow polynomials together. It is natural to
consider those classes of graphs which are either not known to be χ -unique yet, or not χ -unique. We focus on three
such classes, ladders Ln , Möbius ladders Mn and square of an n-cycle C2

n (n ≥ 3). All three classes are conjectured to
be χ -unique [16]. We will show that all graphs in these classes are (P, Q)-unique. As a consequence, we deduce the
corresponding results of de Mier and Noy [11] that all such graphs are T -unique. We start with the following lemma.
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Fig. 2. The ladder L8 and Möbius ladder M8.

Lemma 4.1. Let G and H be two graphs such that PG(x) = PH (x) and QG(x) = Q H (x). Then

(1) |E(G)| = |E(H)| and |V (G)| = |V (H)|;
(2) If G is simple, then H is simple; if G is cosimple, then H is also cosimple.

Proof. As PG(x) = PH (x) and QG(x) = Q H (x), both r(G) and n(G) are determined by the two polynomials
together. That is, r(G) = r(H) and n(G) = n(H). As |E(G)| = r(G)+ n(G), we conclude that |E(G)| = |E(H)|.
Moreover, PG(x) determines the number of components of G (see, for example, [9]). As r(G) = r(H), we deduce
that |V (G)| = |V (H)|.

As |E(G)| = |E(H)|, by Corollary 2.5, we know that if G is simple, then H is simple; and if G is cosimple, then
H is also cosimple. �

From the previous lemma, it is clear that if a simple graph G is χ -unique, then it is also (P, Q)-unique. On the
other hand, if a cosimple graph G is flow-unique, then it is also (P, Q)-unique. Note that a (P, Q)-unique graph,
however, is not necessarily χ -unique or flow-unique.

Proposition 4.2. W5 is (P, Q)-unique, but it is neither χ -unique nor flow-unique.

Proof. Fig. 1 shows that W5 is neither χ -unique nor flow-unique, as we pointed out before. If G is (P, Q)-equivalent
to W5, then G is a simple and cosimple graph with 6 vertices, 10 edges, and 5 triangles. Moreover, λ(G) = 3 and
hence each vertex has degree at least three. Thus the degree sequence of G is either 3, 3, 3, 3, 3, 5 or 3, 3, 3, 3, 4, 4.
Assume that the former is true and let u be the vertex of degree 5. Then each other vertex has degree two in G − u.
As G is simple, we deduce that G − u is a cycle and hence G ∼= W5.

Now we assume that the latter is true, and G has two vertices u and v of degree four. If uv 6∈ E(G), then as G
has exactly 6 vertices, both u and v are adjacent to all four other vertices of G. Now, as |E(G)| = 10, it is easy to
verify that G has only four triangles, a contradiction. So we may assume that uv ∈ E(G). Let the neighbors of u be
v, u1, u2, and u3 and the only other remaining vertex of G be v1. As d(v) = 4, v is adjacent to at least two vertices
of u1, u2 and u3. If v is adjacent to all of u1, u2, and u3, then as d(v1) = 3, we deduce that v1 is also adjacent to
all of u1, u2 and u3. Then G has exactly three triangles, a contradiction. Therefore, in the set {u1, u2, u3}, the vertex
v has exactly two neighbors, say, u2 and u3 (the other two neighbors are u and v1). Now it is straightforward to see
that u1v1 ∈ E(G), and either u1u2, v1u3 ∈ E(G), or u1u3, v1u2 ∈ E(G). In either case, G has only 4 triangles, a
contradiction. Therefore, W5 is (P, Q)-unique. �

The graph Ln = Cn × K2 is called a ladder (see [11], note that some authors call it a circular ladder). The Möbius
ladder Mn is constructed from an even cycle C2n by joining every pair of opposite vertices. Two examples are shown
in Fig. 2. The square of an n-cycle, C2

n , is obtained from the cycle Cn by adding all the edges between vertices at
distance two.

It is straightforward to verify the following lemma.

Lemma 4.3. If k is odd, the chromatic numbers of Lk and Mk are 3 and 2, respectively; if k is even, the chromatic
numbers of Lk and Mk are 2 and 3, respectively.

The next two results show that the ladders and Möbius ladders are (P, Q)-unique. To prove the following theorem,
we define Hk to be a bipartite graph obtained from a ladder Lk by removing two edges, as shown in Fig. 3(a). Here e1
and ek are called the end edges of the graph.
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Fig. 3. The graphs Hk and Ĥ3.

Theorem 4.4. The ladders Ln (n ≥ 3) are (P, Q)-unique.

Proof. As L3, L4 and L5 are all χ -unique (see [9]), they are also (P, Q)-unique. Now assume that n ≥ 6. Let G be a
graph with PG(x) = PLn (x) and QG(x) = QLn (x). By Lemmas 2.1, 4.1 and 4.3 and Theorem 3.1, G is both simple
and cosimple (as Ln is both simple and cosimple), and the following hold:

• |V (G)| = 2n, |E(G)| = 3n;
• g(G) = 4 and the number of 4-cycles is n;
• G is 2-connected;
• G is 3-edge-connected and the number of 3-element bonds is 2n;
• if k is odd, the chromatic number of G is 3 and if k is even, the chromatic number of G is 2.

By Lemma 3.3, G is a 3-regular graph and every 3-element bond is trivial (that is, each such bond is associated
with a vertex of degree three). Since there are n 4-cycles and 3n edges in G, there must exist an edge contained in at
least two 4-cycles.

Claim 1. For any two 4-cycles C1 and C2 in G, |E(C1) ∩ E(C2)| ≤ 1.
Suppose that there exist two cycles C1 and C2 such that |E(C1) ∩ E(C2)| ≥ 2. We have already shown that G is

simple. Hence |E(C1) ∩ E(C2)| ≤ 2. Then |E(C1) ∩ E(C2)| = 2 and therefore G contains a K3,2 as a subgraph.
Since G is 3-regular and |V (G)| ≥ 12, the three edges joining the three 2-degree vertices of K3,2 to other vertices of
G form a non-trivial 3-element bond of G, a contradiction.

Using Claim 1, we deduce that for any 4-cycle C of G there are at most two 4-cycles that intersect with C and the
intersecting edges are not incident. Otherwise, since G is 3-regular, G contains Ĥ3 as subgraph, as shown in Fig. 3(b).
As G is 3-edge-connected, the three edges joining {v1, v2, v3} to V (G) − V (Ĥ3) form a non-trivial 3-element bond,
a contradiction. Moreover, any edge e of G is contained in at most two 4-cycles. Using this, we will show that G is a
ladder. Since G contains n 4-cycles and 3n edges, by Claim 1, there are two 4-cycles sharing exactly one edge. That
is, G contains H3 as a subgraph. Let k = max{i : Hi is a subgraph of G}. Then 3 ≤ k ≤ n and Hk is a subgraph of G
with end edges e1 and ek .

Claim 2. In Hk , either e1 or ek is contained in another 4-cycle.
Assume that the claim is false and that neither e1 nor ek is contained in any other 4-cycle. In G − E(Hk), there are

n − k + 1 4-cycles left, and in E(G)− E(Hk), there are at most n − k + 1 edges contained in two 4-cycles. We denote
the number of edges contained in these 4-cycles by ξ . Then

ξ ≥ 4(n − k + 1)− (n − k + 1) = 3n − 3k + 3.

On the other hand, there are only 3n − 3k + 2 edges left in G − Hk , a contradiction.
By the choice of k, we conclude that ek+1 = e1. Hence G has either a ladder or Möbius ladder as a subgraph.

As G is connected and 3-regular, we deduce that V (G) = V (Hk) and hence k = n. Therefore G ∼= Lk or Mk .
By Lemma 4.3, we conclude that G ∼= Ln . This completes the proof of the theorem. �

Similarly, we can prove the next result.

Theorem 4.5. Möbius ladders Mn are (P, Q)-unique.

Proof. When n = 2, M2 is just K4; when n = 3, then M3 ∼= K3,3. Both graphs are known to be χ -unique. The case
for n ≥ 4 is similar to the proof of Theorem 4.4. �
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Fig. 4. The graphs Rk and R5.

It is known that C2
n is χ -unique for n = 4, 5, 6, 7, 8, 9 (see [9]). In [16], Read conjectured that for each n ≥ 4, C2

n
is χ -unique. This conjecture is still open.

We define a graph Rk recursively as follows: R3 is a triangle with vertex set {v1, v2, v3}; to obtain Rk , we add a
new vertex vk and two new edges vkvk−2, vkvk−1 to the graph Rk−1 (see Fig. 4(a)). The edges v1v2 and vk−1vk are
called the verge edges of Rk . Next we prove that C2

n is (P, Q)-unique.

Theorem 4.6. Square of cycle C2
n is (P, Q)-unique for all n ≥ 3.

Proof. If n ≤ 9, then C2
n is proved to be χ -unique (see [9]), and thus is also (P, Q)-unique. In the following, we

assume that n ≥ 10.
Let G be a graph which is (P, Q)-equivalent to C2

n . By Lemmas 2.1 and 4.1 and Theorem 3.1, G is both simple
and cosimple (as C2

n is both simple and cosimple), and the following hold:

• |V (G)| = n, |E(G)| = 2n;
• g(G) = 3 and the number of C3’s is n;
• G is 2-connected;
• G is 4-edge-connected and the number of 4-element bonds is n.

By Lemma 3.3, G is a 4-regular graph and each 4-element bond is trivial.

Claim 1. G contains no K4 or W4 as a subgraph.
Suppose that G contains a subgraph with vertex set {v1, v2, v3, v4} and this subgraph is isomorphic to K4. As n ≥ 6

and G is a 4-regular graph, the edges joining {v1, v2, v3, v4} to V (G) − {v1, v2, v3, v4} form a non-trivial 4-element
bond, a contradiction. Similarly, we can show that G contains no W4 as a subgraph.

Claim 2. Every edge of G is contained in at most two triangles.
Since G is 4-regular, every edge of G is contained in at most three triangles. So it suffices to show that G contains

no K +

3,2 as a subgraph, where K +

3,2 denotes the graph K3,2 with an extra edge joining the two vertices in the partite
set of order two. As G is 4-regular and contains neither K4 nor W4 as a subgraph, every vertex of G is contained in at
most three triangles.

Denote η = {(vi , t) : vertex vi is contained in a triangle t}. Clearly |η| = 3n.
Denote ηi = the number of triangles containing vi , 0 ≤ ηi ≤ 3.
Let k denote the number of subgraphs isomorphic to K +

3,2, say (K +

3,2)
1, . . . , (K +

3,2)
k . Clearly, these (K +

3,2)
i ’s are

edge disjoint, so in each (K +

3,2)
i , there are two vertices contained in exactly three triangles and the other three vertices

contained in at most two triangles. On the other hand, every vertex of G is contained in at most three triangles.
Thus 3n = |η| =

∑n
i=1 ηi ≤ 3(2k) + 2(3k) + 3(n − 5k) = 3n − 3k; hence k = 0. Moreover, every vertex is

contained in exactly three triangles.
Since G contains no K4 or K +

3,2 as a subgraph, the three triangles containing a vertex v form a subgraph as shown
in Fig. 4(b). Thus, G contains R5 as a subgraph. Assume that k = max{i : Ri is a subgraph of G}, where k ≥ 5
and v1v2 and vk−1vk are the verge edges of Rk , as shown in Fig. 4(a). Note that all of the vertices v3, v4, . . . , vk−2
have degree four in Rk . Consider the vertex vk−1, which must be contained in another triangle T not in Rk . Clearly,
vk is also a vertex of T . Suppose that V (T ) = {vk−1, vk, vk+1}. As Rk is a maximal subgraph of G, we deduce
that vk+1 ∈ V (Rk). Hence vk+1 = v1. Now in the graph R′

k obtained by adding two edges v1vk and v1vk−1 to
Rk , there are only two vertices having degrees less than four. Namely, v2 and vk , each of which has degree three.
If V (G) 6= V (Rk), then G would have a bond of size at most two, a contradiction as G is 4-edge-connected. We
conclude that V (G) = V (Rk) and therefore k = n. Since G is 4-regular, v2vk ∈ E(G), and hence G ∼= C2

n . �
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By now, we have proved that ladders, Möbius ladders and squares of n-cycle are determined by their chromatic
and flow polynomials together. This generalizes the corresponding results of de Mier and Noy [11] that these classes
of graphs are T-unique. Are there graphs which are not (P, Q)-unique, but T -unique? We agree with the comment
from one of the referees that there must exist such graphs, although we have not found such an example yet.

In [11], the wheels, complete multipartite graphs and n-cubes are also proved to be T -unique. In addition, wheels
with even number of spokes, and balanced complete multipartite graphs are χ -unique, and n-cubes are conjectured to
be χ -unique (see [9]). It is natural to consider the (P, Q)-uniqueness of these three classes of graphs. It is interesting
to see if more classes of graphs and matroids can be determined by their chromatic polynomials and flow polynomials
together. It is also interesting to find more classes of flow-unique graphs.
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