AUTHOR QUERY FORM

	Journal:	Please e-mail or fax your responses and any corrections to:
5-2-61	Applied Mathematics Letters	E-mail: corrections.essd@elsevier.river-valley.com
ELSEVIER	Article Number: 3400	Fax: +44 1392 285879

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

No queries have arisen during the processing of your article.

Thank you for your assistance.

Model 3Gsc

pp. 1–5 (col. fig: NIL)

Applied Mathematics Letters xx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

General fractional *f*-factor numbers of graphs

Hongliang Lu^{a,*}, Qinglin Yu^{b,c}

^a Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, PR China

^b School of Mathematics, Shandong University, Jinan, Shandong, PR China

^c Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

ARTICLE INFO

Article history: Received 30 September 2009 Received in revised form 31 October 2010 Accepted 2 November 2010

Keywords: Fractional matching f-factor Fractional number Deficiency Alternating trail

ABSTRACT

Let *G* be a graph and *f* an integer-valued function on *V*(*G*). Let *h* be a function that assigns each edge to a number in [0, 1], such that the *f*-fractional number of *G* is the supremum of $\sum_{e \in E(G)} h(e)$ over all fractional functions *h* satisfying $\sum_{e \sim v} h(e) \leq f(v)$ for every vertex $v \in V(G)$. An *f*-fractional factor is a spanning subgraph such that $\sum_{v \sim e} h(e) = f(v)$ for every vertex *v*. In this work, we provide a new formula for computing the fractional numbers by using Lovász's Structure Theorem. This formula generalizes the formula given in [Y. Liu, G. Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228–231] for the fractional matching numbers.

© 2010 Published by Elsevier Ltd

1. Introduction

8

9

10

11

16 17 All graphs considered in this work will be simple finite undirected graphs. Let G = (V(G), E(G)) be a graph, where V(G) and E(G) denote the vertex set and edge set of G, respectively. We use $d_G(x)$ for the degree of a vertex x in G. For any $S \subseteq V(G)$, the subgraph of G induced by S is denoted by G[S]. We write G - S for G[V(G) - S]. We refer the reader to [1] for standard graph theoretic terms not defined here.

Let *f* and *g* be two nonnegative integer-valued functions on *V*(*G*) such that $g(x) \le f(x)$ for every vertex $x \in V(G)$. A spanning subgraph *F* of *G* is a (g, f)-factor if $g(v) \le d_F(v) \le f(v)$ for all $v \in V(G)$. If $f \equiv g$, then a (g, f)-factor is also called as an *f*-factor. In 1970, Lovász [2] gave a canonical decomposition of *V*(*G*) according to its (g, f)-optimal subgraphs. In this work, we only consider $g \equiv f$.

Define $f(S) = \sum_{x \in S} \tilde{f}(x)$. Let def (G) be the deficiency of G with respect to an integer-valued function f and be defined as

$$def(G) = \min_{H \subseteq G} \left\{ \sum_{x \in V(H)} |f(x) - d_H(x)| \right\},$$

where *H* is a spanning subgraph of *G*. A subgraph *H* of *G* is called *f*-optimal if def(G) = def(H). Let *M* be an *f*-optimal subgraph, we call |E(M)| the *f*-factor number and denote it by $\mu(G)$. In particular, if $f \equiv 1$, it is usually referred to as the matching number. Let A(G), B(G), C(G), D(G) be defined as in Lovász's Structure Theorem (refer to [1]) and for simplicity, denote them by *A*, *B*, *C*, *D*, respectively. Then

$$C(G) = \{v \in V(G) \mid d_H(v) = f(v) \text{ for every } f \text{-optimal subgraph } H\},\$$

$$A(G) = \{v \in V(G) - C(G) \mid d_H(v) \ge f(v) \text{ for every } f \text{-optimal subgraph } H\},\$$

* Corresponding author.

0893-9659/\$ – see front matter 02010 Published by Elsevier Ltd doi: 10.1016/j.aml.2010.11.005

Please cite this article in press as: H. Lu, Q. Yu, General fractional f-factor numbers of graphs, Appl. Math. Lett. (2010), doi:10.1016/j.aml.2010.11.005

E-mail address: luhongliang215@sina.com (H. Lu).

ARTICLE IN PRESS

H. Lu, Q. Yu / Applied Mathematics Letters xx (xxxx) xxx-xxx

 $B(G) = \{v \in V(G) - C(G) \mid d_H(v) \le f(v) \text{ for every } f \text{-optimal subgraph } H\},\$ D(G) = V(G) - A(G) - B(G) - C(G).

Let $G[D] = D_1 \cup \cdots \cup D_\tau$. Let M be a subgraph such that $d_M(v) \le f(v)$ for all $v \in A(G)$. For a component D_i of G[D], we refer to D_i as M-full if either M contains an edge of $E(D_i, A(G))$ or M misses an edge of $E(V(D_i), B)$; otherwise, D_i is M-near full. For any f-optimal subgraph M of G, where $d_M(v) \le f(v)$ for all $v \in A(G)$, the number of nontrivial components of G[D] which are M-near full is denoted by nc(M). Let $nc(G) = \max\{nc(M)\}$, where the maximum is taken over all f-optimal graph M of G with $d_M(v) \le f(v)$ for all $v \in A(G)$. We describe a graph H as f-critical if H contains no f-factors, but for any fixed vertex x of V(H), there exists a subgraph K of H such that $d_K(x) = f(x) \pm 1$ and $d_K(y) = f(y)$ for any vertex y ($y \ne x$).

л

Let *h* be a function defined on E(G) such that $h(e) \in [0, 1]$ for every $e \in E(G)$ and the *f*-fractional number of *G* is the supremum of $\sum_{e \in E(G)} h(e)$ over all fractional functions *h* satisfying $\sum_{e \sim v} h(e) \leq f(v)$ for each *v*. We denote the *f*-fractional number by $\mu_f(G)$. Let $E_v = \{e \mid e \sim v\}$ and $E^h = \{e \mid e \in E(G) \text{ and } h(e) \neq 0\}$. We call *h* a fractional *f*-indicator function of *G* if $h(E_v) = f(v)$ for each $v \in V(G)$. If *H* is a spanning subgraph of *G* such that $E(H) = E^h$, then *H* is called a fractional *f*-factor of *G* with indicator function *h*, or simply a fractional *f*-factor. Let $def_f(G)$ be the deficiency of the fractional *f*-factor of *G*, and be defined as

$$def_f(G) = \min\left\{\sum_{v \in V(G)} \left(\left| \sum_{e \in E_v} h(e) - f(v) \right| \right) \mid h \text{ is a function defined on } E(G) \text{ such that} \\ h(e) \in [0, 1] \text{ for every } e \in E(G) \right\}.$$

In this work, we investigate the relationship between the f-factor number and the fractional f-factor number, provide a new formúla for computing the fractional numbers by using Lovász's Structure Theorem, and generalize the formula for the fractional matching number given in [3]. By the definition, clearly

$$\mu_f(G) = \frac{1}{2} (f(V(G)) - def_f(G)).$$

Let f_S be a function on V(G-S) such that $f_S(v) = f(v) - |E(v, S)|$ and f_S^T is the restriction of f_S on the subgraph T of G-S. Given an arbitrary f-optimal subgraph F, let $def_F(T)$ denote the deficiency of subset V(T) with respect to the f-factors.

Theorem 1.1 (Lovász's Structure Theorem). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an f-optimal subgraph. Then

(i) every component D_i of G[D] is $f_B^{D_i}$ -critical;

(ii) for every component D_i of G[D], $def_F(D_i) \le 1$;

(iii) $d_F(v) \in \{f(v), f(v) - 1, f(v) + 1\}$ if $v \in D$; $d_F(v) \le f(v)$ if $v \in B$; $d_F(v) \ge f(v)$ if $v \in A$;

(iv) $def(G) = def(F) = f(B) + \tau - f(A) - \sum_{v \in B} d_{G-A}(v)$, where τ denotes the number of components of G[D].

Lu and Yu [4] gave a different interpretation of A(G), B(G), C(G), D(G) by using alternating trails and thus obtained a shorter proof of Lovász's Structure Theorem. Suppose that F is an f-optimal subgraph, where $d_F(v) \le f(v)$ for all $v \in A(G)$, and let $B_0 = \{v \mid d_F(v) < f(v)\}$. An *M*-alternating trail is a trail $P = v_0v_1 \dots v_k$ with $v_iv_{i+1} \notin F$ for i even and $v_iv_{i+1} \in F$ for i odd. Then we can define A, B, C, D alternatively as follows:

 $D = \{v \mid \exists \text{ both an even and an odd } F \text{-alternating trail from vertices of } B_0 \text{ to } v\},\$

 $B = \{v \mid \exists \text{ an even } F \text{-alternating trail from a vertex of } B_0 \text{ to } v\} - D$,

 $A = \{v \mid \exists an odd F \text{-alternating trail from a vertex of } B_0 \text{ to } v\} - D$,

$$C = V(G) - A - B - D.$$

With these new notions, more structural properties of *f*-optimal subgraphs can be obtained.

Theorem 1.2 (Lu and Yu [4]). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an arbitrary f-optimal subgraph of G. Then

- (i) for every component D_i of G[D], if $def(D_i) = 0$, then F either contains an edge of $E(D_i, A)$ or misses an edge of $E(D_i, B)$; if $def(D_i) = 1$, then $E(D_i, B) \subseteq F$ and $E(D_i, A) \cap F = \emptyset$.
- (ii) if $d_F(v) \le f(v)$ for all $v \in V(G)$, then for any $v \in D$ there are both an even *F*-alternating trail and an odd *F*-alternating trail from the vertices of B_0 to v.

Anstee [5] obtained a formula for the fractional *f*-factor number.

Please cite this article in press as: H. Lu, Q. Yu, General fractional f-factor numbers of graphs, Appl. Math. Lett. (2010), doi:10.1016/j.aml.2010.11.005

H. Lu, Q. Yu / Applied Mathematics Letters xx (xxxx) xxx–xxx

AML: 3400

Theorem 1.3 (Anstee [5]). Let G be a graph and $f: V(G) \to Z^+$ be an integer-valued function on V(G). Then

$$def_f(G) = \max\left\{f(T) - f(S) - \sum_{v \in T} d_{G-S}(v) \mid S, T \subseteq V(G), S \cap T = \emptyset\right\}.$$

Lemma 1.4. Let *H* be a graph and $g : V(H) \rightarrow Z^+$ an integer-valued function. If *H* is a *g*-critical graph with at least three vertices, then *H* has a *g*-fractional factor.

Proof. Let *F* be a *g*-optimal graph of *H* such that $d_F(v) \le g(v)$ for all $v \in V(G)$. Since *H* is *g*-critical, then D = V(H) and def(H) = 1. Let $v \in V(H)$ such that $d_F(v) = g(v) - 1$. By Theorem 1.2(ii), there exists an odd *F*-alternating trail, say *P*, from *v* to *v*. Next we construct an indicator function *h* as follows:

$$h(e) = \begin{cases} 1/2 & e \in E(P), \\ 1 & e \in E(F) - E(P) \\ 0 & \text{otherwise.} \end{cases}$$

⁹ It is easy to check that *h* is a fractional *f*-indicator function of *G*. \Box

¹⁰ Now we present our main theorem of this work.

Theorem 1.5. For any graph *G*, we have

¹²
$$def(G) = \max_{S \subseteq V(G)} \left\{ f(T) - f(S) - \sum_{v \in T} d_{G-S}(v) \right\} + nc(G),$$

where
$$T = \{v \in V(G - S) \mid d_{G-S}(v) \le f(v)\}.$$

Proof. Let *F* be an *f*-optimal subgraph such that nc(F) = nc(G) = nc and $d_F(v) \le f(v)$ for all $v \in A$. Moreover, we may assume that $d_F(v) \le f(v)$ for all $v \in V(G)$, since if $v \in D_i$ and $d_F(v) = f(v) + 1$, then we can choose $e \in E(D_i) \cap E(F)$ incident with v such that $d_{F-e}(v) \le f(v)$ and nc(F-e) = nc(F). Let D_1, \ldots, D_{nc} be the *F*-near full components of *G*[*D*]. By Theorem 1.2(i), $E(D_i, B) \subseteq E(F)$ and $E(D_i, A) \cap E(F) = \emptyset$ for $i = 1, \ldots, nc$. Moreover, D_i has at least three vertices $(i = 1, \ldots, nc)$ and $nc \le def(G)$.

19 **Claim 1.**
$$\max\{f(T) - f(S) - \sum_{v \in T} d_{G-S}(v)\} \le def(G) - nc.$$

By Theorem 1.1, D_i is $f_B^{D_i}$ -critical (i = 1, ..., nc). By Lemma 1.4, D_i has a fractional $f_B^{D_i}$ -factor with indicator function $h_B^{D_i}$ (i = 1, ..., nc). Now we construct a function h on E(G) as follows:

22
$$h(e) = \begin{cases} h_B^{D_i}(e) & e \in F_1 \cup \dots \cup F_l \\ 1 & e \in E(F), \\ 0 & \text{otherwise.} \end{cases}$$

23 Then

26

27

28

24
$$\sum_{e \in E(G)} h(e) = \frac{1}{2} \left(\sum_{v \in V(G)} f(v) - (def(G) - nc) \right).$$

²⁵ By Theorem 1.3,

$$\mu_f(G) = \frac{1}{2} \left(\sum_{v \in V(G)} f(v) - def_f(G) \right)$$

= $\frac{1}{2} \left(\sum_{v \in V(G)} f(v) - \left(\max \left\{ f(T) - f(S) - \sum_{v \in T} d_{G-S}(v) \right\} \right) \right)$
\ge \sum_{e \in E(G)} h(e) = $\frac{1}{2} \left(\sum_{v \in V(G)} f(v) - (def(G) - nc) \right).$

29 Hence

$$\max\left\{f(T)-f(S)-\sum_{v\in T}d_{G-S}(v)\right\}\leq def(G)-nc.$$

Please cite this article in press as: H. Lu, Q. Yu, General fractional *f*-factor numbers of graphs, Appl. Math. Lett. (2010), doi:10.1016/j.aml.2010.11.005

AML: 3400

H. Lu, Q. Yu / Applied Mathematics Letters xx (xxxx) xxx-xxx

By Claim 1, it suffices to find a pair of disjoint subsets $S, T \subseteq V(G)$ such that $f(T) - f(S) - \sum_{v \in T} d_{G-S}(v) = def(G) - nc$. Let

 $B_1 = \{ v \in B \mid d_F(v) < f(v) \}.$

By Theorem 1.2, $E(B, B) \subseteq F$ and so $E(B_1, B_1) \subseteq F$. Moreover, $E(B_1, D) \subseteq F$. Otherwise, suppose $e \in E(B_1, D) - E(F)$; then $nc(F \cup e) > nc(F)$, a contradiction.

Let

 $B_2 = \{v \in V(G) \mid \exists an even F-alternating trail from a vertex of <math>B_1$ to $v\}$,

 $A_1 = \{v \in V(G) \mid \exists \text{ an odd } F \text{-alternating trail from a vertex of } B_1 \text{ to } v\}.$

Since the path of length zero can be seen as an even *F*-alternating one, we have $B_1 \subseteq B_2$.

Claim 2. $B_2 \cap D = \emptyset$.

Otherwise, suppose $v \in B_2 \cap D$ and there exists an even *F*-alternating trail, say *P*, from $u \in B_1$ to *v*. Then the component of *G*[*D*] containing *v* is an *F*-full component. Otherwise, $F \triangle P$ is an optimal graph with $def_F(D_i) = 2$, a contradiction to Theorem 1.2. But then $nc(F \triangle P) > nc(F)$, a contradiction again. So Claim 2 is proved.

Claim 3. $A_1 \cap D = \emptyset$.

Otherwise, suppose $v \in A_1 \cap D$ and there exists an odd *F*-alternating trail, say *P*, from $u \in B_1$ to *v*. Similarly, the component of *G*[*D*] containing *v* is an *F*-full component. By Theorem 1.1, $(F \triangle P)[V(D_i)]$ is an $f_B^{D_i}$ -optimal graph and $d_{(F \triangle P)[V(D_i)]}(v) > f_B^{D_i}(v) > 0$. So there exists an edge $e \in (F \triangle P)[V(D_i)]$ incident with *v*. Then $nc((F \triangle P) - e) > nc(F)$, a contradiction.

By Claims 2 and 3, we see that $B_2 \subseteq B, A_1 \subseteq A$ and $E(B_2, (A-A_1) \cup B \cup D) \subseteq F$. Moreover, $E((B_2, (A-A_1) \cup B_2 \cup D \cup C) \subseteq F)$.

Claim 4. Every edge of F with one end in A_1 has the other end in B_2 .

Otherwise, let $e = uv \in F$, where $u \in A_1$ and $v \in (D \cup B) - B_2$. Since $u \in A_1$, there exists an odd *F*-alternating trail, say *P*, joining *u* to some vertex in B_1 . If $e \notin E(P)$, then $P \cup e$ is an even *F*-alternating trail from a vertex of B_1 to *v*, a contradiction to $v \notin B_2$. So we consider $e \in P$. But then we have $v \in V(P)$ and $v \in B_2$, a contradiction again.

By Claims 2–4, we have $f(B_2) - f(A_1) - \sum_{v \in B_2} d_{G-A_1}(v) + nc = def(G)$. We complete the proof. \Box

From the proof of the above theorem, we can construct a function *h* with $h(e) \in \{0, \frac{1}{2}, 1\}$ only and thus obtain the following interesting consequence.

Corollary 1.6 ([6]). For any graph G, let $f : V(G) \rightarrow Z^+$ be an integer-valued function. Then there exists a fractional indicator function h such that

$$\sum_{e\in E(G)}h(e)=\mu_f(G),$$

where $h(e) \in \{0, \frac{1}{2}, 1\}$ for each edge $e \in E(G)$.

With Theorem 1.5, we are able to give an explicit formula for *f*-fractional numbers.

Corollary 1.7. For any graph G, $\mu_f(G) = \frac{1}{2}(f(V(G)) - (def(G) - nc))$. In particular, $\mu_f(G) = \mu(G) + \frac{nc}{2}$.

From the definitions, clearly $\mu_f(G) \ge \mu(G)$. But when does the equality hold? The next result gives a characterization for the family of graphs with $\mu_f(G) = \mu(G)$. Using *F*-alternating trails, the set D(G) can be determined in polynomial time. Therefore, the graphs with the property $\mu_f(G) = \mu(G)$ can be identified efficiently.

Corollary 1.8. $\mu_f(G) = \mu(G)$ if and only if $D(G) = \emptyset$.

Proof. If $D(G) = \emptyset$, then nc = 0. By Corollary 1.7, the result follows. Conversely, let $\mu_f(G) = \mu(G)$; then nc = 0. Every component of G[D] is *F*-full. Suppose $D \neq \emptyset$, and let $v \in D$. Note that there exists an alternating trâil joining v to some vertex in B_1 , a contradiction to the choice of *F*. \Box

Corollary 1.9. If G is a bipartite graph, then $\mu_f(G) = \mu(G)$.

Note that Corollaries 1.7–1.9 generalize the corresponding results given in [3] for fractional matchings.

Please cite this article in press as: H. Lu, Q. Yu, General fractional f-factor numbers of graphs, Appl. Math. Lett. (2010), doi:10.1016/j.aml.2010.11.005

4

30

31

32

33

34

35

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

36 37

38

39

40

41

AML: 3400

H. Lu, Q. Yu / Applied Mathematics Letters xx (xxxx) xxx-xxx

Acknowledgements 1

- The first author is supported by the Fundamental Research Funds for the Central Universities. 2
- 🖕 The second author is supported by the Natural Sciences and Engineering Research Council of Canada and Shandong 3
- **University Visiting Scholar Fund.** л

References 5

- [1] L. Lovász, M.D. Plummer, Matching Theory, North Holland, Amsterdam, 1986. 6
- [2] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391-416.
- [3] Y. Liu, G.Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228-231. 8
- [4] H.L. Lu, Q.L. Yu, Constructive proof of deficiency theorem of (g, f)-factors, Science China Mathematics 53 (2010) 1657–1662. 9
- 10
- [5] R.P. Anstee, Simplified existence theorems for (g, f)-factors, Discrete Appl. Math. 27 (1990) 29–38.
 [6] L. Zhang, Factors and Fractional Factors of Graphs and Tree Graphs, Ph.D. Thesis, Shandong University, 2001 (in Chinese). 11