## AUTHOR QUERY FORM



Dear Author,
Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.
No queries have arisen during the processing of your article.

Thank you for your assistance.

# General fractional $f$-factor numbers of graphs 

Hongliang Lu ${ }^{\text {a,* }}$, Qinglin $\mathrm{Yu}{ }^{\text {b,c }}$<br>${ }^{\text {a }}$ Department of Mathematics, Xi'an Jiaotong University, Xi'an 710049, PR China<br>${ }^{\mathrm{b}}$ School of Mathematics, Shandong University, Jinan, Shandong, PR China<br>${ }^{\text {c }}$ Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada


#### Abstract

Let $G$ be a graph and $f$ an integer-valued function on $V(G)$. Let $h$ be a function that assigns each edge to a number in $[0,1]$, such that the $f$-fractional number of $G$ is the supremum of $\sum_{e \in E(G)} h(e)$ over all fractional functions $h$ satisfying $\sum_{e \sim v} h(e) \leq f(v)$ for every vertex $v \in$ $V(G)$. An $f$-fractional factor is a spanning subgraph such that $\sum_{v \sim e} h(e)=f(v)$ for every vertex $v$. In this work, we provide a new formula for computing the fractional numbers by using Lovász's Structure Theorem. This formula generalizes the formula given in [Y. Liu, G. Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228-231] for the fractional matching numbers.


© 2010 Published by Elsevier Ltd

## 1. Introduction

All graphs considered in this work will be simple finite undirected graphs. Let $G=(V(G), E(G))$ be a graph, where $V(G)$ and $E(G)$ denote the vertex set and edge set of $G$, respectively. We use $d_{G}(x)$ for the degree of a vertex $x$ in $G$. For any $S \subseteq V(G)$, the subgraph of $G$ induced by $S$ is denoted by $G[S]$. We write $G-S$ for $G[V(G)-S]$. We refer the reader to [1] for standard graph theoretic terms not defined here.

Let $f$ and $g$ be two nonnegative integer-valued functions on $V(G)$ such that $g(x) \leq f(x)$ for every vertex $x \in V(G)$. A spanning subgraph $F$ of $G$ is a $(g, f)$-factor if $g(v) \leq d_{F}(v) \leq f(v)$ for all $v \in V(G)$. If $f \equiv g$, then a $(g, f)$-factor is also called as an $f$-factor. In 1970, Lovász [2] gave a canonical decomposition of $V(G)$ according to its $(g, f)$-optimal subgraphs. In this work, we only consider $g \equiv f$. $\hat{\wedge}$ Define $f(S)=\sum_{x \in S} f(x)$. Let $\operatorname{def}(G)$ be the deficiency of $G$ with respect to an integer-valued function $f$ and be defined as

$$
\operatorname{def}(G)=\min _{H \subseteq G}\left\{\sum_{x \in V(H)}\left|f(x)-d_{H}(x)\right|\right\},
$$

where $H$ is a spanning subgraph of $G$. A subgraph $H$ of $G$ is called $f$-optimal if $\operatorname{def}(G)=\operatorname{def}(H)$. Let $M$ be an $f$-optimal subgraph; we call $|E(M)|$ the $f$-factor number and denote it by $\mu(G)$. In particular, if $f \equiv 1$, it is usually referred to as the matching n̂umber. Let $A(G), B(G), C(G), D(G)$ be defined as in Lovász's Structure Theorem (refer to [1]) and for simplicity, denote them by $A, B, C, D$, respectively. Then
$\wedge$

$$
\begin{aligned}
& C(G)=\left\{v \in V(G) \mid d_{H}(v)=f(v) \text { for every } f \text {-optimal subgraph } H\right\} \\
& A(G)=\left\{v \in V(G)-C(G) \mid d_{H}(v) \geq f(v) \text { for every } f \text {-optimal subgraph } H\right\}
\end{aligned}
$$

[^0]
## ARTICLE IN PRESS

$$
\begin{aligned}
& B(G)=\left\{v \in V(G)-C(G) \mid d_{H}(v) \leq f(v) \text { for every } f \text {-optimal subgraph } H\right\} \\
& D(G)=V(G)-A(G)-B(G)-C(G)
\end{aligned}
$$

Let $G[D]=D_{1} \cup \cdots \cup D_{\tau}$. Let $M$ be a subgraph such that $d_{M}(v) \leq f(v)$ for all $v \in A(G)$. For a component $D_{i}$ of $G[D]$, we refer to $D_{i}$ as $M$-full if either $M$ contains an edge of $E\left(D_{i}, A(G)\right)$ or $M$ misses an edge of $E\left(V\left(D_{i}\right), B\right)$; otherwise, $D_{i}$ is $M$-near full. For any $f$-optimal subgraph $M$ of $G$, where $d_{M}(v) \leq f(v)$ for all $v \in A(G)$, the number of nontrivial components of $G[D]$ which are $M$-near full is denoted by $n c(M)$. Let $n c(G)=\max \{n c(M)\}$, where the maximum is taken over all $f$-optimal graph $M$ of $G$ with $d_{M}(v) \leq f(v)$ for all $v \in A(G)$. We describe a graph $H$ as $f$-critical if $H$ contains no $f$-factors, but for any fixed vertex $x$ of $V(H)$, there exists a subgraph $K$ of $H$ such that $d_{K}(x)=f(x) \pm 1$ and $d_{K}(y)=f(y)$ for any vertex $y(y \neq x)$.

Let $h$ be a function defined on $E(G)$ such that $h(e) \in[0,1]$ for every $e \in E(G)$ and the $f$-fractional number of $G$ is the supremum of $\sum_{e \in E(G)} h(e)$ over all fractional functions $h$ satisfying $\sum_{e \sim v} h(e) \leq f(v)$ for each $v$. We denote the $f$-fractional number by $\mu_{f}(G)$. Let $E_{v}=\{e \mid e \sim v\}$ and $E^{h}=\{e \mid e \in E(G)$ and $h(e) \neq 0\}$. We call $h$ a fractional $f$-indicator function of $G$ if $h\left(E_{v}\right)=f(v)$ for each $v \in V(G)$. If $H$ is a spanning subgraph of $G$ such that $E(H)=E^{h}$, then $H$ is called a fractional $f$-factor of $G$ with indicator function $h$, or simply a fractional $f$-factor. Let $\operatorname{def}_{f}(G)$ be the deficiency of the fractional $f$-factor of $G$, and be defined as

$$
\begin{aligned}
\operatorname{def}_{f}(G)= & \min \left\{\sum_{v \in V(G)}\left(\left|\sum_{e \in E_{v}} h(e)-f(v)\right|\right) \mid h \text { is a function defined on } E(G)\right. \text { such that } \\
& h(e) \in[0,1] \text { for every } e \in E(G)\} .
\end{aligned}
$$

In this work, we investigate the relationship between the $f$-factor number and the fractional $f$-factor number, provide a new formula for computing the fractional numbers by using Lovász's Structure Theorem, and generalize the formula for the fractional matching number given in [3]. By the definition, clearly

$$
\mu_{f}(G)=\frac{1}{2}\left(f(V(G))-\operatorname{def}_{f}(G)\right)
$$

Let $f_{S}$ be a function on $V(G-S)$ such that $f_{S}(v)=f(v)-|E(v, S)|$ and $f_{S}^{T}$ is the restriction of $f_{S}$ on the subgraph $T$ of $G-S$. Given an arbitrary $f$-optimal subgraph $F$, let $\operatorname{de} f_{F}(T)$ denote the deficiency of subset $V(T)$ with respect to the $f$-factors.

Theorem 1.1 (Lovász's Structure Theorem). Let $D(G), A(G), B(G)$ and $C(G)$ be defined as above. Let $F$ be an $f$-optimal subgraph. Then
(i) every component $D_{i}$ of $G[D]$ is $f_{B}^{D_{i}}$-critical;
(ii) for every component $D_{i}$ of $G[D], \operatorname{def}_{F}\left(D_{i}\right) \leq 1$;
(iii) $d_{F}(v) \in\{f(v), f(v)-1, f(v)+1\}$ if $v \in D ; d_{F}(v) \leq f(v)$ if $v \in B ; d_{F}(v) \geq f(v)$ if $v \in A$;
(iv) $\operatorname{def}(G)=\operatorname{def}(F)=f(B)+\tau-f(A)-\sum_{v \in B} d_{G-A}(v)$, where $\tau$ denotes the number of components of $G[D]$.

Lu and Yu [4] gave a different interpretation of $A(G), B(G), C(G), D(G)$ by using alternating trails and thus obtained a shorter proof of Lovász's Structure Theorem. Suppose that $F$ is an $f$-optimal subgraph, where $d_{F}(v) \leq f(v)$ for all $v \in A(G)$, and let $B_{0}=\left\{v \mid d_{F}(v)<f(v)\right\}$. An $M$-alternating trail is a trail $P=v_{0} v_{1} \ldots v_{k}$ with $v_{i} v_{i+1} \notin F$ for $i$ even and $v_{i} v_{i+1} \in F$ for $i$ odd. Then we can define $A, B, C, D$ alternatively as follows:

$$
\begin{aligned}
& D=\left\{v \mid \exists \text { both an even and an odd } F \text {-alternating trail from vertices of } B_{0} \text { to } v\right\}, \\
& B=\left\{v \mid \exists \text { an even } F \text {-alternating trail from a vertex of } B_{0} \text { to } v\right\}-D, \\
& A=\left\{v \mid \exists \text { an odd } F \text {-alternating trail from a vertex of } B_{0} \text { to } v\right\}-D, \\
& C=V(G)-A-B-D .
\end{aligned}
$$

With these new notions, more structural properties of $f$-optimal subgraphs can be obtained.
Theorem 1.2 (Lu and $Y u[4])$. Let $D(G), A(G), B(G)$ and $C(G)$ be defined as above. Let $F$ be an arbitrary $f$-optimal subgraph of $G$. Then
(i) for every component $D_{i}$ of $G[D]$, if $\operatorname{def}\left(D_{i}\right)=0$, then $F$ either contains an edge of $E\left(D_{i}, A\right)$ or misses an edge of $E\left(D_{i}, B\right)$; if $\operatorname{def}\left(D_{i}\right)=1$, then $E\left(D_{i}, B\right) \subseteq F$ and $E\left(D_{i}, A\right) \cap F=\emptyset$;
(ii) if $d_{F}(v) \leq f(v)$ for all $v \in V(G)$, then for any $v \in D$ there are both an even $F$-alternating trail and an odd $F$-alternating trail from the vertices of $B_{0}$ to $v$.

Anstee [5] obtained a formula for the fractional $f$-factor number.

Theorem 1.3 (Anstee [5]). Let $G$ be a graph and $f: V(G) \rightarrow Z^{+}$be an integer-valued function on $V(G)$. Then

$$
\operatorname{def}_{f}(G)=\max \left\{f(T)-f(S)-\sum_{v \in T} d_{G-S}(v) \mid S, T \subseteq V(G), S \cap T=\emptyset\right\}
$$

Lemma 1.4. Let $H$ be a graph and $g: V(H) \rightarrow Z^{+}$an integer-valued function. If $H$ is a $g$-critical graph with at least three vertices, then $H$ has a $g$-fractional factor.

Proof. Let $F$ be a $g$-optimal graph of $H$ such that $d_{F}(v) \leq g(v)$ for all $v \in V(G)$. Since $H$ is $g$-critical, then $D=V(H)$ and $\operatorname{def}(H)=1$. Let $v \in V(H)$ such that $d_{F}(v)=g(v)-1$. By Theorem 1.2(ii), there exists an odd $F$-alternating trail, say $P$, from $v$ to $v$. Next we construct an indicator function $h$ as follows:

$$
h(e)= \begin{cases}1 / 2 & e \in E(P) \\ 1 & e \in E(F)-E(P) \\ 0 & \text { otherwise }\end{cases}
$$

It is easy to check that $h$ is a fractional $f$-indicator function of $G$.
Now we present our main theorem of this work.
Theorem 1.5. For any graph $G$, we have

$$
\operatorname{def}(G)=\max _{S \subseteq V(G)}\left\{f(T)-f(S)-\sum_{v \in T} d_{G-S}(v)\right\}+n c(G),
$$

where $T=\left\{v \in V(G-S) \mid d_{G-S}(v) \leq f(v)\right\}$.
Proof. Let $F$ be an $f$-optimal subgraph such that $n c(F)=n c(G)=n c$ and $d_{F}(v) \leq f(v)$ for all $v \in A$. Moreover, we may assume that $d_{F}(v) \leq f(v)$ for all $v \in V(G)$, since if $v \in D_{i}$ and $d_{F}(v)=f(v)+1$, then we can choose $e \in E\left(D_{i}\right) \cap E(F)$ incident with $v$ such that $d_{F-e}(v) \leq f(v)$ and $n c(F-e)=n c(F)$. Let $D_{1}, \ldots, D_{n c}$ be the $F$-near full components of $G[D]$. By Theorem 1.2(i), $E\left(D_{i}, B\right) \subseteq E(F)$ and $E\left(D_{i}, A\right) \cap E(F)=\emptyset$ for $i=1, \ldots, n c$. Moreover, $D_{i}$ has at least three vertices $(i=1, \ldots, n c)$ and $n c \leq \operatorname{def}(G)$.

Claim 1. $\max \left\{f(T)-f(S)-\sum_{v \in T} d_{G-S}(v)\right\} \leq \operatorname{def}(G)-n c$.
By Theorem 1.1, $D_{i}$ is $f_{B}^{D_{i}}$-critical $(i=1, \ldots, n c)$. By Lemma 1.4, $D_{i}$ has a fractional $f_{B}^{D_{i}}$-factor with indicator function $h_{B}^{D_{i}}$ ( $i=1, \ldots, n c$ ). Now we construct a function $h$ on $E(G)$ as follows:

$$
h(e)= \begin{cases}h_{B}^{D_{i}}(e) & e \in F_{1} \cup \cdots \cup F_{n c} \\ 1 & e \in E(F) \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\sum_{e \in E(G)} h(e)=\frac{1}{2}\left(\sum_{v \in V(G)} f(v)-(\operatorname{def}(G)-n c)\right)
$$

By Theorem 1.3,

$$
\begin{aligned}
\mu_{f}(G) & =\frac{1}{2}\left(\sum_{v \in V(G)} f(v)-\operatorname{def}_{f}(G)\right) \\
& =\frac{1}{2}\left(\sum_{v \in V(G)} f(v)-\left(\max \left\{f(T)-f(S)-\sum_{v \in T} d_{G-S}(v)\right\}\right)\right) \\
& \geq \sum_{e \in E(G)} h(e)=\frac{1}{2}\left(\sum_{v \in V(G)} f(v)-(\operatorname{def}(G)-n c)\right)
\end{aligned}
$$

Hence

$$
\max \left\{f(T)-f(S)-\sum_{v \in T} d_{G-S}(v)\right\} \leq \operatorname{def}(G)-n c
$$

## ARTCLE IN PR=SS

By Claim 1, it suffices to find a pair of disjoint subsets $S, T \subseteq V(G)$ such that $f(T)-f(S)-\sum_{v \in T} d_{G-S}(v)=\operatorname{def}(G)-n c$. Let

$$
B_{1}=\left\{v \in B \mid d_{F}(v)<f(v)\right\} .
$$

By Theorem 1.2, $E(B, B) \subseteq F$ and so $E\left(B_{1}, B_{1}\right) \subseteq F$. Moreover, $E\left(B_{1}, D\right) \subseteq F$. Otherwise, suppose $e \in E\left(B_{1}, D\right)-E(F)$; then $n c(F \cup e)>n c(F)$, a contradiction.

Let
$B_{2}=\left\{v \in V(G) \mid \exists\right.$ an even $F$-alternating trail from a vertex of $B_{1}$ to $\left.v\right\}$,
$A_{1}=\left\{v \in V(G) \mid \exists\right.$ an odd $F$-alternating trail from a vertex of $B_{1}$ to $\left.v\right\}$.
Since the path of length zero can be seen as an even $F$-alternating one, we have $B_{1} \subseteq B_{2}$.
Claim 2. $B_{2} \cap D=\emptyset$.
Otherwise, suppose $v \in B_{2} \cap D$ and there exists an even $F$-alternating trail, say $P$, from $u \in B_{1}$ to $v$. Then the component of $G[D]$ containing $v$ is an $F$-full component. Otherwise, $F \Delta P$ is an optimal graph with $\operatorname{def}_{F}\left(D_{i}\right)=2$, a contradiction to Theorem 1.2. But then $n c(F \Delta P)>n c(F)$, a contradiction again. So Claim 2 is proved.

Claim 3. $A_{1} \cap D=\emptyset$.
Otherwise, suppose $v \in A_{1} \cap D$ and there exists an odd $F$-alternating trail, say $P$, from $u \in B_{1}$ to $v$. Similarly, the component of $G[D]$ containing $v$ is an $F$-full component. By Theorem 1.1, $(F \Delta P)\left[V\left(D_{i}\right)\right]$ is an $f_{B}^{D_{i}}$-optimal graph and $d_{(F \Delta P)\left[V\left(D_{i j}\right)\right]}(v)>f_{B}^{D_{i}}(v)>0$. So there exists an edge $e \in(F \Delta P)\left[V\left(D_{i}\right)\right]$ incident with $v$. Then $n \hat{c}((F \Delta P)-e)>n c(F)$, a contradiction.

By Claims 2 and 3, we see that $B_{2} \subseteq B, A_{1} \subseteq A$ and $E\left(B_{2},\left(A-A_{1}\right) \cup B \cup D\right) \subseteq F$. Moreover, $E\left(\left(B_{2},\left(A-A_{1}\right) \cup B_{2} \cup D \cup C\right) \subseteq F\right)$.
Claim 4. Every edge of $F$ with one end in $A_{1}$ has the other end in $B_{2}$.
Otherwise, let $e=u v \in F$, where $u \in A_{1}$ and $v \in(D \cup B)-B_{2}$. Since $u \in A_{1}$, there exists an odd $F$-alternating trail, say $P$, joining $u$ to some vertex in $B_{1}$. If $e \notin E(P)$, then $P \cup e$ is an even $F$-alternating trail from a vertex of $B_{1}$ to $v$, a contradiction to $v \notin B_{2}$. So we consider $e \in P$. But then we have $v \in V(P)$ and $v \in B_{2}$, a contradiction again.

By Claims 2-4, we have $f\left(B_{2}\right)-f\left(A_{1}\right)-\sum_{v \in B_{2}} d_{G-A_{1}}(v)+n c=\operatorname{def}(G)$. We complete the proof.
From the proof of the above theorem, we can construct a function $h$ with $h(e) \in\left\{0, \frac{1}{2}, 1\right\}$ only and thus obtain the following interesting consequence.

Corollary 1.6 ([6]). For any graph $G$, let $f: V(G) \rightarrow Z^{+}$be an integer-valued function. Then there exists a fractional indicator function h such that

$$
\sum_{e \in E(G)} h(e)=\mu_{f}(G)
$$

where $h(e) \in\left\{0, \frac{1}{2}, 1\right\}$ for each edge $e \in E(G)$.
With Theorem 1.5 , we are able to give an explicit formula for $f$-fractional numbers.
Corollary 1.7. For any graph $G, \mu_{f}(G)=\frac{1}{2}(f(V(G))-(\operatorname{def}(G)-n c))$. In particular, $\mu_{f}(G)=\mu(G)+\frac{n c}{2}$.
From the definitions, clearly $\mu_{f}(G) \geq \mu(G)$. But when does the equality hold? The next result gives a characterization for the family of graphs with $\mu_{f}(G)=\mu(G)$. Using $F$-alternating trails, the set $D(G)$ can be determined in polynomial time. Therefore, the graphs with the property $\mu_{f}(G)=\mu(G)$ can be identified efficiently.

Corollary 1.8. $\mu_{f}(G)=\mu(G)$ if and only if $D(G)=\emptyset$.
Proof. If $D(G)=\emptyset$, then $n c=0$. By Corollary 1.7, the result follows. Conversely, let $\mu_{f}(G)=\mu(G)$; then $n c=0$. Every component of $G[D]$ is $F$-full. Suppose $D \neq \emptyset$, and let $v \in D$. Note that there exists an alternating trail joining $v$ to some vertex in $B_{1}$, a contradiction to the choice of $F$.

Corollary 1.9. If $G$ is a bipartite graph, then $\mu_{f}(G)=\mu(G)$.
Note that Corollaries 1.7-1.9 generalize the corresponding results given in [3] for fractional matchings.

## Acknowledgements

The first author is supported by the Fundamental Research Funds for the Central Universities.
$\wedge$ The second author is supported by the Natural Sciences and Engineering Research Council of Canada and Shandong University Visiting Scholar Fund.

## References

[1] L. Lovász, M.D. Plummer, Matching Theory, North Holland, Amsterdam, 1986.
[2] L. Lovász, Subgraphs with prescribed valencies, J. Combin. Theory 8 (1970) 391-416.
[3] Y. Liu, G.Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228-231
[4] H.L. Lu, Q.L. Yu, Constructive proof of deficiency theorem of ( $g$, $f$ )-factors, Science China Mathematics 53 (2010) 1657-1662.
[5] R.P. Anstee, Simplified existence theorems for ( $g, f$ )-factors, Discrete Appl. Math. 27 (1990) 29-38.
[6] L. Zhang, Factors and Fractional Factors of Graphs and Tree Graphs, Ph.D. Thesis, Shandong University, 2001 (in Chinese).


[^0]:    * Corresponding author.

    E-mail address: luhongliang215@sina.com (H. Lu).
    0893-9659/\$ - see front matter © 2010 Published by Elsevier Ltd doi:10.1016/j.aml.2010.11.005

