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Aecentod 2 Noverber 2010 > ece(c) h(e) over all fractional fufictions h satisfying Y, _,
ccepte ovember

V(G). An f-fractional factor is a spanning subgraph such that >

h(e) < f(v) forevery vertexv €
h(e) = f(v) for every

v~e
vertex v. In this work, we provide a new formula for computing the fractional numbers by

grej/:vﬁ%r:;i matching using Lovasz’s Sttucture Theorem. This formula generalizes the formula given in [Y. Liu, G.
f-factor Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228-231] for the
Fractional number fractional matching numbers.
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Alternating trail

1. Introduction

All graphs considered in this work will be simple finite undirected graphs. Let G = (V(G), E(G)) be a graph, where V(G)
and E(G) denote the vertex set arfd edge set of G, respectively. We use d¢(x) for the degree of avertex xin G. Forany S C V(G),
the subgraph of G induced by S is denoted by G[S]. We write G — S for G[V (G) — S]. We refer the reader to [1] for standard
graph theoretic terms not defined here.

Let f and g be two nonnegative integer-valued functions on V(G) such that g(x) < f(x) for every vertex x € V(G). A
spanning subgraph F of Gis a (g, f)-factor if g(v) < dr(v) < f(v) forallv € V(G).Iff = g, then a (g, f)-factor is also called
as an f-factor. In 1970, Lovasz [2] gave a canonical decomposition of V(G) according to its (g, f)-optimal subgraphs. In this
work, we only consider g = f.

Define f(S) = Y_,¢ f (x). Let def (G) be the deficiency of G with respect to an integer-valued function f and be defined as

def (G) =g1gig{ > tf(x)—dH(x>|},

xeV(H)

where H is a spanning subgraph of G. A subgraph H of G is called f-optimal if def (G) = def(H). Let M be an f-optimal
subgraph; we call |[E(M)| the f-factor number and denote it by @ (G). In particular, if f = 1, it is usually referred to as the
matching fumber. Let A(G), B(G), C(G), D(G) be defined as in Lovész’s Structure Theorem (refer to [1]) and for sifplicity,
Sl\enote them by A, B, C, D, respectively. Then

C(G) = {v € V(G) | dy(v) = f(v) for every f-optimal subgraph H},
A(G) ={v € V(G) — C(G) | dy(v) = f(v) for every f-optimal subgraph H},
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B(G) = {v € V(G) — C(G) | dy(v) < f(v) for every f-optimal subgraph H},
D(G) = V(G) — A(G) — B(G) — C(G).

Let G[D] = D1 U - -- U D,. Let M be a subgraph such that dy; (v) < f(v) for all v € A(G). For a component D; of G[D], we
refer to D; as M-full if either M contains an edge of E(D;, A(G)) or M misses an edge of E(V (D;), B); otherwise, D; is M-near
full. For any f-optimal subgraph M of G, where dy; (v) < f(v) for all v € A(G), the number of nontrivial components of G[D]
which are M-near full is denoted by nc(M). Let nc(G) = max{nc(M)}, where the maximum is taken over all f -optimal graph
M of G with dy(v) < f(v) for all v € A(G). We describe a graph H as f-critical if H contains no f-factors, but for any fixed
vertex x of V (H), there exists a subgraph K of H Such that di (x) = f (x) £ 1 andd (y) = f(y) for any vertex y (y # X).

Let h be a function defined on E(G) such that h(e) € [0, 1] for every e € E(G) and the f-fractional number of G is the
supremum of ZeeE(G) h(e) over all fractional functions h satisfying ), h(e) < f (v¥'for each v. We dendte the f-fractional
number by s (G). LetE, = {e | e ~ v} and E" = {e | e € E(G) and h(e) # 0}. We call h a fractional f-indicator function of G
if h(E,) = f(v) for each v € V(G).IfH is a spanning subgraph of G such that E(H) = E", then H is called a fractional f -factor
of G with indicator function h, or simply a fractional f-factor. Let def; (G) be the deficiency of the fractional f-factor of G, and
be defined as

def; (G) = min{ Z (

veV(G)

> "he) = f(v)

ecky

) | his a function defined on E(G) such that

h(e) € [0, 1] foreverye € E(G)} .

In this work, we investigate the relationship between the f-factor number and the fractional f-factor number, provide a
new formla for computing the fractional numbers by using Lovasz’s Structure Theorem, and generalize the formula for the
fractional matching number given in [3]. By the definition, clearly

1
1 () = S (F(V(C) — deff (G)).

Let fs be a function on V(G —S) such that fs(v) = f(v) —|E(v, S)| andfsT is the restriction of fs on the subgraph T of G —S.
Given an arbitrary f-optimal subgraph F, let defr (T) denote the deficiency of subset V(T) with respect to the f-factors.

Theorem 1.1 (Lovdsz’s Structure Theorem). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an f-optimal subgraph.
Then

(i) every component D; of G[D] isff"—critical;

(ii) for every component D; of G[D], defr(D;) < 1;

(iii) dr(v) € {f(v),f(v) = 1,f() +1}if v e D;dr(v) < f(v)if v € B;dr(v) > f(v)if v €A

(iv) def (G) = def (F) = f(B) + © — f(A) — Y_,cp d—a(v), where T denotes the number of components of G[D].

—_

Lu and Yu [4] gave a different interpretation of A(G), B(G), C(G), D(G) by using alternating trails and thus obtained a
shorter proof of Lovadsz’s Structure Theorem. Suppose that F is an f-optimal subgraph, where dr(v) < f(v) forall v € A(G),
and let By = {v | dr(v) < f(v)}. An M-alternating trail is a trail P = vgvy . . . vg with v;v;11 ¢ F forieven and v;vi;1 € F for
i odd. Then we can define A, B, C, D alternatively as follows:

D = {v | 3 both an even and an odd F-alternating trail from vertices of By to v},
B = {v | 3 an even F-alternating trail from a vertex of By to v} — D,

A = {v | 3 an odd F-alternating trail from a vertex of By to v} — D,

C=V({G) —A—-B-D.

With these new notions, more structural properties of f-optimal subgraphs can be obtained.
A

Theorem 1.2 (Lu and YuA[4]). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an arbitrary f-optimal subgraph of G.
Then

(i) for every component D; of G[D], if def (D;) = O, then F either contains an edge of E(D;, A) or misses an edge of E(D;, B); if
def (D;) = 1, then E(D;, B) € F and E(D;, A) N F = §;

(ii) if dr(v) < f(v) forallv € V(G), then forany v € D there are both an even F-alternating trail and an odd F-alternating trail
from the vertices of By to v.

Anstee [5] obtained a formula for the fractional f-factor number.
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Theorem 1.3 (Anstee/(5]). Let G be agraphand f : V(G) — Z™ be an integer-valued function on V(G). Then

def; (G) = max [f(T) —f($) =Y de_s(v) | S.TSV(G).SNT =91

veT

Lemma 1.4. Let H be a graph and g : V(H) — Z* an integer-valued function. If H is a g-critical graph with at least three
vertices, then H has a g-fractional factor.

Proof. Let F be a g-optimal graph of H such that dr(v) < g(v) for all v € V(G). Since H is g-critical, then D = V(H) and
def (H) = 1.Letv € V(H) such thatdr(v) = g(v) — 1. By Theorem 1.2(ii), there exists an odd F-alternating trail, say P, from
v to v. Next we construct an indicator function h as follows:
1/2 e e€E(P),
h(e) = {1 ee€ E(F) —E(P),
0 otherwise.

It is easy to check that h is a fractional f-indicator function of G. O

Now we present our main theorem of this work.
A

Theorem 1.5. For any graph G, we have

veT

def (G) = max {f(T) —f(8) =Y des(v) { +nc(G),
SCV(G)

whereT = {v € V(G —S) | dg_s(v) < f(v)}).

Proof. Let F be an f-optimal subgraph such that nc(F) = nc(G) = nc and dr(v) < f(v) for all v € A. Moreover, we may
assume that dr(v) < f(v) for all v € V(G), since if v € D; and dr(v) = f(v) + 1, then we can choose e € E(D;) N E(F)
incident with v such that dr_.(v) < f(v) and nc(F — e) = nc(F). Let D, ..., D, be the F-near full components of G[D].
By Theorem 1.2(i), E(D;, B) € E(F) and E(D;,A) N E(F) = @ fori = 1, ..., nc. Moreover, D; has at least three vertices
(i=1,...,nc)and nc < def (G).

Claim 1. max{f(T) — f(S) — >_,.; de—s(v)} < def(G) — nc.

veT
By Theorem 1.1, D; is fé) i_critical (i = 1, ..., nc). By Lemma 1.4, D; has a fractional fBD"—factor with indicator function hgi
(i=1,...,nc). Now we construct a function h on E(G) as follows:

hg"(e) ecFiU.--UF,,
h(e) = {1 e € E(F),
0 otherwise.

Then

1
> he) =3 ( Y f(v) — (def(G) — nc)) :

ecE(G) veV(G)

By Theorem 1.3,

1
17 (G) = ( > f) - deff(c))

5 veV(G)
1
= 4 ( Y f) - (max {f(T) —f(S) - chs(m}»
veV(G) veT
1
> ) he) =5 ( > f) — (def (G) — nc)) :
ecE(G) veV(G)

Hence

veT

max [f(T) —f(5) — ch_sw)} < def (G) — nc.

Please cite this article in press as: H. Lu, Q. Yu, General fractional f-factor numbers of graphs, Appl. Math. Lett. (2010), doi:10.1016/j.am1.2010.11.005
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By Claim 1, it suffices to find a pair of disjoint subsets S, T C V(G) such that f(T) — f(S) — Y, .7 de—s(v) = def (G) — nc.
Let

={veBldr(v) <f)}

By Theorem 1.2, E(B, B) C F and so E(By, B;) C F. Moreover, E(By,D) C F. Othe1w1se suppose e € E(By, D) — E(F) then
nc(F Ue) > nc(F), a contradiction.
Let

B, = {v € V(G) | 3 an even F-alternating trail from a vertex of B; to v},
Ay = {v € V(G) | 3 an odd F-alternating trail from a vertex of B; to v }.

Since the path of length zero can be seen as an even F-alternating one, we have B; C B,.
A

Claim2. B,ND = @.

Otherwise, suppose v € B, N D and there exists an even F-alternating trail, say P, from u € By to v. Then the component
of G[D] containing v is an F-full component. Otherwise, F A P is an optimal graph with defz(D;) = 2, a contradiction to
Theorem 1.2. But then nc(F A P) > nc(F), a Contradiction again. So Claim 2 is proved.

Claim 3. A, ND =¢.

Otherwise, suppose v € A; N D and there exists an odd F-alternating trail, say P, from u € B; to v. Similarly,
the component of G[D] containing v is an F-full component. By Theorem 1.1, (FAP)[V(D;)] is an fB -optimal graph and
dEapyvoy(v) > fB '(v) > 0. So there exists an edge e € (FAP)[V(D;)] incident with v. Then nc((FAP) —e) > nc(F),a
contradiction.

By Claims 2 and 3, we see that B, € B,A; € Aand E(B,, (A—A1)UBUD) C F.Moreover, E((B,, (A—A;)UB,UDUC) C F).

Claim 4. Every edge of F with one end in A, has the other end in B,.

Otherwise, let e = uv € F, where u € A; and v € (D U B) — B,. Since u € Ay, there exists an odd F-alternating trail, say
P, joining u to some vertex in By. If e & E(P), then P U e is an even F-alternating trail from a vertex of B; to v, a contradiction
to v & B,. So we consider e € P. But then we have v € V(P) and v € B,, a contradiction again.

By Claims 2-4, we have f(B,) — f (A1) — ZveBz dg_a, (v) + nc = def (G). We complete the proof. O

From the proof of the above theorem, we can construct a function h with h(e) € {0, 1, 1} only and thus obtain the
following interesting consequence.

520

Corollary 1.6 ([6]). For any graph G, let f : V(G) — Z™ be an integer-valued function. Then there exists a fractional indicator
function h such that

Y he) = (G,

ecE(G)
where h(e) € {0, % 1} for each edge e € E(G).

With Theorem 1.5, we are able to give an explicit formula for f-fractional numbers.

Corollary 1.7. For any graph G, us(G) = %(f(V(G)) — (def (G) — nc)). In particular, us (G) = n(G) + ”2—5

From the definitions, clearly uf(G) > w(G). But when does the equality hold? The next result gives a characterization
for the family of graphs with s (G) = (G). Using F- alterrfating trails, the set D(G) can be determined in polynomial time.
Therefore, the graphs with the property 17 (G) = 1 (G) can be identified efficiently.

Corollary 1.8. 17(G) = u(G) if and only if D(G) =

Proof. If D(G) = ¢, then nc = 0. By Corollary 1.7, the result follows. Conversely, let u;(G) = u(G); then nc = 0. Every
component of G[D] is F-full. Suppose D # @, and let v € D. Note that there exists an alternating trail joining v to some
vertex in By, a contradiction to the choice of F. O A

Corollary 1.9. If G is a bipartite graph, then s (G) = u(G).

Note that Corollaries 1.7-1.9 generalize the corresponding results given in [3] for fractional matchings.
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