
Generalization of matching extensions in graphs (III)

Bing Bai1, Hongliang Lu2 and Qinglin Yu34∗

1 Center for Combinatorics, LPMC

Nankai University, Tianjin, PR China
2 Department of Mathematics

Xian Jiaotong University, Xian, P. R . China
3 Department of Mathematics and Statistics

Thompson Rivers University, Kamloops, BC, Canada
4 School of Mathematics

Shandong University, Jinan, Shandong, China

Abstract

Proposed as a general framework, Liu and Yu [6] introduced (n, k, d)-graphs to unify
the concepts of deficiency of matchings, n-factor-criticality and k-extendability. Let G
be a graph and let n, k and d be non-negative integers such that n+2k+d+2 6 |V (G)|
and |V (G)| − n− d is even. If deleting any n vertices from G, the remaining subgraph
H of G contains a k-matching and each k-matching can be extended to a defect-d
matching in H, then G is called an (n, k, d)-graph. In this paper, we obtain more
properties of (n, k, d)-graphs, in particular the recursive relations of (n, k, d)-graphs for
distinct parameters n, k and d. Moreover, we provide a characterization for maximal
non-(n, k, d)-graphs.
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1 Introduction

All graphs considered in this paper are finite, connected, loopless and have no multiple edges.
For the most part our notations and terminologies follow that of Bondy and Murty [3].

Let G be a graph with vertex set V (G), edge set E(G) and minimum degree δ(G). A
matching M of G is a subset of E(G) such that any two edges of M have no vertices in
common. A matching of k edges is called a k-matching. For a matching M , we use V (M) to
denote the vertices incident to the edges of M . Let d be a non-negative integer. A matching
is called a defect-d matching if it covers exactly |V (G)|−d vertices of G. Clearly, a defect-0
matching is a perfect matching. For a subset S of V (G), we denote by G[S] the subgraph
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of G induced by S and we write G− S for G[V (G)\S]. The number of odd components of
G is denoted by c0(G). The join G ∨H of two graphs G and H is a graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy | x ∈ V (G), y ∈ V (H)}. We denote the
complement of G by G. A set T is called n-set if |T | = n. For two disjoint sets A and B of
V (G), we define E(A,B) = {xy : x ∈ A and y ∈ B} ∩ E(G).

Let M be a matching of G. If there is a matching M ′ of G such that M ⊆ M ′, we say
that M can be extended to M ′ or M ′ is an extension of M . Suppose that G is a connected
graph with perfect matchings. If each k-matching can be extended to a perfect matching
in G, then G is called k-extendable. To avoid triviality, we require that |V (G)| > 2k + 2
for k-extendable graphs. This family of graphs was introduced by Plummer [9]. A graph G
is called n-factor-critical if after deleting any n vertices the remaining subgraph of G has
a perfect matching. This concept is introduced by Favaron [4] and Yu [10], independently,
which is a generalization of the notions of the well-known factor-critical graphs and bicritical
graphs, the cases of n = 1 and 2, respectively. In [8], Lou investigated relationship between
2k-factor-criticality and k-extendability.

Let G be a graph and let n, k and d be non-negative integers such that |V (G)| >
n+2k+ d+2 and |V (G)| − n− d is even. If deleting any n vertices from G the remaining
subgraph of G contains a k-matching and each k-matching in the subgraph can be extended
to a defect-d matching, then G is called an (n, k, d)-graph. This term was introduced by Liu
and Yu [6] as a general framework to unify the concepts of defect-d matchings, n-factor-
criticality and k-extendability. In particular, (n, 0, 0)-graphs are exactly n-factor-critical
graphs and (0, k, 0)-graphs are just the same as k-extendable graphs. In [5,6], the recursive
relations were shown for distinct parameters n, k and d and the impact of adding or deleting
an edge for d > 0 was discussed. In this paper, we continue the investigation of (n, k, d)-
graphs and obtain more recursive relations.

A graph G is called a maximal non-(n, k, d)-graph if G is not an (n, k, d)-graph, but G∪e
is an (n, k, d)-graph for every edge e ∈ E(G). In [1], Ananchuen, Caccetta and Ananchuen
studied maximal non-k-factor-critical graphs and maximal non-k-extendable graphs, they
also provided a characterization of these graphs. In the current paper, we generalize their
criteria to obtain a characterization of maximal non-(n, k, d)-graphs.

2 Known Results

A necessary and sufficient condition for a graph to have a defect-d matching was given by
Berge [2].

Lemma 2.1 (Berge, [2]) Let G be a graph and d an integer such that 0 6 d 6 |V (G)| and
|V (G)| ≡ d (mod 2). Then G has a defect-d matching if and only if for any S ⊆ V (G)

c0(G− S) 6 |S|+ d.

In [6], Liu and Yu showed the following sufficient and necessary conditions for (n, k, d)-
graphs.
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Lemma 2.2 (Liu and Yu, [6]) A graph G is an (n, k, d)-graph if and only if the following
conditions hold:

(a) for any S ⊆ V (G) such that |S| > n, then

c0(G− S) 6 |S| − n+ d,

(b) for any S ⊆ V (G) such that |S| > n+ 2k and G[S] contains a k-matching, then

c0(G− S) 6 |S| − n− 2k + d.

It is a natural problem to find recursive relations among the graphs with different pa-
rameters n, k and d. Below is one of such results.

Lemma 2.3 (Liu and Yu, [6]) Every (n, k, d)-graph is also an (n′, k′, d)-graph, where 0 6
n′ 6 n, 0 6 k′ 6 k and n′ ≡ n (mod 2).

3 Main Results

Following the study of recursive relations of the previous work, we continue to investigate
the effect of various graphic operations on (n, k, d)-graphs and recursive relations. We start
with the following lemma.

Lemma 3.1 If G is an (n, k, d)-graph, then it is also an (n− 2, k + 1, d)-graph.

Proof. At first, note that G is an (n − 2, 0, d)-graph by Lemma 2.3. Since |V (G)| >
n + 2k + d + 2, for any (n − 2)-set S ⊆ V (G) there exist (k + 1)-matchings in subgraph
G− S.

Suppose, to the contrary, that G is not an (n−2, k+1, d)-graph. Then, by the definition,
there exist an (n− 2)-set R ⊆ V (G) and a (k + 1)-matching M which cannot be extended
to a defect-d matching of G − R. By Lemma 2.1 and parity, there exists a subset S0 in
G−R− V (M) such that

c0(G−R− V (M)− S0) > |S0|+ d+ 2.

Let S = S0 ∪ R ∪ V (M). Then |S| = |S0| + |R| + 2(k + 1) > n + 2k and G[S] contains
k-matchings, and

c0(G− S) = c0(G− S0 −R− V (M)) > |S0|+ d+ 2 = |S| − n− 2k + d+ 2,

a contradiction to Lemma 2.2 (b). 2

Theorem 3.2 A graph G is an (n+2, k− 1, d)-graph if and only if G is an (n, k, d)-graph
and G ∪ e is an (n, k, d)-graph, for any e ∈ E(G).
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Proof. If G is an (n+ 2, k − 1, d)-graph, by Lemma 3.1, then G is an (n, k, d)-graph.

We show that G ∪ e is an (n, k, d)-graph for any e ∈ E(G). Otherwise, there exists
an edge e1 ∈ E(G) such that G′ = G ∪ {e1} is not an (n, k, d)-graph. By Lemma 2.2, we
consider two cases:

Case 1. There exits a subset S1 ⊆ V (G′) = V (G) such that |S1| > n and c0(G
′ − S1) >

|S1| − n+ d+ 2. However,

c0(G− S1) > c0(G
′ − S1) > |S1| − n+ d+ 2,

a contradiction to that G is an (n, k, d)-graph and Lemma 2.2 (a).

Case 2. There exits a subset S2 ⊆ V (G′) = V (G), where |S2| > n + 2k and G′[S2]
contains a k-matching M2 such that

c0(G
′ − S2) > |S2| − n− 2k + d+ 2.

If e1 ̸∈ M2, then |S2| > n + 2k and G[S2] contains the k-matching M2, and c0(G − S2) ≥
c0(G

′ − S2) > |S2| − n − 2k + d + 2, a contradiction to that G is an (n, k, d)-graph and
Lemma 2.2 (b). So e1 ∈ M2. Let M

′
2 = M2−{e1}. Then |S2| > n+2k = (n+2)+2(k− 1)

and G[S2] contains the (k − 1)-matching M ′
2. Moreover,

c0(G− S2) > c0(G
′ − S2) > |S2| − n− 2k + d+ 2 = |S2| − (n+ 2)− 2(k − 1) + d+ 2,

a contradiction to that G is an (n+ 2, k − 1, d)-graph.

Next we prove the sufficiency. Suppose that G is not an (n + 2, k − 1, d)-graph. Then
there exist an (n+2)-set S3 ⊆ V (G) and a (k− 1)-matching M3 which cannot be extended
to a defect-d matching of G − S3 − V (M3). By Lemma 2.1, there exists a vertex set
R ⊆ V (G− S3 − V (M3)) such that

c0(G− S3 − V (M3)−R) > |R|+ d+ 2.

For any two vertices u, v of S3, if uv ∈ E(G), denote e2 = uv, M ′
3 = M3 ∪ {e2}, and

S′
3 = S3 \ {u, v}, then we have

c0((G ∪ e2)− S′
3 − V (M ′

3)−R) = c0(G− S3 − V (M3)−R) > |R|+ d+ 2,

a contradiction to the fact that G∪ e is an (n, k, d)-graph, for any e ∈ E(G); if uv ∈ E(G),
then |S′

3| = n and M ′
3 is a k-matching of G, and

c0(G− S′
3 − V (M ′

3)−R) = c0(G− S3 − V (M3)−R) > |R|+ d+ 2,

a contradiction to that G is an (n, k, d)-graph. 2

Applying Lemma 3.1, we have a sufficient and necessary conditions (n+2k, 0, d)-graphs.

Theorem 3.3 A graph G is an (n + 2k, 0, d)-graph if and only if G is an (n, k, d)-graph
and for any edge set D ⊆ E(G), G ∪D is an (n, k, d)-graph.
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Proof. If G is an (n+2k, 0, d)-graph, clearly G∪D is also an (n+2k, 0, d)-graph. Applying
Lemma 3.1 repeatedly, we see that G ∪D is an (n, k, d)-graph.

On the other hand, suppose that G is not an (n+ 2k, 0, d)-graph, by Lemma 2.2, there
exists a subset S with |S| ≥ n+ 2k such that

c0(G− S) ≥ |S| − (n+ 2k) + d+ 2.

Let S = {u1, . . . , uh}, where h ≥ n+2k and G′ = G∪ {u2i−1u2i | i = 1, . . . , k}. Then G′[S]
contains a k-matching and we have

c0(G
′ − S) = c0(G− S) ≥ |S| − (n+ 2k) + d+ 2.

By Lemma 2.2 (b), G′ is not an (n, k, d)-graph, a contradiction. 2

Let n = 0 and d = 0, we have the next corollary.

Corollary 3.4 (Lou, [8]) A graph G of even order is 2k-factor-critical if and only if

(a) G is k-extendable; and

(b) for any edge set D ⊆ E(G), G ∪D is k-extendable.

In [7], Liu and Yu present several results about (n, k, 0)-graphs and its subgraphs. In
particular, they proved that if G − V (e) is an (n, k, 0)-graph for each e ∈ F (where F is a
fixed 1-factor in G), then G is an (n, k, 0)-graph. We generalize this result for any d > 0
and n > d+ 2.

Theorem 3.5 Let F be a perfect matching of a connected graph G, where |V (G)| > n +
2k + d + 4 and n > d + 2. If subgraph G − V (e) is an (n, k, d)-graph for each e ∈ F , then
G is also an (n, k, d)-graph.

Proof. Assume that F is a perfect matching of G such that G− V (e) is an (n, k, d)-graph
for each e ∈ F . To see the existence of k-matchings in the subgraphs, we show a claim.

Claim 1. For any n-set T ⊆ V (G), G− T contains k-matchings.

If F ∩ E(G − T ) = ∅, then there exists an edge e = ab ∈ F such that a ∈ T and
b ∈ V (G − T ). Let T ′ = T \ {a} ∪ {c}, where c ∈ V (G) − T − {b}. Then |T ′| = n and
F ∩ E(G − T ′) = {e}. By the assumption of the theorem, G − V (e) is an (n, k, d)-graph.
Hence, G − V (e) − T ′ has a defect-d matching M1. Since |V (G)| > n + 2k + d + 4, M1

contains at least k + 1 edges. Therefore, G− T contains k-matchings.

If F ∩ E(G − T ) ̸= ∅, let e = ab ∈ F ∩ E(G − T ), then G − V (e) is an (n, k, d)-graph.
So G− V (e)− T contains k-matchings and thus G− T contains k-matchings.

Suppose that G is not an (n, k, d)-graph, by the definition and Claim 1, there exists a
vertex-set R of order n in G and a k-matching M of G − R such that G − R − V (M) has
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no defect-d matchings. Let G′ = G − R − V (M), by Lemma 2.1 and parity, there exists a
subset S in G′ so that

c0(G
′ − S) = c0(G−R− V (M)− S) > |S|+ d+ 2. (1)

Claim 2. F ∩ E(G[R ∪ S]) = F ∩ M = F ∩ E(V (M), R ∪ S) = F ∩ E(Ci) = F ∩
E(S, V (Ci)) = ∅ for all Ci, where Ci is an odd component of G′ − S.

If there exists an edge e ∈ (F ∩ E(R)) ∪ (F ∩E(S)), say e ∈ F ∩ E(R), then we have

c0(G− V (e)− (R \ V (e))− V (M)− S) = c0(G
′ − S) > |S|+ d+ 2.

So G−V (e) is not an (n−2, k, d)-graph, a contradiction to that G−V (e) is an (n, k, d)-graph
and Lemma 2.3.

If there exists an edge e ∈ F ∩ E(R,S), where e = ab, a ∈ S, b ∈ R. Let c ∈ Ci, R
′ =

R \ {b} ∪ {c}, and S′ = S \ {a}. Then we have

c0(G− V (e)−R′ − V (M)− S′) > c0(G
′ − S)− 1 > |S′|+ d+ 2.

Thus G− V (e) is not an (n, k, d)-graph, a contradiction.

If there exists an edge e ∈ F ∩M , then we have

c0(G− V (e)−R− V (M \ {e})− S) = c0(G
′ − S) > |S|+ d+ 2.

Thus G− V (e) is not an (n, k − 1, d)-graph, a contradiction.

Suppose that e ∈ F ∩ E(V (M), R). Let e = uv and ua ∈ M , where u ∈ V (M) and
v ∈ R. Let R1 = (R\{v}) ∪ {a} and M ′′ = M\{ua}. Then

c0(G− V (e)−R1 − V (M ′′)− S) > |S|+ d+ 2.

Thus G− V (e) is not an (n, k − 1, d)-graph, a contradiction.

Using the similar arguments, we may show e /∈ E(S) ∪ E(V (M), S) ∪ (∪iE(Ci)) ∪
E(S, V (Ci)) for any e ∈ F .

Claim 3. G′ − S has no even components.

Otherwise, let D be an even component of G′ − S and e = ab ∈ F, a ∈ V (D). If b ∈ R,
choose a vertex c ∈ V (D) \ {a}, let R2 = R \ {b} ∪ {c}, then

c0(G− V (e)−R2 − V (M)− S) > c0(G
′ − S) > |S|+ d+ 2.

Thus G−V (e) is not an (n, k, d)-graph, a contradiction. For b ∈ S, we arrive at a contradic-
tion with a similar argument. So we may assume b ∈ V (M). Let bc ∈ M . Set S1 = S ∪{c}.
Note that G′[D \ {a}] contains at least one odd component. So we have

c0(G− V (e)−R− V (M \ {bc})− S1) > |S1|+ d+ 2.
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Hence G− V (e) is not an (n, k − 1, d)-graph, a contradiction.

Finally, if e is in the component D, then

c0(G− V (e)−R− V (M)− S) > c0(G
′ − S) > |S|+ d+ 2.

Thus G− V (e) is not an (n, k, d)-graph, a contradiction again.

For any vertex x ∈ S, by Claim 2 x can not be matched in perfect matching F to any
other vertex in S or any vertex in R ∪ V (M) or any vertex in an odd component, so we
conclude S = ∅.

Claim 4. c0(G
′ − S) = c0(G

′) = d+ 2.

By (1), we need only to show c0(G
′) 6 d + 2. Otherwise, suppose c0(G

′) > d + 3. If
there exists an edge e = ab ∈ F ∩ E(R,Ci), where a ∈ Ci and b ∈ R, we choose a vertex x
from another odd component Cj and let R1 = R \ {b} ∪ {x}, then

c0(G− V (e)−R1 − V (M)) > c0(G
′)− 2 > d+ 1.

Thus G− V (e) is not an (n, k, d)-graph, a contradiction. Next, we assume that all vertices
in ∪iCi are matched to V (M). Consider the alternating path P = cix1y1 . . . xmymcj of
F ∪M starting at Ci and ending at Cj . Let e = cix1 ∈ F and M ′ = M △ (P \ {e}). Then

c0(G− V (e)−R− V (M ′)) > c0(G
′)− 2 > d+ 1,

a contradiction.

Now we proceed to the proof of the theorem.

Since |V (G′)| > d + 4 and c0(G
′) = d + 2, there exists one odd component of order at

least three. Moreover, as n > d + 2, c0(G
′) = d + 2 and F ∩ (E(R, V (M)) ∪ E(R)) = ∅,

there must exist an edge e = ab ∈ F from R to an odd component Ci with |Ci| > 3, where
a ∈ Ci and b ∈ R. Since |Ci| > 3, choose a vertex x ∈ Ci \ {a}. Let R2 = R \ {b} ∪ {x}.
Then

c0(G− V (e)−R2 − V (M)) > c0(G
′) = d+ 2,

a contradiction.

We complete the proof. 2

In [5], Jin, Yan and Yu proved the recursive relation for adding a vertex.

Theorem 3.6 (Jin, Yan and Yu, [5]) Let G be an (n, k, d)-graph with k > 0 and n > d.
Then G ∨ x is an (n+ 1, k − 1, d)-graph for any vertex x /∈ V (G).

Here we present an example to show that the condition n > d is necessary.

For k > 0 and n 6 d, let d = n + r for some r > 0. We consider a bipartite graph
H = Km,m+r, where m > n + k. Then H is an (n, k, n + r)-graph, but H ∨ x is not an
(n+ 1, k − 1, n+ r)-graph.
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4 Maximal non-(n, k, d)-graphs

In this section, we provide a characterization of maximal non-(n, k, d)-graphs, which is a
generalization of the characterization of maximal non-k-factor-critical graphs in [1].

Theorem 4.1 Let G be a connected graph of order p and n, k, d be positive integers with
p+ n+ d ≡ 0 (mod 2). Then G is a maximal non-(n, k, d)-graph if and only if

G ∼= Kn+2k+s ∨ (∪s+d+2
i=1 K2ti+1),

where s and ti are non-negative integers with
∑s+d+2

i=1 ti =
p−n−2k−d

2 − s− 1.

Proof. Let H = Kn+2k+s and Gi = K2ti+1 for 1 6 i 6 s+d+2. Suppose that the theorem
does not hold. That is, there exists an edge e ∈ E(G) such that G′ = G ∪ e is not an
(n, k, d)-graph. Then e is an edge connecting Gi and Gj for some i and j.

By Lemma 2.2 and the parity argument, then either

(a) there exists a subset S′ in G′ with |S′| > n and c0(G
′ − S′) > |S′| − n+ d+ 2; or

(b) there exists a subset S′ in G′ such that |S′| > n + 2k and S′ contains a k-matching
satisfying c0(G

′ − S′) > |S′| − n− 2k + d+ 2.

Clearly, V (H) ⊆ S′ and so S′ contains a k-matching. Thus we need only to consider (b).
Hence we have c0(G

′ − S′) > |S′| − n− 2k + d+ 2 > |V (H)| − n− 2k + d+ 2 > d+ s+ 2.
If c0(G

′ − S′) = d + s + 2, then |S′| = n + 2k + s and so S′ = V (H). Therefore we
have c0(G

′ − S′) = d + s, a contradiction. Hence we have |S′| > n + 2k + s and then
c0(G

′ − S′) > d + s + 2. But G′ − S′ contains at most s + d + 2 odd components, a
contradiction.

Now we prove the necessity. Since G is a maximal non-(n, k, d)-graph, for any n-subset
R of V (G) there exists a k-matching M in G − R. Let G′ = G − R − V (M). By Lemma
2.1 and parity, there exists a set S′ in G′ such that

c0(G
′ − S′) > |S′|+ d+ 2.

Let C1, C2, . . . , Cr be odd components in G′ −S′ and |S′| = s. We show that r = s+ d+2.
Otherwise, r > s+d+3 and so r > s+d+4 by parity. Let e = c1c2, where c1 ∈ V (C1) and
c2 ∈ V (C2). Clearly, (G ∪ e) − (R ∪M ∪ S′) contains at least s + d + 2 odd components,
i.e., G ∪ e is not an (n, k, d)-graph, a contradiction to the fact that G is a maximal non-
(n, k, d)-graph.

We next show that G′ − S′ has no even components. Otherwise, assume that G′ − S′

contains an even component D. Let e = dc1, where d ∈ D and c1 ∈ V (C1), and consider
G∪ e. Clearly, (G∪ e)− (R∪M ∪ S′) contains exactly s+ d+2 odd components since the
components D and C1 together with the edge e forms an odd component of G ∪ e. Thus
G ∪ e is not an (n, k, d)-graph, a contradiction.

Finally we show that G[R ∪M ∪ S′] is complete. Otherwise, there exist vertices x and
y in R ∪M ∪ S′ such that e = xy /∈ E(G). Consider G ∪ e. Since (G ∪ e) − (R ∪M ∪ S′)
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contains exactly s+ 2+ d odd components, G∪ e is not an (n, k, d)-graph, a contradiction.
By a similar argument, it is easy to see that each Ci is complete for 1 6 i 6 s + d + 2.
Furthermore, each vertex of Ci (1 6 i 6 s+d+2) is adjacent to every vertex of G[R∪M∪S′].

Now, for 1 6 i 6 s+ d+2, let |V (Ci)| = 2ti +1 for some non-negative integer ti . Then
p = |V (G)| = n+2k+s+

∑s+d+2
i=1 |V (Ci)| = n+2k+2s+d+2+2

∑s+d+2
i=1 ti > n+2k+2s+d+2.

Therefore, 0 6 s 6 p−n−2k−d
2 − 1 and

∑s+d+2
i=1 ti =

p−n−2k−d
2 − s − 1 are as required. This

completes the proof of the theorem. 2
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