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Abstract

In this paper we obtain sufficient conditions using isolated vertices for component
factors with each component of order at least three. In particular, we show that if a
graph G satisfies iso(G−S) ≤ |S|/2 for all S ⊂ V (G), then G has a {K1,2,K1,3,K5}-
factor, where iso(G− S) denotes the number of isolated vertices in G− S.

1 Introduction

In this paper we consider component factors of graphs, which are defined as follows. For
a set S of connected graphs, a spanning subgraph F of a graph G is called an S-factor
of G if every component of F is an element of S. An S-factor is also referred as a
component factor. There have been many papers on component factors of graphs, but in
most cases, S contains K2 (i.e., a single edge), but it is relatively rare that S contains no
small component. In addition, it is known that if S does not contain K2, then in most
cases finding a criterion for a graph to have an S-factor is very difficult since finding a
maximum S-subgraph of a given graph is an NP -complete problem. In this paper we
obtain several sufficient conditions in terms of the number of isolated vertices for a graph
to have a component factor such that each component has order at least three.

We begin with some notation and definitions. We consider a finite simple graph G with
vertex set V (G) and edge set E(G), which has neither loops nor multiple edges. We denote
by |G| the order of G. For a subset S ⊆ V (G), G− S denotes the subgraph of G induced
by V (G) − S. For a vertex v of G, the degree of v and the neighborhood of v in G are
denoted by dG(v) and NG(v), respectively. In particular, dG(v) = |NG(v)|. The minimum
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degree and the maximum degree of G are denoted by δ(G) and ∆(G), respectively. Denote
by α(G) the independence number of G, which is the maximum cardinality among the
independent sets of vertices of G. Let iso(G) and Iso(G) denote the number of isolated
vertices and the set of isolated vertices of G, respectively. In particular, iso(G) = |Iso(G)|.
For sets X and Y , X ⊂ Y means that X is a proper subset of Y .

We denote the complete graph, the path and the cycle of order n by Kn, Pn and Cn,
respectively. We denote the complete bipartite graph by Kn,m. A criterion for a graph to
have a star-factor is given below.

Theorem 1. (Amahashi and Kano [1]) A graph G has a star-factor, i.e., {K1,1, . . . , K1,n}-
factor, if and only if iso(G− S) ≤ n|S| for all S ⊂ V (G).

A graph R is called factor-critical if for every vertex x of R, R − x has a 1-factor
(K2-factor). A graph H is called a sun if H = K1, H = K2 or H is the corona of a factor-
critical graph R with order at least three, i.e., H is obtained from R by adding a new
vertex w = w(v) together with a new edge vw for every vertex v of R (Figure 1). A sun
with order at least 6 is called a big sun. The number of sum components of G is denoted
by sun(G). The next theorem gives a criterion for a graph to have a path-factor each of
whose components is of order at least three. Note that a shorter proof of the following
theorem and a formula for a maximum {P3, P4, P5}-subgraph of a graph was given in [3].

K1 K2 R H

Figure 1: A factor-critical graph R and the sun H obtained from R.

Theorem 2. (Kaneko [2]) A graph G has a {P3, P4, P5}-factor (i.e., P≥3-factor) if and
only if sun(G− S) ≤ 2|S| for all S ⊂ V (G).

In this paper we consider the following problem, and give partial answers to the prob-
lem.

Problem 1. Let G be a graph and λ be a positive rational number. If iso(G− S) ≤ λ|S|
for all ∅ 6= S ⊂ V (G), what factor does G have?

2 Component Factors with Large Components

In this section, we first prove the next theorem.

Theorem 3. If a graph G satisfies

iso(G− S) ≤ 2
3
|S| for all S ⊂ V (G),
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then G has a {P3, P4, P5}-factor.
Proof. Suppose that G satisfies the condition but has no {P3, P4, P5}-factor. By Theo-
rem 2, there exists a subset S ⊂ V (G) such that sun(G − S) > 2|S|. Assume that there
exist a isolated vertices, b K2’s and c big sun components H1,H2, . . . , Hc, where |Hi| ≥ 6,
in G− S. We choose one vertex from each K2 component of G− S, and denote the set of
such vertices by X. Then |X| = b. For each Hi, let Ri denote the factor-critical subgraph
of Hi and let Yi = V (Ri). Then iso(Hi−Yi) = |Yi| = |Hi|/2. Let Y = ∪r

i=1Yi. So we have

iso(G− (S ∪X ∪ Y )) = a + b +
c∑

i=1

|Hi|
2

.

Moreover, it follows that

|S ∪X ∪ Y | < sun(G− S)
2

+ |X|+ |Y | (from sun(G− S) > 2|S|)

=
a + b + c

2
+ b +

c∑

i=1

|Hi|
2

≤ 3
2

(
a + b +

c∑

i=1

|Hi|
2

)
=

3
2
iso(G− (S ∪X ∪ Y )).

This contradicts the condition that iso(G− S′) ≤ (2/3)|S′| for all S′ ⊂ V (G).

Let m ≥ 1 be an integer Let G = Km + (2m + 1)K2, which is a graph obtained from
Km and (2m+1)K2 by joining every vertex of Km to every vertex of (2m+1)K2. Then G
has no {P3, P4, P5}-factor. Let T ⊆ V (G) be an independent set with |T | ≥ 2. Then T ⊆
V ((2m+1)K2) and so |NG(T )| = |T |+m. If |T | ≤ 2m, then i(G−NG(T )) ≤ 2|NG(T )|/3,
otherwise i(G − NG(T )) = 2|NG(T )|/3 + 1 = 2m + 1. Since δ(G) ≥ m + 1 ≥ 2, so
i(G− S) ≤ 2|S|/3 + 1 for all S ⊆ V (G). Therefore the condition of Theorem 3 is sharp.

The next lemma is knows as Harlem Theorem, which is a generalization of Hall’s
Theorem.

Lemma 1. Let G be a bipartite graph with bipartition (U,W ), and f : U → {1, 2, 3, . . .}.
If |W | = ∑

x∈U f(x) and

|NG(S)| ≥
∑

x∈S

f(x) for all ∅ 6= S ⊆ U,

then G has a star-factor F such that each vertex u of U satisfies dF (u) = f(u), that is,
every u is the center of a star K1,f(u) in F .

We next consider graphs satisfying iso(G− S) ≤ |S|/2 for all S ⊂ V (G).

Lemma 2. If |G| ≤ 6 and iso(G−S) ≤ |S|/2 for all S ⊂ V (G), then G has a {K1,2,K1,3,
K5}-factor.
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Proof. It is clear that if G satisfies the condition, then δ(G) ≥ 2 and |G| ≥ 3. If |G| = 3,
then G is connected and has a K1,2-factor. If |G| = 4, then ∆(G) = 3, which implies that
G has a K1,3-factor. Assume |G| = 5. If G has two non-adjacent vertices x and y, then
2 = |{x, y}| = iso(G− (V (G)−{x, y})) ≤ |V (G)−{x, y}|/2 = 3/2, a contradiction. Hence
G is a complete graph K5, and so it has a K5-factor. Now we consider the case of |G| = 6.
By Theorem 2, G has a {P3, P4, P5}-factor, say F . Then F must be a P3-factor, which is
a K1,2-factor. Therefore the lemma holds.

Theorem 4. If a graph G satisfies

iso(G− S) ≤ |S|
2

for all S ⊆ V (G),

then G has a {K1,2,K1,3,K5}-factor.
Proof. It is clear that |G| ≥ 3 and δ(G) ≥ 2. Use induction on the lexicographic order of
(|G|, |E(G)|). So we assume that the theorem holds for a graph H with either |H| < |G|
or |H| = |G| and |E(H)| < |E(G)|. Moreover, we may assume that G is connected and
|G| ≥ 7 by Lemma 2. Let

β = min
{ |S|

2
− iso(G− S)

∣∣∣ S ⊂ V (G) and iso(G− S) ≥ 1
}

.

Then β ≥ 0 as iso(G − S) ≤ |S|/2. For a vertex x with dG(x) = δ(G), we have β ≤
|NG(x)|/2− iso(G−NG(x)) and so

δ(G) = dG(x) = |NG(x)| ≥ 2(β + iso(G−NG(x))) ≥ 2(β + 1). (1)

Take a maximal vertex subset S such that |S|/2− iso(G− S) = β. Then

|S′|
2
− iso(G− S′) > β for all S ⊂ S′ ⊂ V (G). (2)

Claim 1. G− S has no component of order two or three.

Assume that G− S has a component D isomorphic to K2. Let V (D) = {x, y}. Then

|S ∪ {x}|
2

− iso(G− (S ∪ {x}))

=
|S|+ 1

2
− (iso(G− S) + 1) < β,

a contradiction.
Assume that G− S has a component D of order three. Let V (D) = {x, y, z}. Then

|S ∪ {x, y}|
2

− iso(G− (S ∪ {x, y}))

=
|S|+ 2

2
− (iso(G− S) + 1) = β,
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a contradiction to the maximality of S.

Claim 2. Every component D of G− S with |D| ≥ 4 has a {K1,2,K1,3,K5}-factor.
Let X be a non-empty subset of V (D). Then by (2), we have

|S ∪X|
2

− iso(G− (S ∪X)) > β =
|S|
2
− iso(G− S).

Thus |X|/2 > iso(D − X), which implies that D has a {K1,2,K1,3,K5}-factor by the
induction hypothesis.

By Claim 1, let G − S = aK1 ∪
(
D1 ∪ · · · ∪ Dc

)
, where V (aK1) = Iso(G − S) =

{u1, . . . , ua} and each Di is a component of G− S with |Di| ≥ 4. It is immediate that

a = iso(G− S) = |S|/2− β ≥ 1. (3)

We construct a bipartite graph B with vertex set V (B) = S ∪ U , where U = {u1, u2,
. . . , ua}, such that two vertices ui ∈ U and x ∈ S are adjacent in B if and only if ui and
x are joined by an edge of G.

Claim 3. For every ∅ 6= Y ⊆ U , we have |NB(Y )| ≥ 2|Y | + 2β, and |NB(U)| =
2|U |+ 2β = |S|.

It follows from (3) and the choice of S that |NB(U)| = |S| = 2a + 2β = 2|U | + 2β.
Assume that there exists a subset ∅ 6= Y ′ ⊂ U such that NB(Y ′) < 2|Y ′|+ 2β. Then, by
the definition of β, NB(Y ′) = NG(Y ′) ⊂ S satisfies

|Y ′| ≤ iso(G−NG(Y ′)) ≤ |NG(Y ′)|
2

− β < |Y ′|,

a contradiction. Hence the claim holds.

Claim 4. If β ≥ 2, then the theorem holds.

Assume β ≥ 2. Then δ(G) ≥ 6 by (1). It is obvious that G has an edge e such that
G− e is connected. Let X ⊂ V (G− e) = V (G). If iso(G−X) ≥ 1, then

iso(G− e−X) ≤ iso(G−X) + 2 ≤ |X|
2
− β + 2 ≤ |X|

2
.

If iso(G−X) = 0, then iso(G− e−X) ≤ 2. Further iso(G− e−X) ≥ 1 implies |X| ≥ 5
as δ(G − e) ≥ 5. Hence if iso(G −X) = 0, then iso(G − e −X) ≤ 2 ≤ |X|/2. Therefore
by the induction hypothesis, G − e has a {K1,2,K1,3,K5}-factor, which is of course the
desired factor of G.

From Claim 4 and the definition of β, it remains to consider the cases of β ∈ {0, 1/2, 1, 3/2}.
Note that |S| = 2|U |+ 2β.

Case 1. β = 0.

Define f : U → {1, 2, 3 . . .} by f(u) = 2 for all u ∈ U . Then by Lemma 1 and Claim 3,
B has a K1,2-factor with centers in U . Hence by Claim 2, G has a {K1,2,K1,3,K5}-factor.
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Case 2. β = 1/2.

In this case, |S| = 2|U | + 1. Choose a vertex u1 ∈ U and define f : U → {1, 2, 3, . . .}
by f(u1) = 3 and f(ui) = 2 for all ui ∈ U − {u1}. Then |NB(Y )| ≥ ∑

x∈Y f(x) for all
Y ⊆ U by Claim 3. Hence by Lemma 1, B has a {K1,2,K1,3}-factor. Therefore we can
obtain a {K1,2,K1,3,K5}-factor of G.

Case 3. β = 1.

Clearly, δ(G) ≥ 4 by (1). We consider two subcases.

Subcase 3.1. |U | ≥ 2.

In this case, |S| = 2|U | + 2. Choose two vertex u1, u2 ∈ U and define f : U →
{1, 2, 3, . . .} by f(u1) = f(u2) = 3 and f(ui) = 2 for all ui ∈ U−{u1, u2}. Then |NB(Y )| ≥∑

x∈Y f(x) for all Y ⊆ U by Claim 3. Hence, by Lemma 1, B has a {K1,2,K1,3}-factor
and so G has a {K1,2,K1,3,K5}-factor.

Subcase 3.2. |U | = iso(G− S) = 1.

In this case, |S| = 2|U |+2 = 4 and V (G) 6= S∪U . Let U = {u} and S = {s1, s2, s3, s4}.
If S∪{u} induces a complete graph K5 in G, then G has the desired {K1,2,K1,3,K5}-factor
by Claims 1 and 2. So S ∪ {u} does not induce a complete graph K5. Without loss of
generality, we may assume that s3 and s4 are not adjacent in G.

Considering G − {s1, u, s2}, if iso(G − {s1, u, s2} − X) ≤ |X|/2 for all X ⊆ V (G) −
{s1, u, s2}, then the result is followed by induction hypothesis. So we may assume that
there exists ∅ 6= R ⊆ V (G)−{s1, u, s2} such that iso(G−{s1, u, s2}−R) ≥ (|R|+1)/2. We
choose maximal such a vertex subset R. Then Claims 1 and 2 hold for G−{s1, u, s2}−R
by the maximality of R. Moreover,

|R ∪ {s1, u, s2}|
2

− iso(G− {s1, u, s2} −R) ≤ |R|+ 3
2

− |R|+ 1
2

= 1.

Since β = 1, we obtain

|R ∪ {s1, u, s2}|
2

− iso(G− {s1, u, s2} −R) = 1.

Therefore |R| is odd. If |R| ≥ 3, then S′ = R ∪ {s1, u, s2} satisfies |S′|/2− iso(G− S′) =
β = 1 and iso(G − S′) ≥ 2. So the result is followed with the similar discussion as in
Subcase 3.1.

So we assume |R| = 1 and thus iso(G − {s1, u, s2} − R) = 1. Let R = {r} and
Iso(G − {s1, u, s2} − r) = {y}. Since δ(G) ≥ 4, we have dG(y) = 4 and NG(y) =
{u, s1, s2, r}. Recall that NG(u) = {s1, s2, s3, s4} = S, so y ∈ S, say y = s3.

If r ∈ S (i.e., r = s4), then yr = s3s4 is an edge of G, which contradicts the fact that
s3 and s4 are not adjacent in G. Hence r 6∈ S. Let M = G− (S ∪ {u, r}). Then for every
∅ 6= Y ⊂ V (M), it follows from (2) and {u} = Iso(G− (S ∪ Y ∪ {r})− Iso(M − Y ) that

iso(M − Y ) = iso(G− (S ∪ Y ∪ {r})− 1 <
|S|+ |Y |+ 1

2
− β − 1 =

|Y |+ 1
2

.
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Hence iso(M − Y ) ≤ |Y |/2, and so by induction, M has a {K1,2,K1,3,K5}-factor, and
this factor can be extended to a {K1,2,K1,3,K5}-factor of G by adding two K1,2’s with
centres u and y.

Case 4. β = 3/2.

By (1), we have δ(G) ≥ 5. Let uv, vw ∈ E(G). Then for every X ⊆ V (G)− {u, v, w}
with iso(G− {u, v, w} −X) ≥ 1, it follows that

iso(G− {u, v, w} −X) ≤ |X ∪ {u, v, w}|
2

− β ≤ |X|
2

.

If iso(G−{u, v, w}−X) = 0, then obviously iso(G−{u, v, w}−X) ≤ |X|/2. Hence by the
induction hypothesis, G − {u, v, w} has a {K1,2,K1,3,K5}-factor, which can be extended
to a {K1,2,K1,3,K5}-factor of G.

Consequently the theorem is proved.

We now show that the condition in Theorem 4 is sharp. Consider a graph G given
in Figure 2. Then G satisfies iso(G − S) ≤ (|S| + 1)/2 for all S ⊂ V (G), but has no
{K1,2,K1,3,K5}-factor. Hence the condition of the theorem is sharp in this sense. The
condition of Theorem 4 is sufficient but not necessary. For example, let G = K1,3 (or C3m,
where m ≥ 2). Then G contains a {K1,2,K1,3,K5}-factor but dissatisfies the condition of
Theorem 4.

Figure 2: A graph has no {K1,2,K1,3,K5}-factor.
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[3] M. Kano, G.Y. Katona and Z. Király, Packing paths of length at least two, Discrete
Math. 283 (2004), 129–135.

8


