Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

A note on graph minors and strong products ${ }^{\text {x }}$

Zefang $W u^{\text {a }}$, Xu Yang ${ }^{\text {a,* }}$, Qinglin $Y u^{\text {b }}$
${ }^{\text {a }}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

ARTICLE INFO

Article history:

Received 18 May 2009
Received in revised form 8 May 2010
Accepted 12 May 2010

Keywords:

Strong product
Cartesian product
Graph minor
Partition

Abstract

Let $G \boxtimes H$ and $G \square H$ denote the strong and Cartesian products of graphs G and H, respectively. In this note, we investigate the graph minor in products of graphs. In particular, we show that, for any simple connected graph G, the graph $G \boxtimes K_{2}$ is a minor of the graph $G \square Q_{r}$ by a construction method, where Q_{r} is an r-cube and $r=\chi(G)$. This generalizes an earlier result of Kotlov [2].

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs considered in this note are finite, undirected, simple and connected. We use [1] for terminology and notation not defined here. The strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent if and only if (1) u_{1} is adjacent to u_{2} and $v_{1}=v_{2}$ (we call it a horizontal edge); or (2) $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} (we call it a vertical edge); or (3) u_{1} is adjacent to u_{2} and v_{1} is adjacent to v_{2} (referred to as a type (3) edge). For example, $K_{2} \boxtimes K_{2}=K_{4}$. The Cartesian product $G_{1} \square G_{2}$ of two graphs G_{1} and G_{2} is obtained from $G_{1} \boxtimes G_{2}$ by deleting the 'type (3)' edges. For example, $K_{2} \square K_{2}=C_{4}$. The well-known n-dimensional cube or n-cube Q_{n} can be viewed as the Cartesian product of n copies of $Q_{1}=K_{2}$.

A graph H on vertex set $\{1, \ldots, n\}$ is a minor of a graph G, denoted by $H \preceq G$, if there are disjoint subsets V_{1}, \ldots, V_{n} of $V(G)$ such that: (1) every V_{i} induces a connected subgraph of G; and (2) whenever $i j$ is an edge in H, there is an edge between V_{i} and V_{j} in G.

Kotlov [2] initiated the study of the minor in products of graphs and proved the following result.

Theorem 1.1 (Kotlov [2]). For every bipartite graph G, the strong product $G \boxtimes K_{2}$ is a minor of $G \square C_{4}$.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of graphs. Later, Wood [4] and Chandran, Kostochka and Raju [5] continued the study of clique minors in a Cartesian product of graphs. In particular, Wood [4] showed that the lexicographic product $G \circ H$ is a minor of $G \square H \square H$ for every bipartite graph G and every connected graph H. In this note, we continue the study of the strong product minor in a Cartesian product started by Kotlov [2] and obtain several results in this direction.

[^0]
2. Main results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The proof techniques are mainly constructive. As usual, χ denotes the chromatic number of G.

Theorem 2.1. Let G be a connected graph with chromatic number χ. Then $G \boxtimes K_{2} \preceq G \square Q_{\chi}$.
Denote the Hamming graph $K_{k_{1}} \square K_{k_{2}} \square \cdots \square K_{k_{d}}$ with $k_{1}=k_{2}=\cdots=k_{d}=n$ by K_{n}^{d}. With a similar construction, we can obtain the following theorem.

Theorem 2.2. Let G be a connected graph with chromatic number χ. Then $G \boxtimes K_{n} \preceq G \square K_{n}^{\chi}$.
Theorem 2.3. Let G be a connected graph. Then $G \boxtimes K_{2} \preceq G \square K_{a}$, where a is an integer satisfying $\binom{a-1}{\left.\Gamma \frac{a}{2}\right\rceil} \geqslant \chi(G)$.
Remark 1. If we choose a as small as possible (i.e., $a=\min \left\{m:\binom{m-1}{\left\lceil\frac{m}{2}\right\rceil} \geqslant \chi(G)\right\}$), the result is sharp when χ is small and G is sufficiently dense. For example, for any bipartite graph G which is sufficiently dense, $G \boxtimes K_{2} \npreceq G \square K_{3}$ (see [2]). If $G=K_{3}$, then we have $K_{3} \boxtimes K_{2} \npreceq K_{3} \square K_{3},{ }^{1}$ but $K_{3} \boxtimes K_{2} \preceq K_{3} \square K_{4}$.

What follows is an immediate corollary of the above.
Corollary 2.4. For every 3-colorable graph G, the graph $G \boxtimes K_{2}$ is a minor of $G \square K_{4}$.
Hadwiger [6] linked the chromatic number of a graph G to the maximum size of its clique minor. He conjectured that every k-chromatic graph has a K_{k}-minor. This is one of the most intriguing conjectures in today's graph theory. The Hadwiger number $\eta(G)$ of a graph G is the maximum n such that K_{n} is a minor of G. A lot of research has been done on determining the Hadwiger number in special classes of graphs (see [3-5]).

Setting $G=K_{\chi}$ in Theorem 2.3, we readily obtain the following result on the Hadwiger number of a Hamming graph.
Corollary 2.5. $\eta\left(K_{\chi} \square K_{a}\right) \geqslant 2 \chi$, if $\binom{a-1}{\left\lceil\frac{a}{2}\right\rceil} \geqslant \chi$.
Remark 2. In [4], Wood proved that $\eta\left(K_{n} \square K_{m}\right) \geqslant n \sqrt{\frac{m}{2}}-\mathcal{O}(n+\sqrt{m})$. It is not hard to verify that when $\chi \leqslant 35$, ${ }^{2}$ Corollary 2.5 is an improvement of Wood's result.

3. Proofs of the main results

Before giving the proofs of main results, a few definitions and a lemma are required. They play important roles in the proofs of theorems. Let us call two partitions P, P^{\prime} of the same set A crossing if every block of P intersects every block of P^{\prime}. A partition containing k blocks is called a k-partition.

Lemma 3.1. Let G, H be two graphs and $\chi=\chi(G)$. If there exist χ pairwise crossing n-partitions of $V(H)$ such that
(P1) every block of each partition induces a connected subgraph of $V(H)$,
(P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices in both blocks),
then $G \boxtimes K_{n}$ is a minor of $G \square H$.
Proof. Since G is χ-chromatic, there exists a χ-coloring c of $V(G)$ such that $c(v)=i$ when $v \in V(G)$ is colored i for all $1 \leqslant i \leqslant \chi$. Clearly, $\{v \in V(G): c(v)=i\}$ induces an independent set in G for all $1 \leqslant i \leqslant \chi$. Suppose that $\left\{A_{i, 1}, A_{i, 2}, \ldots, A_{i, n}\right\}$, $1 \leqslant i \leqslant \chi$ are χ pairwise crossing n-partitions of $V(H)$ satisfying properties (P1) and (P2).

For each vertex $v \in V(G)$ and each $1 \leqslant j \leqslant n$, let

$$
V_{j}(v)=\left\{(v, u): u \in A_{c(v), j}\right\}
$$

Since for each $i, \bigcup_{j=1}^{n} A_{i, j}=V(H)$, then $\bigcup_{j=1}^{n} V_{j}(v)$ is an H-layer of $G \square H$. And it is not difficult to show that the collection of sets $\left\{V_{j}(v): 1 \leqslant j \leqslant n, v \in V(G)\right\}$ is a partition of $V(G \square H)$. Now, we check that $G \boxtimes K_{n} \preceq G \square H$ by definition.

For each $v \in V(G)$ and each $1 \leqslant j \leqslant n$, it follows from (P1) that $\left\{u: u \in A_{c(v), j}\right\}$ induces a connected subgraph in H, and hence $V_{j}(v)$ induces a connected subgraph in $G \square H$ by the definition of the Cartesian product.

[^1]Consider an edge $e=\left(v_{1}, k\right)\left(v_{2}, l\right) \in E\left(G \boxtimes K_{n}\right)$. If e is of type (1) (a horizontal edge) or of type (3), then $v_{1} v_{2} \in E(G)$. Clearly, $c\left(v_{1}\right) \neq c\left(v_{2}\right)$. Thus, $A_{c\left(v_{1}\right), k} \cap A_{c\left(v_{2}\right), l} \neq \emptyset$ by the assumption that these χn-partitions are pairwise crossing. Assume $u_{0} \in A_{c\left(v_{1}\right), k} \cap A_{c\left(v_{2}\right), l}$. Then $\left(v_{1}, u_{0}\right) \in V_{k}\left(v_{1}\right)$ is adjacent to ($\left.v_{2}, u_{0}\right) \in V_{l}\left(v_{2}\right)$ in $G \square H$. If e is of type (2) (a vertical edge), $v_{1}=v_{2}, k \neq l$, it follows from (P2) that there is an edge $u_{1} u_{2} \in V(H)$ where $u_{1} \in A_{c\left(v_{1}\right), k}$ and $u_{2} \in A_{c\left(v_{2}\right), l}$. So, $\left(v_{1}, u_{1}\right) \in V_{k}\left(v_{1}\right)$ is adjacent to $\left(v_{2}, u_{2}\right) \in V_{l}\left(v_{2}\right)$ in $G \square H$. Hence, there is an edge connecting $V_{k}\left(v_{1}\right)$ and $V_{l}\left(v_{2}\right)$.

Therefore, there is a correspondence $G \boxtimes K_{n} \ni(v, j) \leftrightarrow V_{j}(v) \subseteq V(G \square H)$. So, $G \boxtimes K_{n}$ is a minor of $G \square H$.
Now we are ready to prove the main theorems.
Proof of Theorem 2.1. By Lemma 3.1, we only need to find χ pairwise crossing bi-partitions of $V\left(Q_{\chi}\right)$ satisfying properties (P1) and (P2).

For $1 \leqslant i \leqslant \chi$, define

$$
A_{i, 0}=\left\{\left(j_{1}, j_{2}, \ldots, j_{\chi}\right): j_{i}=0 \text { and } j_{i^{\prime}}=0 \text { or } 1, i^{\prime} \neq i\right\}
$$

and

$$
A_{i, 1}=\left\{\left(j_{1}, j_{2}, \ldots, j_{\chi}\right): j_{i}=1 \text { and } j_{i^{\prime}}=0 \text { or } 1, i^{\prime} \neq i\right\}
$$

Clearly, $\left\{A_{i, 0}, A_{i, 1}\right\}, 1 \leqslant i \leqslant \chi$, are χ bi-partitions of $V\left(Q_{\chi}\right)$. Both $A_{i, 0}$ and $A_{i, 1}$ induce a graph isomorphic to $Q_{\chi-1}$. So, (P1) is true. Moreover, (P2) is obvious. Arbitrarily choose these two blocks from two different bi-partitions, say $A_{i_{1}, k}$ and $A_{i_{2}, l}$, where k, l are 0 or 1 . Then

$$
\left(0, \ldots, 0, i_{1}=k, 0, \ldots, i_{2}=l, 0, \ldots, 0\right) \in A_{i_{1}, k} \cap A_{i_{2}, l} .
$$

Hence these χ partitions are pairwise crossing. This completes the proof.
Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find χ pairwise n-partitions of $V\left(K_{n}^{\chi}\right)$. Suppose $V\left(K_{n}\right)=$ $\{1,2, \ldots, n\}$. For every $1 \leqslant i \leqslant \chi$ and every $1 \leqslant j \leqslant n$, define

$$
A_{i, j}=\left\{\left(l_{1}, \ldots, l_{i-1}, j, l_{i+1}, \ldots, l_{n}\right): 1 \leqslant l_{i^{\prime}} \leqslant n, i^{\prime} \neq i\right\} .
$$

It is easy to show that $\left\{A_{i, 1}, A_{i, 2}, \ldots, A_{i, n}\right\}, 1 \leqslant i \leqslant \chi$, are χ pairwise crossing n-partitions of $V\left(K_{n}^{\chi}\right)$ satisfying properties (P1) and (P2).

We proceed to the proof of Theorem 2.3.
Proof of Theorem 2.3. Without loss of generality, let $\{1, \ldots, a\}$ be the vertex set of K_{a}, where a is defined as in the assertion. Since $\binom{a-1}{\left[\frac{a}{2}\right\rceil} \geqslant \chi$, we have at least $\chi=\chi(G)$ different bi-partitions $\left\{A_{1,1}, A_{1,2}\right\}, \ldots,\left\{A_{\chi, 1}, A_{\chi, 2}\right\}$ such that $1 \in A_{i, 1}$ and $\left|A_{i, 1}\right|=\left\lfloor\frac{a}{2}\right\rfloor$ for all $i, 1 \leqslant i \leqslant a$.

Next, we prove that these χ bi-partitions are pairwise crossing and satisfy (P 1) and (P2). Since K_{a} is a complete graph, it is obvious that (P1) and (P2) hold. Arbitrarily choose two blocks, say $A_{i, k}, A_{j, l}$, where k, l are 1 or 2 , from different bi-partitions. We would like to show that $A_{i, k} \cap A_{j, l} \neq \emptyset$. Since $\left|A_{i, 1} \cup A_{i, 2}\right|=\left|A_{j, 1} \cup A_{j, 2}\right|=a,\left|A_{i, 1}\right|=\left|A_{j, 1}\right|=\left\lfloor\frac{a}{2}\right\rfloor$ and $1 \in A_{i, 1} \cap A_{j, 1}$, then $A_{i, 1} \cap A_{j, 1} \neq \emptyset$, so $A_{i, 2} \cap A_{j, 2} \neq \emptyset$ and $A_{i, 1} \cap A_{j, 2} \neq \emptyset$. Then we have $A_{i, k} \cap A_{j, l} \neq \emptyset$. This completes the proof.

We include one more result of the same style as a conclusion of this note.
Proposition 3.2. If G is a graph with chromatic number 4 , then $G \boxtimes K_{3} \preceq G \square K_{9}$.
Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions of $V\left(K_{9}\right)=\{1,2, \ldots, 9\}$ with properties (P1) and (P2). Since K_{9} is a complete graph, (P1) and (P2) always hold for any tri-partition. On the other hand, we can always define a family $\left\{A_{i, j}: 1 \leqslant i \leqslant 4,1 \leqslant j \leqslant 3\right\}$ of three-element subsets of $\{1, \ldots, 9\}$ such that

$$
\left|A_{i, j} \cap A_{i^{\prime}, j^{\prime}}\right|= \begin{cases}1 & \text { if } i \neq i^{\prime} \\ 0 & \text { if } i=i^{\prime}, j \neq j^{\prime}\end{cases}
$$

as 3 is a prime (see, e.g., [5,7] for details). Then $\left\{A_{i, 1}, A_{i, 2}, A_{i, 3}\right\}, 1 \leqslant i \leqslant 4$, are four pairwise crossing partitions.
Remark 3. In fact, Proposition 3.2 is better than the special case $(n=3)$ of Theorem 2.2. Moreover, when G is sufficiently dense, say $G=K_{4}$, we have $K_{4} \boxtimes K_{3} \preceq K_{4} \square K_{9}$. It is a special case of $K_{p+1} \boxtimes K_{p} \preceq K_{p+1} \square K_{p^{2}}$, where p is a prime. This result is widely known (see, e.g., [7]).

Acknowledgements

The authors gratefully acknowledge the anonymous referees for their constructive suggestions.

References

[1] R. Diestel, Graph Theory, third ed., Springer-Verlag, Heidelberg, New York, 2005.
[2] A. Kotlov, Minors and strong products, European Journal of Combinatorics 22 (2001) 511-512.
[3] L.S. Chandran, N. Sivadasan, On the Hadwiger's conjecture for graph product, Discrete Mathematics 307 (2007) 266-273.
[4] D. Wood, Clique minors in Cartesian products of graphs, 2007 (manuscript) (see http://arxiv.org/abs/math/07111189v2).
[5] L.S. Chandran, A. Kostochka, J.K. Raju, Hadwiger number and the Cartesian product of graphs, Graphs and Combinatorics 24 (2008) $291-301$.
[6] H. Hadwiger, Über eine Klassfikation der streckenkomplexe, Vierkel-jajrsschrift der Naturf. Gesellschaft in Zürich 88 (1943) 133-142.
[7] H.J. Ryser, Combinatorial Mathematics, in: The Carus Mathematical Monographs, vol. 14, Wiley, New York, 1963.

[^0]: This work was supported by The Discovery Grant (144073) of the Natural Sciences and Engineering Research Council of Canada.

 * Corresponding author. Tel.: +86 02223494039.

 E-mail address: yangxu54@hotmail.com (X. Yang).

[^1]: ${ }^{1}$ Suppose that $K_{6} \preceq K_{3} \square K_{3}$. Then $V\left(K_{3} \square K_{3}\right)$ has branch sets X_{1}, \ldots, X_{6}, each of which is connected by at least one edge. If there exists X_{i}, say X_{1}, such that $\left|X_{1}\right|=1$, then $\Delta\left(K_{3} \square K_{3}\right)=4$, contradicting the fact that X_{1} is adjacent to X_{i} for all $2 \leqslant i \leqslant 6$. Thus, $\left|X_{i}\right| \geqslant 2$ and $\sum_{i=1}^{6}\left|X_{i}\right| \geqslant 12>9=\left|V\left(K_{3} \square K_{3}\right)\right|$, a contradiction.
 2 If $a \leqslant 8$, then $\chi \leqslant 35$ and $2 \chi \geqslant \chi \sqrt{\frac{m}{2}}$.

