Component Factors with Large Components in Graphs

M. Kano ${ }^{1}$, Hongliang Lu ${ }^{2 *}$, Qinglin $\mathrm{Yu}^{3,4}$
${ }^{1}$ Department of Computer and Information Sciences
Ibaraki University, Hitachi, Ibaraki 316-8511, Japan
${ }^{2}$ Center for Combinatorics, LPMC
Nankai University, Tianjin, P. R. China
${ }^{3}$ School of Mathematics
Shandong University, Jinan, Shandong, P. R. China
${ }^{4}$ Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

In this paper we obtain sufficient conditions using isolated vertices for component factors with each component of order at least three. In particular, we show that if a graph G satisfies $i s o(G-S) \leq|S| / 2$ for all $S \subset V(G)$, then G has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$ factor, where $\operatorname{iso}(G-S)$ denotes the number of isolated vertices in $G-S$.

1 Introduction

In this paper we consider component factors of graphs, which are defined as follows. For a set \mathcal{S} of connected graphs, a spanning subgraph F of a graph G is called an \mathcal{S}-factor of G if every component of F is an element of \mathcal{S}. An \mathcal{S}-factor is also referred as a component factor. There have been many papers on component factors of graphs, but in most cases, \mathcal{S} contains K_{2} (i.e., a single edge), but it is relatively rare that \mathcal{S} contains no small component. In addition, it is known that if \mathcal{S} does not contain K_{2}, then in most cases finding a criterion for a graph to have an \mathcal{S}-factor is very difficult since finding a maximum \mathcal{S}-subgraph of a given graph is an $N P$-complete problem. In this paper we obtain several sufficient conditions in terms of the number of isolated vertices for a graph to have a component factor such that each component has order at least three.

We begin with some notation and definitions. We consider a finite simple graph G with vertex set $V(G)$ and edge set $E(G)$, which has neither loops nor multiple edges. We denote by $|G|$ the order of G. For a subset $S \subseteq V(G), G-S$ denotes the subgraph of G induced by $V(G)-S$. For a vertex v of G, the degree of v and the neighborhood of v in G are denoted by $d_{G}(v)$ and $N_{G}(v)$, respectively. In particular, $d_{G}(v)=\left|N_{G}(v)\right|$. The minimum

[^0]degree and the maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. Denote by $\alpha(G)$ the independence number of G, which is the maximum cardinality among the independent sets of vertices of G. Let $\operatorname{iso}(G)$ and $\operatorname{Iso}(G)$ denote the number of isolated vertices and the set of isolated vertices of G, respectively. In particular, $i s o(G)=|\operatorname{Iso}(G)|$. For sets X and $Y, X \subset Y$ means that X is a proper subset of Y.

We denote the complete graph, the path and the cycle of order n by K_{n}, P_{n} and C_{n}, respectively. We denote the complete bipartite graph by $K_{n, m}$. A criterion for a graph to have a star-factor is given below.

Theorem 1. (Amahashi and Kano [1]) A graph G has a star-factor, i.e., $\left\{K_{1,1}, \ldots, K_{1, n}\right\}$ factor, if and only if iso $(G-S) \leq n|S|$ for all $S \subset V(G)$.

A graph R is called factor-critical if for every vertex x of $R, R-x$ has a 1 -factor (K_{2}-factor). A graph H is called a sun if $H=K_{1}, H=K_{2}$ or H is the corona of a factorcritical graph R with order at least three, i.e., H is obtained from R by adding a new vertex $w=w(v)$ together with a new edge $v w$ for every vertex v of R (Figure 1). A sun with order at least 6 is called a big sun. The number of sum components of G is denoted by $\operatorname{sun}(G)$. The next theorem gives a criterion for a graph to have a path-factor each of whose components is of order at least three. Note that a shorter proof of the following theorem and a formula for a maximum $\left\{P_{3}, P_{4}, P_{5}\right\}$-subgraph of a graph was given in [3].

Figure 1: A factor-critical graph R and the sun H obtained from R.

Theorem 2. (Kaneko [2]) A graph G has a $\left\{P_{3}, P_{4}, P_{5}\right\}$-factor (i.e., $P_{\geq 3}$-factor) if and only if $\operatorname{sun}(G-S) \leq 2|S|$ for all $S \subset V(G)$.

In this paper we consider the following problem, and give partial answers to the problem.

Problem 1. Let G be a graph and λ be a positive rational number. If iso $(G-S) \leq \lambda|S|$ for all $\emptyset \neq S \subset V(G)$, what factor does G have?

2 Component Factors with Large Components

In this section, we first prove the next theorem.
Theorem 3. If a graph G satisfies

$$
\text { iso }(G-S) \leq \frac{2}{3}|S| \quad \text { for all } \quad S \subset V(G)
$$

then G has a $\left\{P_{3}, P_{4}, P_{5}\right\}$-factor.
Proof. Suppose that G satisfies the condition but has no $\left\{P_{3}, P_{4}, P_{5}\right\}$-factor. By Theorem 2 , there exists a subset $S \subset V(G)$ such that $\operatorname{sun}(G-S)>2|S|$. Assume that there exist a isolated vertices, $b K_{2}$'s and c big sun components $H_{1}, H_{2}, \ldots, H_{c}$, where $\left|H_{i}\right| \geq 6$, in $G-S$. We choose one vertex from each K_{2} component of $G-S$, and denote the set of such vertices by X. Then $|X|=b$. For each H_{i}, let R_{i} denote the factor-critical subgraph of H_{i} and let $Y_{i}=V\left(R_{i}\right)$. Then $\operatorname{iso}\left(H_{i}-Y_{i}\right)=\left|Y_{i}\right|=\left|H_{i}\right| / 2$. Let $Y=\cup_{i=1}^{r} Y_{i}$. So we have

$$
i s o(G-(S \cup X \cup Y))=a+b+\sum_{i=1}^{c} \frac{\left|H_{i}\right|}{2} .
$$

Moreover, it follows that

$$
\begin{aligned}
|S \cup X \cup Y| & <\frac{\operatorname{sun}(G-S)}{2}+|X|+|Y| \quad(\text { from } \operatorname{sun}(G-S)>2|S|) \\
& =\frac{a+b+c}{2}+b+\sum_{i=1}^{c} \frac{\left|H_{i}\right|}{2} \\
& \leq \frac{3}{2}\left(a+b+\sum_{i=1}^{c} \frac{\left|H_{i}\right|}{2}\right)=\frac{3}{2} i s o(G-(S \cup X \cup Y)) .
\end{aligned}
$$

This contradicts the condition that iso $\left(G-S^{\prime}\right) \leq(2 / 3)\left|S^{\prime}\right|$ for all $S^{\prime} \subset V(G)$.
Let $m \geq 1$ be an integer Let $G=K_{m}+(2 m+1) K_{2}$, which is a graph obtained from K_{m} and $(2 m+1) K_{2}$ by joining every vertex of K_{m} to every vertex of $(2 m+1) K_{2}$. Then G has no $\left\{P_{3}, P_{4}, P_{5}\right\}$-factor. Let $T \subseteq V(G)$ be an independent set with $|T| \geq 2$. Then $T \subseteq$ $V\left((2 m+1) K_{2}\right)$ and so $\left|N_{G}(T)\right|=|T|+m$. If $|T| \leq 2 m$, then $i\left(G-N_{G}(T)\right) \leq 2\left|N_{G}(T)\right| / 3$, otherwise $i\left(G-N_{G}(T)\right)=2\left|N_{G}(T)\right| / 3+1=2 m+1$. Since $\delta(G) \geq m+1 \geq 2$, so $i(G-S) \leq 2|S| / 3+1$ for all $S \subseteq V(G)$. Therefore the condition of Theorem 3 is sharp.

The next lemma is knows as Harlem Theorem, which is a generalization of Hall's Theorem.

Lemma 1. Let G be a bipartite graph with bipartition (U, W), and $f: U \rightarrow\{1,2,3, \ldots\}$. If $|W|=\sum_{x \in U} f(x)$ and

$$
\left|N_{G}(S)\right| \geq \sum_{x \in S} f(x) \quad \text { for all } \quad \emptyset \neq S \subseteq U,
$$

then G has a star-factor F such that each vertex u of U satisfies $d_{F}(u)=f(u)$, that is, every u is the center of a star $K_{1, f(u)}$ in F.

We next consider graphs satisfying iso $(G-S) \leq|S| / 2$ for all $S \subset V(G)$.
Lemma 2. If $|G| \leq 6$ and iso $(G-S) \leq|S| / 2$ for all $S \subset V(G)$, then G has a $\left\{K_{1,2}, K_{1,3}\right.$, $\left.K_{5}\right\}$-factor.

Proof. It is clear that if G satisfies the condition, then $\delta(G) \geq 2$ and $|G| \geq 3$. If $|G|=3$, then G is connected and has a $K_{1,2}$-factor. If $|G|=4$, then $\Delta(G)=3$, which implies that G has a $K_{1,3}$-factor. Assume $|G|=5$. If G has two non-adjacent vertices x and y, then $2=|\{x, y\}|=\operatorname{iso}(G-(V(G)-\{x, y\})) \leq|V(G)-\{x, y\}| / 2=3 / 2$, a contradiction. Hence G is a complete graph K_{5}, and so it has a K_{5}-factor. Now we consider the case of $|G|=6$. By Theorem 2, G has a $\left\{P_{3}, P_{4}, P_{5}\right\}$-factor, say F. Then F must be a P_{3}-factor, which is a $K_{1,2}$-factor. Therefore the lemma holds.

Theorem 4. If a graph G satisfies

$$
\text { iso }(G-S) \leq \frac{|S|}{2} \quad \text { for all } \quad S \subseteq V(G)
$$

then G has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor.
Proof. It is clear that $|G| \geq 3$ and $\delta(G) \geq 2$. Use induction on the lexicographic order of $(|G|,|E(G)|)$. So we assume that the theorem holds for a graph H with either $|H|<|G|$ or $|H|=|G|$ and $|E(H)|<|E(G)|$. Moreover, we may assume that G is connected and $|G| \geq 7$ by Lemma 2. Let

$$
\beta=\min \left\{\left.\frac{|S|}{2}-i s o(G-S) \right\rvert\, S \subset V(G) \text { and } i s o(G-S) \geq 1\right\} .
$$

Then $\beta \geq 0$ as $\operatorname{iso}(G-S) \leq|S| / 2$. For a vertex x with $d_{G}(x)=\delta(G)$, we have $\beta \leq$ $\left|N_{G}(x)\right| / 2-i s o\left(G-N_{G}(x)\right)$ and so

$$
\begin{equation*}
\delta(G)=d_{G}(x)=\left|N_{G}(x)\right| \geq 2\left(\beta+i s o\left(G-N_{G}(x)\right)\right) \geq 2(\beta+1) . \tag{1}
\end{equation*}
$$

Take a maximal vertex subset S such that $|S| / 2-i s o(G-S)=\beta$. Then

$$
\begin{equation*}
\frac{\left|S^{\prime}\right|}{2}-i s o\left(G-S^{\prime}\right)>\beta \quad \text { for all } \quad S \subset S^{\prime} \subset V(G) . \tag{2}
\end{equation*}
$$

Claim 1. $G-S$ has no component of order two or three.
Assume that $G-S$ has a component D isomorphic to K_{2}. Let $V(D)=\{x, y\}$. Then

$$
\begin{aligned}
& \frac{|S \cup\{x\}|}{2}-i s o(G-(S \cup\{x\})) \\
= & \frac{|S|+1}{2}-(i s o(G-S)+1)<\beta,
\end{aligned}
$$

a contradiction.
Assume that $G-S$ has a component D of order three. Let $V(D)=\{x, y, z\}$. Then

$$
\begin{aligned}
& \frac{|S \cup\{x, y\}|}{2}-i s o(G-(S \cup\{x, y\})) \\
= & \frac{|S|+2}{2}-(i s o(G-S)+1)=\beta,
\end{aligned}
$$

a contradiction to the maximality of S.
Claim 2. Every component D of $G-S$ with $|D| \geq 4$ has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor.
Let X be a non-empty subset of $V(D)$. Then by (2), we have

$$
\frac{|S \cup X|}{2}-i s o(G-(S \cup X))>\beta=\frac{|S|}{2}-i s o(G-S) .
$$

Thus $|X| / 2>\operatorname{iso}(D-X)$, which implies that D has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor by the induction hypothesis.

By Claim 1, let $G-S=a K_{1} \cup\left(D_{1} \cup \cdots \cup D_{c}\right)$, where $V\left(a K_{1}\right)=I s o(G-S)=$ $\left\{u_{1}, \ldots, u_{a}\right\}$ and each D_{i} is a component of $G-S$ with $\left|D_{i}\right| \geq 4$. It is immediate that

$$
\begin{equation*}
a=i s o(G-S)=|S| / 2-\beta \geq 1 . \tag{3}
\end{equation*}
$$

We construct a bipartite graph B with vertex set $V(B)=S \cup U$, where $U=\left\{u_{1}, u_{2}\right.$, $\left.\ldots, u_{a}\right\}$, such that two vertices $u_{i} \in U$ and $x \in S$ are adjacent in B if and only if u_{i} and x are joined by an edge of G.

Claim 3. For every $\emptyset \neq Y \subseteq U$, we have $\left|N_{B}(Y)\right| \geq 2|Y|+2 \beta$, and $\left|N_{B}(U)\right|=$ $2|U|+2 \beta=|S|$.

It follows from (3) and the choice of S that $\left|N_{B}(U)\right|=|S|=2 a+2 \beta=2|U|+2 \beta$. Assume that there exists a subset $\emptyset \neq Y^{\prime} \subset U$ such that $N_{B}\left(Y^{\prime}\right)<2\left|Y^{\prime}\right|+2 \beta$. Then, by the definition of $\beta, N_{B}\left(Y^{\prime}\right)=N_{G}\left(Y^{\prime}\right) \subset S$ satisfies

$$
\left|Y^{\prime}\right| \leq i s o\left(G-N_{G}\left(Y^{\prime}\right)\right) \leq \frac{\left|N_{G}\left(Y^{\prime}\right)\right|}{2}-\beta<\left|Y^{\prime}\right|,
$$

a contradiction. Hence the claim holds.
Claim 4. If $\beta \geq 2$, then the theorem holds.
Assume $\beta \geq 2$. Then $\delta(G) \geq 6$ by (1). It is obvious that G has an edge e such that $G-e$ is connected. Let $X \subset V(G-e)=V(G)$. If iso $(G-X) \geq 1$, then

$$
i s o(G-e-X) \leq i s o(G-X)+2 \leq \frac{|X|}{2}-\beta+2 \leq \frac{|X|}{2}
$$

If $i s o(G-X)=0$, then $i s o(G-e-X) \leq 2$. Further $i s o(G-e-X) \geq 1$ implies $|X| \geq 5$ as $\delta(G-e) \geq 5$. Hence if $\operatorname{iso}(G-X)=0$, then $\operatorname{iso}(G-e-X) \leq 2 \leq|X| / 2$. Therefore by the induction hypothesis, $G-e$ has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor, which is of course the desired factor of G.

From Claim 4 and the definition of β, it remains to consider the cases of $\beta \in\{0,1 / 2,1,3 / 2\}$. Note that $|S|=2|U|+2 \beta$.

Case 1. $\beta=0$.
Define $f: U \rightarrow\{1,2,3 \ldots\}$ by $f(u)=2$ for all $u \in U$. Then by Lemma 1 and Claim 3, B has a $K_{1,2}$-factor with centers in U. Hence by Claim 2, G has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor.

Case 2. $\quad \beta=1 / 2$.
In this case, $|S|=2|U|+1$. Choose a vertex $u_{1} \in U$ and define $f: U \rightarrow\{1,2,3, \ldots\}$ by $f\left(u_{1}\right)=3$ and $f\left(u_{i}\right)=2$ for all $u_{i} \in U-\left\{u_{1}\right\}$. Then $\left|N_{B}(Y)\right| \geq \sum_{x \in Y} f(x)$ for all $Y \subseteq U$ by Claim 3. Hence by Lemma $1, B$ has a $\left\{K_{1,2}, K_{1,3}\right\}$-factor. Therefore we can obtain a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor of G.

Case 3. $\beta=1$.
Clearly, $\delta(G) \geq 4$ by (1). We consider two subcases.
Subcase 3.1. $|U| \geq 2$.
In this case, $|S|=2|U|+2$. Choose two vertex $u_{1}, u_{2} \in U$ and define $f: U \rightarrow$ $\{1,2,3, \ldots\}$ by $f\left(u_{1}\right)=f\left(u_{2}\right)=3$ and $f\left(u_{i}\right)=2$ for all $u_{i} \in U-\left\{u_{1}, u_{2}\right\}$. Then $\left|N_{B}(Y)\right| \geq$ $\sum_{x \in Y} f(x)$ for all $Y \subseteq U$ by Claim 3. Hence, by Lemma 1, B has a $\left\{K_{1,2}, K_{1,3}\right\}$-factor and so G has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor.

Subcase 3.2. $|U|=i s o(G-S)=1$.
In this case, $|S|=2|U|+2=4$ and $V(G) \neq S \cup U$. Let $U=\{u\}$ and $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$. If $S \cup\{u\}$ induces a complete graph K_{5} in G, then G has the desired $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor by Claims 1 and 2. So $S \cup\{u\}$ does not induce a complete graph K_{5}. Without loss of generality, we may assume that s_{3} and s_{4} are not adjacent in G.

Considering $G-\left\{s_{1}, u, s_{2}\right\}$, if $i s o\left(G-\left\{s_{1}, u, s_{2}\right\}-X\right) \leq|X| / 2$ for all $X \subseteq V(G)-$ $\left\{s_{1}, u, s_{2}\right\}$, then the result is followed by induction hypothesis. So we may assume that there exists $\emptyset \neq R \subseteq V(G)-\left\{s_{1}, u, s_{2}\right\}$ such that $i \operatorname{so}\left(G-\left\{s_{1}, u, s_{2}\right\}-R\right) \geq(|R|+1) / 2$. We choose maximal such a vertex subset R. Then Claims 1 and 2 hold for $G-\left\{s_{1}, u, s_{2}\right\}-R$ by the maximality of R. Moreover,

$$
\frac{\left|R \cup\left\{s_{1}, u, s_{2}\right\}\right|}{2}-i s o\left(G-\left\{s_{1}, u, s_{2}\right\}-R\right) \leq \frac{|R|+3}{2}-\frac{|R|+1}{2}=1
$$

Since $\beta=1$, we obtain

$$
\frac{\left|R \cup\left\{s_{1}, u, s_{2}\right\}\right|}{2}-i s o\left(G-\left\{s_{1}, u, s_{2}\right\}-R\right)=1
$$

Therefore $|R|$ is odd. If $|R| \geq 3$, then $S^{\prime}=R \cup\left\{s_{1}, u, s_{2}\right\}$ satisfies $\left|S^{\prime}\right| / 2-i s o\left(G-S^{\prime}\right)=$ $\beta=1$ and $\operatorname{iso}\left(G-S^{\prime}\right) \geq 2$. So the result is followed with the similar discussion as in Subcase 3.1.

So we assume $|R|=1$ and thus $\operatorname{iso}\left(G-\left\{s_{1}, u, s_{2}\right\}-R\right)=1$. Let $R=\{r\}$ and $\operatorname{Iso}\left(G-\left\{s_{1}, u, s_{2}\right\}-r\right)=\{y\}$. Since $\delta(G) \geq 4$, we have $d_{G}(y)=4$ and $N_{G}(y)=$ $\left\{u, s_{1}, s_{2}, r\right\}$. Recall that $N_{G}(u)=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}=S$, so $y \in S$, say $y=s_{3}$.

If $r \in S$ (i.e., $r=s_{4}$), then $y r=s_{3} s_{4}$ is an edge of G, which contradicts the fact that s_{3} and s_{4} are not adjacent in G. Hence $r \notin S$. Let $M=G-(S \cup\{u, r\})$. Then for every $\emptyset \neq Y \subset V(M)$, it follows from (2) and $\{u\}=I s o(G-(S \cup Y \cup\{r\})-I s o(M-Y)$ that

$$
i s o(M-Y)=i s o\left(G-(S \cup Y \cup\{r\})-1<\frac{|S|+|Y|+1}{2}-\beta-1=\frac{|Y|+1}{2} .\right.
$$

Hence $\operatorname{iso}(M-Y) \leq|Y| / 2$, and so by induction, M has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor, and this factor can be extended to a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor of G by adding two $K_{1,2}$'s with centres u and y.

Case 4. $\quad \beta=3 / 2$.
By (1), we have $\delta(G) \geq 5$. Let $u v, v w \in E(G)$. Then for every $X \subseteq V(G)-\{u, v, w\}$ with $\operatorname{iso}(G-\{u, v, w\}-X) \geq 1$, it follows that

$$
\text { iso }(G-\{u, v, w\}-X) \leq \frac{|X \cup\{u, v, w\}|}{2}-\beta \leq \frac{|X|}{2} .
$$

If $i s o(G-\{u, v, w\}-X)=0$, then obviously iso $(G-\{u, v, w\}-X) \leq|X| / 2$. Hence by the induction hypothesis, $G-\{u, v, w\}$ has a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor, which can be extended to a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor of G.

Consequently the theorem is proved.
We now show that the condition in Theorem 4 is sharp. Consider a graph G given in Figure 2. Then G satisfies $\operatorname{iso}(G-S) \leq(|S|+1) / 2$ for all $S \subset V(G)$, but has no $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor. Hence the condition of the theorem is sharp in this sense. The condition of Theorem 4 is sufficient but not necessary. For example, let $G=K_{1,3}$ (or $C_{3 m}$, where $m \geq 2$). Then G contains a $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor but dissatisfies the condition of Theorem 4.

Figure 2: A graph has no $\left\{K_{1,2}, K_{1,3}, K_{5}\right\}$-factor.

Acknowledgments

The authors are grateful for the hospitality provided by the Center for Combinatorics at Nankai University, where this research was carried out. The first author is supported by Grant-in-Aid for Scientific Research of Japan and the third author is supported by Natural Sciences and Engineering Research Council of Canada.

References

[1] A. Amahamhi and M. Kano, On factors of with given components, Discrete Math. 42 (1982), 1-6.
[2] A. Kaneko, An necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two, J. Combin. Theory Ser. B 88 (2003), 195-218.
[3] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two, Discrete Math. 283 (2004), 129-135.

[^0]: *Corresponding email: luhongliang215@sina.com (H. Lu)

