A note on the degree monotonicity of cages
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Abstract
A (k; g)-graph is a k-regular graph with girth g. A (k;g)-cage is a
(k; g)-graph with the least number of vertices. The order of a (k; g)-cage
is denoted by f(k;g). In this paper we show that f(k+2;¢9) > f(k;g)

for £ > 2 and present some partial results to support the conjecture
that f(k1;9) < f(ka;g) if k1 < k.

1 Introduction

In this paper, we consider only finite simple graphs, and refer to them as
graphs.

Suppose that V' (or E’) is a nonempty subset of V (or E). The induced
subgraph (or the edge-induced subgraph) of G by V' is denoted by G[V’|
(or GIE']). The subgraph obtained from G by deleting the vertices in V'
together with their incident edges is denoted by G —V’. The graph obtained
from G by adding a set of edges E’ is denoted by G U E’. For a vertex v of
G and a set of vertices S C V(G), we use Ng(v) to denote the set of vertices
in S that are adjacent to v. A component in a graph is odd if it has an
odd number of vertices. We denote by o(G) the number of odd components
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of G. The number of edges between subgraphs H; and Hs in a graph G is
denoted by eq(H1, H2).

The length of a shortest cycle in a graph G is called the girth of G.
Clearly, adding edges to a graph G might decrease the girth of G. If G’ is
obtained from G by adding edges, we use the term smaller cycle of G’ to
denote any cycle of G’ having length less than g.

A k-regular graph with girth g is called a (k; g)-graph and a (k; g)-cage
is a (k; g)-graph with the least number of vertices. We use f(k;g) to denote
the number of vertices in any (k; g)-cage.

Cages were introduced by Tutte [11] in 1947, and since then have been
widely studied. The problem of finding cages has a prominent place in
both extremal graph theory and algebraic graph theory. A survey paper
by Wong [12] in 1982 refers to 70 publications. The study of cages has led
to interesting applications of algebra to graph theory. Recently, it has also
attracted some attention from researchers in computer science (see [2], [8]).
In these papers, new computer search algorithms are used to find new cages
or provide better bounds for f(k;g). However, most of the work so far is on
the existence problem, i.e. finding cages, or estimating f(k;g). Very little
is known on the structural properties of cages.

The first fundamental properties of cages, girth monotonicity, were es-
tablished by Erdds and Sachs [4], Holton and Sheeham [6], Fu, Huang and
Rodger [5], independently. They proved the following monotonicity result
with respect of girth of the cages which turns out to be the foundation in
exploring the connectivity of cages.

Girth Monotonicity Theorem. If £ > 3 and 3 < g1 < g2, then f(k;g1) <
f(k; g2).

Fu, Huang and Rodger [5] proved that all cages are 2-connected, and then
subsequently showed that all cubic cages are 3-edge-connected. It follows
from this theorem that all cubic cages are 3-connected. They then conjec-
tured that (k;g)-cages are k-connected. Daven and Rodger [3], and inde-
pendently Jiang and Mubayi [9], proved that all (k; g)-cages are 3-connected
for k > 3. It was proven in [14] that (4; g)-cages are 4-connected and in [13]
that (k; g)-cages are k-edge-connected when g is odd. Recently, Lin, Milleer
and Rodger [7] prove that (k; g)-cages are k-edge-connected when ¢ is even.

Jiang and Mubayi also provided some structural properties of cages.
They showed that diam(G[S]) > |g/2] where S is a cut-set of a (k;g)-
cage G and every (k;g)-cage contains a non-separating g-cycle for g > 5.
Moreover, they showed that every g-cycle in a (g; k)-cage is non-separating



for K > 3 and g > 4 even. Related to this, it is easy to show that every
vertex in a (k; g)-cage is contained in a g-cycle if g is even. The case of g
odd is still open.

Similar to the Girth Monotonicity Theorem, we consider the following
conjecture.

Degree Monotonicity Conjecture. If k1 < ko, then f(ki;9) < f(k2;9).

We shall give some partial results to support this conjecture in the next
section.

2 Results

In this section we shall often make use of the following theorem on 2-factor
in a regular graph.

Lemma 2.1. (Petersen, see [1]). A 2r-regular graph is 2-factorable.

It is well-known that a (k;3)-cage is Kj11, a complete graph on k + 1
vertices and a (k;4)-cage is K} i, a complete bipartite graph with k vertices
in each partite set. Thus the Degree Monotonicity Conjecture is true when
g = 3 or 4. It is also true for the known cages. For example, f(3;5) =
10 < f(4;5) = 19 < f(5;5) = 30 < f(6;5) = 40 < f(7;5) = 50 and
f(3;6) =14 < f(4;6) =26 < f(5;6) = 42 < f(6;6) =62 < f(7;6) =90 <
f(8,6) = 104.

Proposition 2.1. f(2;9) < f(3;9)

Proof. Since any (3; g)-cage contains a cycle of length > ¢, f(3;9) > f(2;9) =
g. If f(3;9) = f(2;9) = g, any vertex on the g-cycle in the (3; g)-cage has to
be adjacent to another vertex on a g-cycle. This leads to a cycle of length
less than ¢ in the (3; g)-cage, a contradiction. O

For g = 6,8 or 12 and k — 1 is a prime power, (k; g)-cages exist. They
are generalized triangles, generalized quadrangles and generalized hexagons
of order k — 1, where k — 1 is a prime power. Thus f(k;g) =1+ k + k(k —
)+ ...+ k(k— 1)%9*2 + (k — 1)%9*1 for g =6,8 or 12 and k£ — 1 is a prime
power. This leads to the following result.

Proposition 2.2. f(ki;g9) < f(ko;g) where k1 < ky and k1 — 1 is a prime
power, and g = 6,8 or 12.



In 1973, Berge (see [1]) conjectured that every 4-regular graph contains
a 3-regular graph. Tashkinov [10] proved this conjecture in 1984. We restate
this result in terms of cages as follows.

Proposition 2.3. f(4;9) > f(3;9) and f(4;9) > f(3;9) if f(4;9) is odd.

To extend the above result we need the following first.
Lemma 2.2. ([7] and [13]) (k;g)-cages are k-edge connected.

Theorem 2.1. If the order of (k;g)-cage G is even, then for any edge
e € E(G) there exists a 1-factor containing e.

Proof. We proceed the proof with a contradiction. If there exists an edge
e € E(G) so that there does not exists a 1-factor containing it, then G—V(e)
has no 1-factor. By Tutte’s 1-factor Theorem, there exists a set S’ C V(G)—
V(e) so that o(G — V(e) — S’) > |S’|. By the parity, we can see that
o(G—-V(e)—S8")>1|5+2.

Let S = S’UV(e), we have o(G—S) > |S|. Let Cy, Cq, ..., Cy, be the odd
components of G — S. From Lemma 2.2, we have e (C;, S) > k. Counting
the edges between S and U;C;. We conclude that

kw < G(UZ'CZ',S) < k‘|S| -2
This implies that o(G — S) = w < |S|, a contradiction. O

Theorem 2.2. If f(k;g) is even, then f(k— 1;9) < f(k;g). In particular,
foranyr>1and g>3, f(2r;g) < f(2r+1;9).

Proof. From Theorem 2.1, G has a 1-factor, says M. Then G — M is a
(k — 1)-regular graph and its girth, ¢/, is greater than or equal to g. There-
fore f(k;g) = |V(G — M)| > f(k—1;9") > f(k — 1;9), from the Girth
Monotonicity Theorem.

Since a regular graph of odd degree has an even number of vertices. Let
k =2r + 1. It follows that f(2r;g9) < f(2r + 1;9). O

Theorem 2.1 shows that there exists a 1-factor in (k; g)-cages if f(k;g) is
even. However, because the number of vertices in a (k; g)-cage may be odd,
some (k; g)-cages may not contain a 1-factor. For example, the (4;5)-cage
has 19 vertices. However, the (4; 5)-cage is the only known cage with an odd
number of vertices.

To provide further support for the Degree Monotonicity Conjecture, we
prove a weaker form of this conjecture.



Theorem 2.3. For k> 2, f(k;g) < f(k+2;9).

This result follows immediately from the next theorem, which is of in-
dependent interest.

Proposition 2.4. Every (k, g)-cage has a 2-factor.

Proof. Let G be a (k, g)-cage. Then G is k-regular. If k is even, by Petersen’s
Theorem, G has a 2-factor. If k is odd, then the order of G must be even.
From the proof of Theorem 2.1, we see that in this case G has a 1-factor F'.
Thus G — F' is a (k — 1)-regular graph (note that £ — 1 is even) and thus has
a 2-factor 7' by Lemma 2.1. Of course, T is a 2-factor of G as well. O
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