Generalization of matching extensions in graphs (III)

Bing Bai^{1}, Hongliang Lu^{2} and Qinglin $\mathrm{Yu}^{34 *}$
${ }^{1}$ Center for Combinatorics, LPMC
Nankai University, Tianjin, PR China
${ }^{2}$ Department of Mathematics
Xian Jiaotong University, Xian, P. R . China
${ }^{3}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada
${ }^{4}$ School of Mathematics
Shandong University, Jinan, Shandong, China

Abstract

Proposed as a general framework, Liu and $\mathrm{Yu}[6]$ introduced (n, k, d)-graphs to unify the concepts of deficiency of matchings, n-factor-criticality and k-extendability. Let G be a graph and let n, k and d be non-negative integers such that $n+2 k+d+2 \leqslant|V(G)|$ and $|V(G)|-n-d$ is even. If deleting any n vertices from G, the remaining subgraph H of G contains a k-matching and each k-matching can be extended to a defect- d matching in H, then G is called an (n, k, d)-graph. In this paper, we obtain more properties of (n, k, d)-graphs, in particular the recursive relations of (n, k, d)-graphs for distinct parameters n, k and d. Moreover, we provide a characterization for maximal non- (n, k, d)-graphs.

Keywords: (n, k, d)-graphs, k-extendable graphs, n-factor-critical graphs

1 Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges. For the most part our notations and terminologies follow that of Bondy and Murty [3].

Let G be a graph with vertex set $V(G)$, edge set $E(G)$ and minimum degree $\delta(G)$. A matching M of G is a subset of $E(G)$ such that any two edges of M have no vertices in common. A matching of k edges is called a k-matching. For a matching M, we use $V(M)$ to denote the vertices incident to the edges of M. Let d be a non-negative integer. A matching is called a defect-d matching if it covers exactly $|V(G)|-d$ vertices of G. Clearly, a defect- 0 matching is a perfect matching. For a subset S of $V(G)$, we denote by $G[S]$ the subgraph

[^0]of G induced by S and we write $G-S$ for $G[V(G) \backslash S]$. The number of odd components of G is denoted by $c_{0}(G)$. The $j o i n ~ G \vee H$ of two graphs G and H is a graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{x y \mid x \in V(G), y \in V(H)\}$. We denote the complement of G by \bar{G}. A set T is called n-set if $|T|=n$. For two disjoint sets A and B of $V(G)$, we define $E(A, B)=\{x y: x \in A$ and $y \in B\} \cap E(G)$.

Let M be a matching of G. If there is a matching M^{\prime} of G such that $M \subseteq M^{\prime}$, we say that M can be extended to M^{\prime} or M^{\prime} is an extension of M. Suppose that G is a connected graph with perfect matchings. If each k-matching can be extended to a perfect matching in G, then G is called k-extendable. To avoid triviality, we require that $|V(G)| \geqslant 2 k+2$ for k-extendable graphs. This family of graphs was introduced by Plummer [9]. A graph G is called n-factor-critical if after deleting any n vertices the remaining subgraph of G has a perfect matching. This concept is introduced by Favaron [4] and Yu [10], independently, which is a generalization of the notions of the well-known factor-critical graphs and bicritical graphs, the cases of $n=1$ and 2 , respectively. In [8], Lou investigated relationship between $2 k$-factor-criticality and k-extendability.

Let G be a graph and let n, k and d be non-negative integers such that $|V(G)| \geqslant$ $n+2 k+d+2$ and $|V(G)|-n-d$ is even. If deleting any n vertices from G the remaining subgraph of G contains a k-matching and each k-matching in the subgraph can be extended to a defect- d matching, then G is called an (n, k, d)-graph. This term was introduced by Liu and $\mathrm{Yu}[6]$ as a general framework to unify the concepts of defect- d matchings, n-factorcriticality and k-extendability. In particular, ($n, 0,0$)-graphs are exactly n-factor-critical graphs and ($0, k, 0$)-graphs are just the same as k-extendable graphs. In $[5,6]$, the recursive relations were shown for distinct parameters n, k and d and the impact of adding or deleting an edge for $d \geqslant 0$ was discussed. In this paper, we continue the investigation of (n, k, d) graphs and obtain more recursive relations.

A graph G is called a maximal non- (n, k, d)-graph if G is not an (n, k, d)-graph, but $G \cup e$ is an (n, k, d)-graph for every edge $e \in E(\bar{G})$. In [1], Ananchuen, Caccetta and Ananchuen studied maximal non- k-factor-critical graphs and maximal non- k-extendable graphs, they also provided a characterization of these graphs. In the current paper, we generalize their criteria to obtain a characterization of maximal non- (n, k, d)-graphs.

2 Known Results

A necessary and sufficient condition for a graph to have a defect- d matching was given by Berge [2].

Lemma 2.1 (Berge, [2]) Let G be a graph and d an integer such that $0 \leqslant d \leqslant|V(G)|$ and $|V(G)| \equiv d(\bmod 2)$. Then G has a defect-d matching if and only if for any $S \subseteq V(G)$

$$
c_{0}(G-S) \leqslant|S|+d
$$

In [6], Liu and Yu showed the following sufficient and necessary conditions for (n, k, d) graphs.

Lemma 2.2 (Liu and Yu, [6]) A graph G is an (n, k, d)-graph if and only if the following conditions hold:
(a) for any $S \subseteq V(G)$ such that $|S| \geqslant n$, then

$$
c_{0}(G-S) \leqslant|S|-n+d,
$$

(b) for any $S \subseteq V(G)$ such that $|S| \geqslant n+2 k$ and $G[S]$ contains a k-matching, then

$$
c_{0}(G-S) \leqslant|S|-n-2 k+d
$$

It is a natural problem to find recursive relations among the graphs with different parameters n, k and d. Below is one of such results.

Lemma 2.3 (Liu and Yu, [6]) Every (n, k, d)-graph is also an ($\left.n^{\prime}, k^{\prime}, d\right)$-graph, where $0 \leqslant$ $n^{\prime} \leqslant n, 0 \leqslant k^{\prime} \leqslant k$ and $n^{\prime} \equiv n(\bmod 2)$.

3 Main Results

Following the study of recursive relations of the previous work, we continue to investigate the effect of various graphic operations on (n, k, d)-graphs and recursive relations. We start with the following lemma.

Lemma 3.1 If G is an (n, k, d)-graph, then it is also an $(n-2, k+1, d)$-graph.
Proof. At first, note that G is an $(n-2,0, d)$-graph by Lemma 2.3. Since $|V(G)| \geqslant$ $n+2 k+d+2$, for any $(n-2)$-set $S \subseteq V(G)$ there exist $(k+1)$-matchings in subgraph $G-S$.

Suppose, to the contrary, that G is not an $(n-2, k+1, d)$-graph. Then, by the definition, there exist an $(n-2)$-set $R \subseteq V(G)$ and a $(k+1)$-matching M which cannot be extended to a defect- d matching of $G-R$. By Lemma 2.1 and parity, there exists a subset S_{0} in $G-R-V(M)$ such that

$$
c_{0}\left(G-R-V(M)-S_{0}\right) \geqslant\left|S_{0}\right|+d+2
$$

Let $S=S_{0} \cup R \cup V(M)$. Then $|S|=\left|S_{0}\right|+|R|+2(k+1) \geqslant n+2 k$ and $G[S]$ contains k-matchings, and

$$
c_{0}(G-S)=c_{0}\left(G-S_{0}-R-V(M)\right) \geqslant\left|S_{0}\right|+d+2=|S|-n-2 k+d+2
$$

a contradiction to Lemma 2.2 (b).

Theorem 3.2 A graph G is an $(n+2, k-1, d)$-graph if and only if G is an (n, k, d)-graph and $G \cup e$ is an (n, k, d)-graph, for any $e \in E(\bar{G})$.

Proof. If G is an $(n+2, k-1, d)$-graph, by Lemma 3.1, then G is an (n, k, d)-graph.
We show that $G \cup e$ is an (n, k, d)-graph for any $e \in E(\bar{G})$. Otherwise, there exists an edge $e_{1} \in E(\bar{G})$ such that $G^{\prime}=G \cup\left\{e_{1}\right\}$ is not an (n, k, d)-graph. By Lemma 2.2, we consider two cases:

Case 1. There exits a subset $S_{1} \subseteq V\left(G^{\prime}\right)=V(G)$ such that $\left|S_{1}\right| \geqslant n$ and $c_{0}\left(G^{\prime}-S_{1}\right) \geqslant$ $\left|S_{1}\right|-n+d+2$. However,

$$
c_{0}\left(G-S_{1}\right) \geqslant c_{0}\left(G^{\prime}-S_{1}\right) \geqslant\left|S_{1}\right|-n+d+2,
$$

a contradiction to that G is an (n, k, d)-graph and Lemma 2.2 (a).
Case 2. There exits a subset $S_{2} \subseteq V\left(G^{\prime}\right)=V(G)$, where $\left|S_{2}\right| \geqslant n+2 k$ and $G^{\prime}\left[S_{2}\right]$ contains a k-matching M_{2} such that

$$
c_{0}\left(G^{\prime}-S_{2}\right) \geqslant\left|S_{2}\right|-n-2 k+d+2 .
$$

If $e_{1} \notin M_{2}$, then $\left|S_{2}\right| \geqslant n+2 k$ and $G\left[S_{2}\right]$ contains the k-matching M_{2}, and $c_{0}\left(G-S_{2}\right) \geq$ $c_{0}\left(G^{\prime}-S_{2}\right) \geqslant\left|S_{2}\right|-n-2 k+d+2$, a contradiction to that G is an (n, k, d)-graph and Lemma 2.2 (b). So $e_{1} \in M_{2}$. Let $M_{2}^{\prime}=M_{2}-\left\{e_{1}\right\}$. Then $\left|S_{2}\right| \geqslant n+2 k=(n+2)+2(k-1)$ and $G\left[S_{2}\right]$ contains the $(k-1)$-matching M_{2}^{\prime}. Moreover,

$$
c_{0}\left(G-S_{2}\right) \geqslant c_{0}\left(G^{\prime}-S_{2}\right) \geqslant\left|S_{2}\right|-n-2 k+d+2=\left|S_{2}\right|-(n+2)-2(k-1)+d+2,
$$

a contradiction to that G is an $(n+2, k-1, d)$-graph.
Next we prove the sufficiency. Suppose that G is not an $(n+2, k-1, d)$-graph. Then there exist an $(n+2)$-set $S_{3} \subseteq V(G)$ and a ($k-1$)-matching M_{3} which cannot be extended to a defect- d matching of $G-S_{3}-V\left(M_{3}\right)$. By Lemma 2.1, there exists a vertex set $R \subseteq V\left(G-S_{3}-V\left(M_{3}\right)\right)$ such that

$$
c_{0}\left(G-S_{3}-V\left(M_{3}\right)-R\right) \geqslant|R|+d+2 .
$$

For any two vertices u, v of S_{3}, if $u v \in E(\bar{G})$, denote $e_{2}=u v, M_{3}^{\prime}=M_{3} \cup\left\{e_{2}\right\}$, and $S_{3}^{\prime}=S_{3} \backslash\{u, v\}$, then we have

$$
c_{0}\left(\left(G \cup e_{2}\right)-S_{3}^{\prime}-V\left(M_{3}^{\prime}\right)-R\right)=c_{0}\left(G-S_{3}-V\left(M_{3}\right)-R\right) \geqslant|R|+d+2,
$$

a contradiction to the fact that $G \cup e$ is an (n, k, d)-graph, for any $e \in E(\bar{G})$; if $u v \in E(G)$, then $\left|S_{3}^{\prime}\right|=n$ and M_{3}^{\prime} is a k-matching of G, and

$$
c_{0}\left(G-S_{3}^{\prime}-V\left(M_{3}^{\prime}\right)-R\right)=c_{0}\left(G-S_{3}-V\left(M_{3}\right)-R\right) \geqslant|R|+d+2,
$$

a contradiction to that G is an (n, k, d)-graph.
Applying Lemma 3.1, we have a sufficient and necessary conditions ($n+2 k, 0, d$)-graphs.
Theorem 3.3 A graph G is an $(n+2 k, 0, d)$-graph if and only if G is an (n, k, d)-graph and for any edge set $D \subseteq E(\bar{G}), G \cup D$ is an (n, k, d)-graph.

Proof. If G is an $(n+2 k, 0, d)$-graph, clearly $G \cup D$ is also an $(n+2 k, 0, d)$-graph. Applying Lemma 3.1 repeatedly, we see that $G \cup D$ is an (n, k, d)-graph.

On the other hand, suppose that G is not an $(n+2 k, 0, d)$-graph, by Lemma 2.2 , there exists a subset S with $|S| \geq n+2 k$ such that

$$
c_{0}(G-S) \geq|S|-(n+2 k)+d+2
$$

Let $S=\left\{u_{1}, \ldots, u_{h}\right\}$, where $h \geq n+2 k$ and $G^{\prime}=G \cup\left\{u_{2 i-1} u_{2 i} \mid i=1, \ldots, k\right\}$. Then $G^{\prime}[S]$ contains a k-matching and we have

$$
c_{0}\left(G^{\prime}-S\right)=c_{0}(G-S) \geq|S|-(n+2 k)+d+2
$$

By Lemma 2.2 (b), G^{\prime} is not an (n, k, d)-graph, a contradiction.
Let $n=0$ and $d=0$, we have the next corollary.

Corollary 3.4 (Lou, [8]) A graph G of even order is $2 k$-factor-critical if and only if
(a) G is k-extendable; and
(b) for any edge set $D \subseteq E(\bar{G}), G \cup D$ is k-extendable.

In [7], Liu and Yu present several results about ($n, k, 0$)-graphs and its subgraphs. In particular, they proved that if $G-V(e)$ is an $(n, k, 0)$-graph for each $e \in F$ (where F is a fixed 1-factor in G), then G is an ($n, k, 0$)-graph. We generalize this result for any $d \geqslant 0$ and $n \geqslant d+2$.

Theorem 3.5 Let F be a perfect matching of a connected graph G, where $|V(G)| \geqslant n+$ $2 k+d+4$ and $n \geqslant d+2$. If subgraph $G-V(e)$ is an (n, k, d)-graph for each $e \in F$, then G is also an (n, k, d)-graph.

Proof. Assume that F is a perfect matching of G such that $G-V(e)$ is an (n, k, d)-graph for each $e \in F$. To see the existence of k-matchings in the subgraphs, we show a claim.

Claim 1. For any n-set $T \subseteq V(G), G-T$ contains k-matchings.
If $F \cap E(G-T)=\emptyset$, then there exists an edge $e=a b \in F$ such that $a \in T$ and $b \in V(G-T)$. Let $T^{\prime}=T \backslash\{a\} \cup\{c\}$, where $c \in V(G)-T-\{b\}$. Then $\left|T^{\prime}\right|=n$ and $F \cap E\left(G-T^{\prime}\right)=\{e\}$. By the assumption of the theorem, $G-V(e)$ is an (n, k, d)-graph. Hence, $G-V(e)-T^{\prime}$ has a defect- d matching M_{1}. Since $|V(G)| \geqslant n+2 k+d+4, M_{1}$ contains at least $k+1$ edges. Therefore, $G-T$ contains k-matchings.

If $F \cap E(G-T) \neq \emptyset$, let $e=a b \in F \cap E(G-T)$, then $G-V(e)$ is an (n, k, d)-graph. So $G-V(e)-T$ contains k-matchings and thus $G-T$ contains k-matchings.

Suppose that G is not an (n, k, d)-graph, by the definition and Claim 1, there exists a vertex-set R of order n in G and a k-matching M of $G-R$ such that $G-R-V(M)$ has
no defect- d matchings. Let $G^{\prime}=G-R-V(M)$, by Lemma 2.1 and parity, there exists a subset S in G^{\prime} so that

$$
\begin{equation*}
c_{0}\left(G^{\prime}-S\right)=c_{0}(G-R-V(M)-S) \geqslant|S|+d+2 . \tag{1}
\end{equation*}
$$

Claim 2. $F \cap E(G[R \cup S])=F \cap M=F \cap E(V(M), R \cup S)=F \cap E\left(C_{i}\right)=F \cap$ $E\left(S, V\left(C_{i}\right)\right)=\emptyset$ for all C_{i}, where C_{i} is an odd component of $G^{\prime}-S$.

If there exists an edge $e \in(F \cap E(R)) \cup(F \cap E(S))$, say $e \in F \cap E(R)$, then we have

$$
c_{0}(G-V(e)-(R \backslash V(e))-V(M)-S)=c_{0}\left(G^{\prime}-S\right) \geqslant|S|+d+2 .
$$

So $G-V(e)$ is not an $(n-2, k, d)$-graph, a contradiction to that $G-V(e)$ is an (n, k, d)-graph and Lemma 2.3.

If there exists an edge $e \in F \cap E(R, S)$, where $e=a b, a \in S, b \in R$. Let $c \in C_{i}, R^{\prime}=$ $R \backslash\{b\} \cup\{c\}$, and $S^{\prime}=S \backslash\{a\}$. Then we have

$$
c_{0}\left(G-V(e)-R^{\prime}-V(M)-S^{\prime}\right) \geqslant c_{0}\left(G^{\prime}-S\right)-1 \geqslant\left|S^{\prime}\right|+d+2 .
$$

Thus $G-V(e)$ is not an (n, k, d)-graph, a contradiction.
If there exists an edge $e \in F \cap M$, then we have

$$
c_{0}(G-V(e)-R-V(M \backslash\{e\})-S)=c_{0}\left(G^{\prime}-S\right) \geqslant|S|+d+2 .
$$

Thus $G-V(e)$ is not an $(n, k-1, d)$-graph, a contradiction.
Suppose that $e \in F \cap E(V(M), R)$. Let $e=u v$ and $u a \in M$, where $u \in V(M)$ and $v \in R$. Let $R_{1}=(R \backslash\{v\}) \cup\{a\}$ and $M^{\prime \prime}=M \backslash\{u a\}$. Then

$$
c_{0}\left(G-V(e)-R_{1}-V\left(M^{\prime \prime}\right)-S\right) \geqslant|S|+d+2 .
$$

Thus $G-V(e)$ is not an $(n, k-1, d)$-graph, a contradiction.
Using the similar arguments, we may show $e \notin E(S) \cup E(V(M), S) \cup\left(\cup_{i} E\left(C_{i}\right)\right) \cup$ $E\left(S, V\left(C_{i}\right)\right)$ for any $e \in F$.

Claim 3. $G^{\prime}-S$ has no even components.
Otherwise, let D be an even component of $G^{\prime}-S$ and $e=a b \in F, a \in V(D)$. If $b \in R$, choose a vertex $c \in V(D) \backslash\{a\}$, let $R_{2}=R \backslash\{b\} \cup\{c\}$, then

$$
c_{0}\left(G-V(e)-R_{2}-V(M)-S\right) \geqslant c_{0}\left(G^{\prime}-S\right) \geqslant|S|+d+2 .
$$

Thus $G-V(e)$ is not an (n, k, d)-graph, a contradiction. For $b \in S$, we arrive at a contradiction with a similar argument. So we may assume $b \in V(M)$. Let $b c \in M$. Set $S_{1}=S \cup\{c\}$. Note that $G^{\prime}[D \backslash\{a\}]$ contains at least one odd component. So we have

$$
c_{0}\left(G-V(e)-R-V(M \backslash\{b c\})-S_{1}\right) \geqslant\left|S_{1}\right|+d+2 .
$$

Hence $G-V(e)$ is not an $(n, k-1, d)$-graph, a contradiction.
Finally, if e is in the component D, then

$$
c_{0}(G-V(e)-R-V(M)-S) \geqslant c_{0}\left(G^{\prime}-S\right) \geqslant|S|+d+2 .
$$

Thus $G-V(e)$ is not an (n, k, d)-graph, a contradiction again.
For any vertex $x \in S$, by Claim $2 x$ can not be matched in perfect matching F to any other vertex in S or any vertex in $R \cup V(M)$ or any vertex in an odd component, so we conclude $S=\emptyset$.

Claim 4. $c_{0}\left(G^{\prime}-S\right)=c_{0}\left(G^{\prime}\right)=d+2$.
By (1), we need only to show $c_{0}\left(G^{\prime}\right) \leqslant d+2$. Otherwise, suppose $c_{0}\left(G^{\prime}\right) \geqslant d+3$. If there exists an edge $e=a b \in F \cap E\left(R, C_{i}\right)$, where $a \in C_{i}$ and $b \in R$, we choose a vertex x from another odd component C_{j} and let $R_{1}=R \backslash\{b\} \cup\{x\}$, then

$$
c_{0}\left(G-V(e)-R_{1}-V(M)\right) \geqslant c_{0}\left(G^{\prime}\right)-2 \geqslant d+1 .
$$

Thus $G-V(e)$ is not an (n, k, d)-graph, a contradiction. Next, we assume that all vertices in $\cup_{i} C_{i}$ are matched to $V(M)$. Consider the alternating path $P=c_{i} x_{1} y_{1} \ldots x_{m} y_{m} c_{j}$ of $F \cup M$ starting at C_{i} and ending at C_{j}. Let $e=c_{i} x_{1} \in F$ and $M^{\prime}=M \Delta(P \backslash\{e\})$. Then

$$
c_{0}\left(G-V(e)-R-V\left(M^{\prime}\right)\right) \geqslant c_{0}\left(G^{\prime}\right)-2 \geqslant d+1,
$$

a contradiction.

Now we proceed to the proof of the theorem.
Since $\left|V\left(G^{\prime}\right)\right| \geqslant d+4$ and $c_{0}\left(G^{\prime}\right)=d+2$, there exists one odd component of order at least three. Moreover, as $n \geqslant d+2, c_{0}\left(G^{\prime}\right)=d+2$ and $F \cap(E(R, V(M)) \cup E(R))=\emptyset$, there must exist an edge $e=a b \in F$ from R to an odd component C_{i} with $\left|C_{i}\right| \geqslant 3$, where $a \in C_{i}$ and $b \in R$. Since $\left|C_{i}\right| \geqslant 3$, choose a vertex $x \in C_{i} \backslash\{a\}$. Let $R_{2}=R \backslash\{b\} \cup\{x\}$. Then

$$
c_{0}\left(G-V(e)-R_{2}-V(M)\right) \geqslant c_{0}\left(G^{\prime}\right)=d+2,
$$

a contradiction.
We complete the proof.

In [5], Jin, Yan and Yu proved the recursive relation for adding a vertex.
Theorem 3.6 (Jin, Yan and Yu, [5]) Let G be an (n, k, d)-graph with $k>0$ and $n>d$. Then $G \vee x$ is an $(n+1, k-1, d)$-graph for any vertex $x \notin V(G)$.

Here we present an example to show that the condition $n>d$ is necessary.
For $k>0$ and $n \leqslant d$, let $d=n+r$ for some $r \geqslant 0$. We consider a bipartite graph $H=K_{m, m+r}$, where $m \geqslant n+k$. Then H is an $(n, k, n+r)$-graph, but $H \vee x$ is not an $(n+1, k-1, n+r)$-graph.

4 Maximal non-(n, k, d)-graphs

In this section, we provide a characterization of maximal non- (n, k, d)-graphs, which is a generalization of the characterization of maximal non- k-factor-critical graphs in [1].

Theorem 4.1 Let G be a connected graph of order p and n, k, d be positive integers with $p+n+d \equiv 0(\bmod 2)$. Then G is a maximal non- (n, k, d)-graph if and only if

$$
G \cong K_{n+2 k+s} \vee\left(\cup_{i=1}^{s+d+2} K_{2 t_{i}+1}\right),
$$

where s and t_{i} are non-negative integers with $\sum_{i=1}^{s+d+2} t_{i}=\frac{p-n-2 k-d}{2}-s-1$.
Proof. Let $H=K_{n+2 k+s}$ and $G_{i}=K_{2 t_{i}+1}$ for $1 \leqslant i \leqslant s+d+2$. Suppose that the theorem does not hold. That is, there exists an edge $e \in E(\bar{G})$ such that $G^{\prime}=G \cup e$ is not an (n, k, d)-graph. Then e is an edge connecting G_{i} and G_{j} for some i and j.

By Lemma 2.2 and the parity argument, then either
(a) there exists a subset S^{\prime} in G^{\prime} with $\left|S^{\prime}\right| \geqslant n$ and $c_{0}\left(G^{\prime}-S^{\prime}\right) \geqslant\left|S^{\prime}\right|-n+d+2 ; \quad$ or
(b) there exists a subset S^{\prime} in G^{\prime} such that $\left|S^{\prime}\right| \geqslant n+2 k$ and S^{\prime} contains a k-matching satisfying $c_{0}\left(G^{\prime}-S^{\prime}\right) \geqslant\left|S^{\prime}\right|-n-2 k+d+2$.

Clearly, $V(H) \subseteq S^{\prime}$ and so S^{\prime} contains a k-matching. Thus we need only to consider (b). Hence we have $c_{0}\left(G^{\prime}-S^{\prime}\right) \geqslant\left|S^{\prime}\right|-n-2 k+d+2 \geqslant|V(H)|-n-2 k+d+2 \geqslant d+s+2$. If $c_{0}\left(G^{\prime}-S^{\prime}\right)=d+s+2$, then $\left|S^{\prime}\right|=n+2 k+s$ and so $S^{\prime}=V(H)$. Therefore we have $c_{0}\left(G^{\prime}-S^{\prime}\right)=d+s$, a contradiction. Hence we have $\left|S^{\prime}\right|>n+2 k+s$ and then $c_{0}\left(G^{\prime}-S^{\prime}\right)>d+s+2$. But $G^{\prime}-S^{\prime}$ contains at most $s+d+2$ odd components, a contradiction.

Now we prove the necessity. Since G is a maximal non- (n, k, d)-graph, for any n-subset R of $V(G)$ there exists a k-matching M in $G-R$. Let $G^{\prime}=G-R-V(M)$. By Lemma 2.1 and parity, there exists a set S^{\prime} in G^{\prime} such that

$$
c_{0}\left(G^{\prime}-S^{\prime}\right) \geqslant\left|S^{\prime}\right|+d+2 .
$$

Let $C_{1}, C_{2}, \ldots, C_{r}$ be odd components in $G^{\prime}-S^{\prime}$ and $\left|S^{\prime}\right|=s$. We show that $r=s+d+2$. Otherwise, $r \geqslant s+d+3$ and so $r \geqslant s+d+4$ by parity. Let $e=c_{1} c_{2}$, where $c_{1} \in V\left(C_{1}\right)$ and $c_{2} \in V\left(C_{2}\right)$. Clearly, $(G \cup e)-\left(R \cup M \cup S^{\prime}\right)$ contains at least $s+d+2$ odd components, i.e., $G \cup e$ is not an (n, k, d)-graph, a contradiction to the fact that G is a maximal non(n, k, d)-graph.

We next show that $G^{\prime}-S^{\prime}$ has no even components. Otherwise, assume that $G^{\prime}-S^{\prime}$ contains an even component D. Let $e=d c_{1}$, where $d \in D$ and $c_{1} \in V\left(C_{1}\right)$, and consider $G \cup e$. Clearly, $(G \cup e)-\left(R \cup M \cup S^{\prime}\right)$ contains exactly $s+d+2$ odd components since the components D and C_{1} together with the edge e forms an odd component of $G \cup e$. Thus $G \cup e$ is not an (n, k, d)-graph, a contradiction.

Finally we show that $G\left[R \cup M \cup S^{\prime}\right]$ is complete. Otherwise, there exist vertices x and y in $R \cup M \cup S^{\prime}$ such that $e=x y \notin E(G)$. Consider $G \cup e$. Since $(G \cup e)-\left(R \cup M \cup S^{\prime}\right)$
contains exactly $s+2+d$ odd components, $G \cup e$ is not an (n, k, d)-graph, a contradiction. By a similar argument, it is easy to see that each C_{i} is complete for $1 \leqslant i \leqslant s+d+2$. Furthermore, each vertex of $C_{i}(1 \leqslant i \leqslant s+d+2)$ is adjacent to every vertex of $G\left[R \cup M \cup S^{\prime}\right]$.

Now, for $1 \leqslant i \leqslant s+d+2$, let $\left|V\left(C_{i}\right)\right|=2 t_{i}+1$ for some non-negative integer t_{i}. Then $p=|V(G)|=n+2 k+s+\sum_{i=1}^{s+d+2}\left|V\left(C_{i}\right)\right|=n+2 k+2 s+d+2+2 \sum_{i=1}^{s+d+2} t_{i} \geqslant n+2 k+2 s+d+2$. Therefore, $0 \leqslant s \leqslant \frac{p-n-2 k-d}{2}-1$ and $\sum_{i=1}^{s+d+2} t_{i}=\frac{p-n-2 k-d}{2}-s-1$ are as required. This completes the proof of the theorem.

Acknowledgments. The third author is supported by the Discovery Grant (144073) of Natural Sciences and Engineering Research Council of Canada.

References

[1] N. Ananchuen, L. Caccetta and W. Ananchuen, A characterization of maximal non- k -factor-critical graphs, Discrete Math., 307 (2007), 108-114.
[2] C. Berge, Sur le couplaage maximum d'un graphe, C. R. Acad. Sci. Paris, 247 (1958), 258-259.
[3] J. Bondy and U. S. R. Murty, Graph Theory with Applications, The Macmillan Press, London, 1976.
[4] O. Favaron, On k-factor-critical graphs, Discuss. Math. Graph Theory, 16 (1996), 4151.
[5] Z. Jin, H. Yan and Q. Yu, Generalization of matching extensions in graphs (II), Discrete Appl. Math., 155 (2007), 1267-1274.
[6] G. Liu and Q. Yu, Generalization of matching extensions in graphs, Discrete Math., 231 (2001), 311-320.
[7] G. Liu and Q. Yu, On (n, k)-extendable graphs and induced subgraphs, Intern. Math. Forum, 2 (2007), 1141-1148.
[8] D. Lou, On matchability of graphs, Australasian J. of Combin., 21 (2000), 201-210.
[9] M. Plummer, On n-extendable graphs, Discrete Math., 31 (1980), 201-210.
[10] Q. Yu, Characterizations of various matching extensions in graphs, Australas. J. Combin., 7 (1993), 55-64.

[^0]: ${ }^{*}$ Corresponding email: yu@tru.ca

