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a b s t r a c t

Let G be a graph and f an integer-valued function on V (G). Let h be a function that assigns
each edge to a number in [0, 1],

∧
such that the f -fractional number of G is the supremum of∑

e∈E(G) h(e) over all fractional functions h satisfying
∑

e∼v h(e) ≤ f (v) for every vertex v ∈

V (G). An f -fractional factor is a spanning subgraph such that
∑

v∼e h(e) = f (v) for every
vertex v. In this

∧
work, we provide a new formula for computing the fractional numbers by

using Lovász’s Structure Theorem. This formula generalizes the formula given in [Y. Liu, G.
Z. Liu, The fractional matching numbers of graphs, Networks 40 (2002) 228–231] for the
fractional matching numbers.

© 2010 Published by Elsevier Ltd

1. Introduction1

All graphs considered in this
∧
work will be simple finite undirected graphs. Let G = (V (G), E(G)) be a graph, where V (G)2

and E(G) denote the vertex set and edge set ofG, respectively.Weuse dG(x) for the degree of a vertex x inG. For any S ⊆ V (G),3

the subgraph of G induced by S is denoted by G[S]. We write G − S for G[V (G) − S]. We refer the reader to [1] for standard4

graph theoretic terms not defined here.5

Let f and g be two nonnegative integer-valued functions on V (G) such that g(x) ≤ f (x) for every vertex x ∈ V (G). A6

spanning subgraph F of G is a (g, f )-factor if g(v) ≤ dF (v) ≤ f (v) for all v ∈ V (G). If f ≡ g , then a (g, f )-factor is also called7

as an f -factor. In 1970, Lovász [2] gave a canonical decomposition of V (G) according to its (g, f )-optimal subgraphs. In this8

∧
work, we only consider g ≡ f .9

∧
Define f (S) =

∑
x∈S f (x). Let def (G) be the deficiency of Gwith respect to an integer-valued function f and be defined as10

def (G) = min
H⊆G

 −
x∈V (H)

|f (x) − dH(x)|


,11

where H is a spanning subgraph of G. A subgraph H of G is called f -optimal if def (G) = def (H). Let M be an f -optimal12

subgraph
∧
; we call |E(M)| the f -factor number and

∧
denote it by µ(G). In particular, if f ≡ 1, it is usually referred

∧
to as the13

matching number. Let A(G), B(G), C(G),D(G) be defined as in Lovász’s Structure Theorem (refer to [1]) and for simplicity,14

∧
denote them by A, B, C,D, respectively. Then15

C(G) = {v ∈ V (G) | dH(v) = f (v) for every f -optimal subgraph H},16

A(G) = {v ∈ V (G) − C(G) | dH(v) ≥ f (v) for every f -optimal subgraph H},17
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B(G) = {v ∈ V (G) − C(G) | dH(v) ≤ f (v) for every f -optimal subgraph H}, 1

D(G) = V (G) − A(G) − B(G) − C(G). 2

Let G[D] = D1 ∪ · · · ∪ Dτ . Let M be a subgraph such that dM(v) ≤ f (v) for all v ∈ A(G). For a component Di of G[D], we 3

∧
refer to Di as M-full if either M contains an edge of E(Di, A(G)) or M misses an edge of E(V (Di), B); otherwise, Di is M-near 4

full. For any f -optimal subgraphM of G, where dM(v) ≤ f (v) for all v ∈ A(G), the number of nontrivial components of G[D] 5

which areM-near full is denoted by nc(M). Let nc(G) = max{nc(M)}, where themaximum is taken over all f -optimal graph 6

M of G with dM(v) ≤ f (v) for all v ∈ A(G). We
∧
describe a graph H as f -critical

∧
if H contains no f -factors, but for any fixed 7

vertex x of V (H), there exists a subgraph K of H such that dK (x) = f (x) ± 1 and dK (y) = f (y) for any vertex y (y ≠ x). 8

Let h be a function defined on E(G) such that h(e) ∈ [0, 1] for every e ∈ E(G)
∧
and the f -fractional

∧
number of G is the 9

supremum of
∑

e∈E(G) h(e) over all fractional functions h satisfying
∑

e∼v h(e) ≤ f (v) for each v. We denote the f -fractional 10

number by µf (G). Let Ev = {e | e ∼ v} and Eh
= {e | e ∈ E(G) and h(e) ≠ 0}. We call h a fractional f -indicator function of G 11

if h(Ev) = f (v) for each v ∈ V (G). If H is a spanning subgraph of G such that E(H) = Eh, then H is called a fractional f -factor 12

of Gwith indicator function h, or simply a fractional f -factor. Let deff (G) be the deficiency of the fractional f -factor of G, and 13

be defined as 14

deff (G) = min

 −
v∈V (G)

−
e∈Ev

h(e) − f (v)




| h is a function defined on E(G) such that 15

h(e) ∈ [0, 1] for every e ∈ E(G)


. 16

In this
∧
work, we investigate the relationship between the f -factor number and the fractional f -factor number, provide a 17

new formula for computing the fractional numbers by using Lovász’s Structure Theorem, and generalize the formula for the 18

fractional matching number given in [3]. By the definition, clearly 19

µf (G) =
1
2
(f (V (G)) − deff (G)). 20

Let fS be a function on V (G−S) such that fS(v) = f (v)−|E(v, S)| and f TS is the restriction of fS on the subgraph T of G−S. 21

Given an arbitrary f -optimal subgraph F , let defF (T ) denote the deficiency of subset V (T ) with respect to the f -factors. 22

Theorem 1.1 (Lovász’s Structure Theorem). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an f -optimal subgraph. 23

Then 24

(i) every component Di of G[D] is f Di
B -critical; 25

(ii) for every component Di of G[D], defF (Di) ≤ 1; 26

(iii) dF (v) ∈ {f (v), f (v) − 1, f (v) + 1} if v ∈ D; dF (v) ≤ f (v) if v ∈ B; dF (v) ≥ f (v) if v ∈ A; 27

(iv) def (G) = def (F) = f (B) + τ − f (A) −
∑

v∈B dG−A(v), where τ denotes the number of components of G[D]. 28

Lu and Yu [4] gave a different interpretation of A(G), B(G), C(G),D(G) by using alternating trails and thus obtained a 29

shorter proof of Lovász’s Structure Theorem. Suppose that F is an f -optimal subgraph, where dF (v) ≤ f (v) for all v ∈ A(G), 30

and let B0 = {v | dF (v) < f (v)}. An M-alternating trail is a trail P = v0v1 . . . vk with vivi+1 ∉ F for i even and vivi+1 ∈ F for 31

i odd. Then we can define A, B, C,D alternatively as follows: 32

D = {v | ∃ both an even and an odd F-alternating trail from vertices of B0 to v}, 33

B = {v | ∃ an even F-alternating trail from a vertex of B0 to v} − D, 34

A = {v | ∃ an odd F-alternating trail from a vertex of B0 to v} − D, 35

C = V (G) − A − B − D. 36

With these new notions,
∧
more structural properties of f -optimal subgraphs can be obtained. 37

Theorem 1.2 (Lu and Yu
∧
[4]). Let D(G), A(G), B(G) and C(G) be defined as above. Let F be an arbitrary f -optimal subgraph of G. 38

Then 39

(i) for every component Di of G[D], if def (Di) = 0, then F either contains an edge of E(Di, A) or misses an edge of E(Di, B); if 40

def (Di) = 1, then E(Di, B) ⊆ F and E(Di, A) ∩ F = ∅
∧
; 41

(ii) if dF (v) ≤ f (v) for all v ∈ V (G), then for any v ∈ D there are both an even F-alternating trail and an odd F-alternating trail 42

from the vertices of B0 to v. 43

Anstee [5] obtained a formula for the fractional f -factor number. 44



H. Lu, Q. Yu / Applied Mathematics Letters xx (xxxx) xxx–xxx 3

Theorem 1.3 (Anstee
∧
[5]). Let G be a graph and f : V (G) → Z+ be an integer-valued function on V (G). Then1

deff (G) = max


f (T ) − f (S) −

−
v∈T

dG−S(v) | S, T ⊆ V (G), S ∩ T = ∅


.2

Lemma 1.4. Let H be a graph and g : V (H) → Z+ an integer-valued function. If H is a g-critical graph with at least three3

vertices, then H has a g-fractional factor.4

Proof. Let F be a g-optimal graph of H such that dF (v) ≤ g(v) for all v ∈ V (G). Since H is g-critical, then D = V (H) and5

def (H) = 1. Let v ∈ V (H) such that dF (v) = g(v)−1. By Theorem 1.2(ii), there exists an odd F-alternating trail, say P , from6

v to v. Next we construct an indicator function h as follows:7

h(e) =

1/2 e ∈ E(P),
1 e ∈ E(F) − E(P),
0 otherwise.

8

It is easy to check that h is a fractional f -indicator function of G. �9

Now we present our main theorem of
∧
this work.10

Theorem 1.5. For any graph G, we have11

def (G) = max
S⊆V (G)


f (T ) − f (S) −

−
v∈T

dG−S(v)


+ nc(G),12

where T = {v ∈ V (G − S) | dG−S(v) ≤ f (v)}.13

Proof. Let F be an f -optimal subgraph such that nc(F) = nc(G) = nc and dF (v) ≤ f (v) for all v ∈ A. Moreover, we may14

assume that dF (v) ≤ f (v) for all v ∈ V (G), since if v ∈ Di and dF (v) = f (v) + 1, then we can choose e ∈ E(Di) ∩ E(F)15

incident with v such that dF−e(v) ≤ f (v) and nc(F − e) = nc(F). Let D1, . . . ,Dnc be the F-near full components of G[D].16

By Theorem 1.2(i), E(Di, B) ⊆ E(F) and E(Di, A) ∩ E(F) = ∅ for i = 1, . . . , nc. Moreover, Di has at least three vertices17

(i = 1, . . . , nc) and nc ≤ def (G).18

Claim 1. max{f (T ) − f (S) −
∑

v∈T dG−S(v)} ≤ def (G) − nc.19

By Theorem 1.1, Di is f
Di
B -critical (i = 1, . . . , nc). By Lemma 1.4, Di has a fractional f Di

B -factor with indicator function hDi
B20

(i = 1, . . . , nc). Now we construct a function h on E(G) as follows:21

h(e) =

hDi
B (e) e ∈ F1 ∪ · · · ∪ Fnc,

1 e ∈ E(F),
0 otherwise.

22

Then23 −
e∈E(G)

h(e) =
1
2

 −
v∈V (G)

f (v) − (def (G) − nc)


.24

By Theorem 1.3,25

µf (G) =
1
2

 −
v∈V (G)

f (v) − deff (G)


26

=
1
2

 −
v∈V (G)

f (v) −


max


f (T ) − f (S) −

−
v∈T

dG−S(v)


27

≥

−
e∈E(G)

h(e) =
1
2

 −
v∈V (G)

f (v) − (def (G) − nc)


.28

Hence29

max


f (T ) − f (S) −

−
v∈T

dG−S(v)


≤ def (G) − nc.30
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By Claim 1, it suffices to find a pair of disjoint subsets S, T ⊆ V (G) such that f (T )− f (S)−
∑

v∈T dG−S(v) = def (G)− nc. 1

Let 2

B1 = {v ∈ B | dF (v) < f (v)}. 3

By Theorem 1.2, E(B, B) ⊆ F and so E(B1, B1) ⊆ F . Moreover, E(B1,D) ⊆ F
∧
. Otherwise, suppose e ∈ E(B1,D) − E(F)

∧
; then 4

nc(F ∪ e) > nc(F), a contradiction. 5

Let 6

B2 = {v ∈ V (G) | ∃ an even F-alternating trail from a vertex of B1 to v}, 7

A1 = {v ∈ V (G) | ∃ an odd F-alternating trail from a vertex of B1 to v }. 8

Since the path of length zero can be seen as an even F-alternating
∧
one, we have B1 ⊆ B2. 9

Claim 2. B2 ∩ D = ∅. 10

Otherwise, suppose v ∈ B2 ∩ D and there exists an even F-alternating trail, say P , from u ∈ B1 to v. Then the component 11

of G[D] containing v is an F-full component
∧
. Otherwise, F △ P is an optimal graph with defF (Di) = 2, a contradiction to 12

Theorem 1.2. But then nc(F △ P) > nc(F), a contradiction again. So Claim 2 is proved. 13

Claim 3. A1 ∩ D = ∅. 14

Otherwise, suppose v ∈ A1 ∩ D and there exists an odd F-alternating trail, say P , from u ∈ B1 to v. Similarly, 15

the component of G[D] containing v is an F-full component. By Theorem 1.1, (F△P)[V (Di)] is
∧
an f Di

B -optimal graph and 16

d(F△P)[V (Di)](v) > f Di
B (v) > 0. So there exists an edge e ∈ (F△P)[V (Di)] incident with v. Then nc((F△P) − e) > nc(F), a 17

contradiction. 18

By Claims 2 and 3,we see that B2 ⊆ B, A1 ⊆ A and E(B2, (A−A1)∪B∪D) ⊆ F . Moreover, E((B2, (A−A1)∪B2∪D∪C) ⊆ F). 19

Claim 4. Every edge of F with one end in A1 has the other end in B2. 20

Otherwise, let e = uv ∈ F , where u ∈ A1 and v ∈ (D ∪ B) − B2. Since u ∈ A1, there exists an odd F-alternating trail, say 21

P , joining u to some vertex in B1. If e ∉ E(P), then P ∪ e is an even F-alternating trail from a vertex of B1 to v, a contradiction 22

to v ∉ B2. So we consider e ∈ P . But then we have v ∈ V (P) and v ∈ B2, a contradiction again. 23

By Claims 2–4, we have f (B2) − f (A1) −
∑

v∈B2
dG−A1(v) + nc = def (G). We complete the proof. � 24

From the proof of the above theorem, we can construct a function h with h(e) ∈ {0, 1
2 , 1} only and thus obtain the 25

following interesting consequence. 26

Corollary 1.6 ([6]). For any graph G, let f : V (G) → Z+ be an integer-valued function. Then there exists a fractional indicator 27

function h such that 28−
e∈E(G)

h(e) = µf (G), 29

where h(e) ∈ {0, 1
2 , 1} for each edge e ∈ E(G). 30

With Theorem 1.5, we are able to give an explicit formula for f -fractional numbers. 31

Corollary 1.7. For any graph G, µf (G) =
1
2 (f (V (G)) − (def (G) − nc)). In particular, µf (G) = µ(G) +

nc
2 . 32

From the definitions, clearly µf (G) ≥ µ(G). But when
∧
does the equality hold? The next result gives a characterization 33

for the family of graphs with µf (G) = µ(G). Using F-alternating trails, the set D(G) can be determined in polynomial time. 34

Therefore, the graphs with the property µf (G) = µ(G) can be identified efficiently. 35

Corollary 1.8. µf (G) = µ(G) if and only if D(G) = ∅. 36

Proof. If D(G) = ∅, then nc = 0. By Corollary 1.7, the result
∧
follows. Conversely, let µf (G) = µ(G)

∧
; then nc = 0. Every 37

component of G[D] is F-full. Suppose D ≠ ∅, and let v ∈ D
∧
. Note that there exists an alternating trail joining v to some 38

vertex in B1, a contradiction to the choice of F . � 39

Corollary 1.9. If G is a bipartite graph, then µf (G) = µ(G). 40

Note that Corollaries 1.7–1.9 generalize the corresponding results given in [3] for fractional matchings. 41
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