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Artic(e history: Let GXH and GOH denote the strong and Cartesian products of graphs G and H, respectively.
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that, for any simple connected graph G, the graph G X K; is a minor of the graph GOQ; b
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a construction method, where Q, is an r-cube and r = y (G). This generalizes an earlier
result of Kotlov [2].
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1. Introduction

Graphs considered in this note are finite, undirected, simple and connected. We use [1] for terminology and notation not
defined here. The strong product G, X G, of two graphs G; and G, has vertex set V(G;) x V(G,) and two vertices (u;, v{) and
(uy, vy) are adjacent if and only if (1) u4 is adjacent to u, and v; = v, (we call it a horizontal edge); or (2) u; = u, and vq is
adjacent to v, (we call it a vertical edge); or (3) u; is adjacent to u, and v; is adjacent to v, (referred to as a type (3) edge).
For example, K, X K, = K4. The Cartesian product G;JG, of two graphs G; and G is obtained from G; X G, by deleting the
‘type (3)’ edges. For example, K;OK, = C4. The well-known n-dimensional cube or n-cube Q,, can be viewed as the Cartesian
product of n copies of Q; = K>.

A graph H on vertex set {1, ..., n} is a minor of a graph G, denoted by H < G, if there are disjoint subsets V1, ..., V, of
V(G) such that: (1) every V; induces a connected subgraph of G; and (2) whenever ij is an edge in H, there is an edge between
Viand V;in G.

Kotlov [2] initiated the study of the minor in products of graphs and proved the following result.

Theorem 1.1 (Kotlov [2]). For every bipartite graph G, the strong product G X K, is a minor of GOCj.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of graphs. Later, Wood [4] and Chandran,
Kostochka and Raju [5] continued the study of clique minors in a Cartesian product of graphs. In particular, Wood [4] showed
that the lexicographic product G o H is a minor of GOHOH for every bipartite graph G and every connected graph H. In this
note, we continue the study of the strong product minor in a Cartesian product started by Kotlov [2] and obtain several
results in this direction.

* This work was supported by The Discovery Grant (144073) of the Natural Sciences and Engineering Research Council of Canada.
* Corresponding author. Tel.: +86 02223494039.
E-mail address: yangxu54@hotmail.com (X. Yang).

0893-9659/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml1.2010.05.007



1180 Z. Wu et al. / Applied Mathematics Letters 23 (2010) 1179-1182
2. Main results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The proof techniques are mainly
constructive. As usual, x denotes the chromatic number of G.

Theorem 2.1. Let G be a connected graph with chromatic number x. Then GX K, < GOQ,,.

Denote the Hamming graph Ky, 0Ky, O - - - OKy, withk; =k, = --- = kg = nby Knd. With a similar construction, we can
obtain the following theorem.

Theorem 2.2. Let G be a connected graph with chromatic number . Then G ® K, < GOK.

Theorem 2.3. Let G be a connected graph. Then G X K, < GOK,, where a is an integer satisfying (‘Fg}) > x(G).
2

m—1

51

is sufficiently dense. For example, for any bipartite graph G which is sufficiently dense, G X K, £ GOKj (see [2]). If G = K3,
then we have K3 X Ky ﬁ K30Ks3, 1 but K3 X Ky < K30Ky.

Remark 1. If we choose a as small as possible (i.e., a = min{m : ( ) > x(G)}), the result is sharp when yx is small and G

What follows is an immediate corollary of the above.

Corollary 2.4. For every 3-colorable graph G, the graph G X K, is a minor of GOKj.

Hadwiger [6] linked the chromatic number of a graph G to the maximum size of its clique minor. He conjectured that
every k-chromatic graph has a K,,-minor. This is one of the most intriguing conjectures in today’s graph theory. The Hadwiger
number n(G) of a graph G is the maximum n such that K;, is a minor of G. A lot of research has been done on determining the
Hadwiger number in special classes of graphs (see [3-5]).

Setting G = K, in Theorem 2.3, we readily obtain the following result on the Hadwiger number of a Hamming graph.

Corollary 2.5. n(K,0OK,) > 2y, if (‘;g}) > X.
2

Remark 2. In[4], Wood proved that n(K,0OK,,) > n\/g— O (n++/m).Itis not hard to verify that when x < 35, Corollary 2.5
is an improvement of Wood’s result.

3. Proofs of the main results

Before giving the proofs of main results, a few definitions and a lemma are required. They play important roles in the
proofs of theorems. Let us call two partitions P, P’ of the same set A crossing if every block of P intersects every block of P’.
A partition containing k blocks is called a k-partition.

Lemma 3.1. Let G, H be two graphs and x = x (G). If there exist x pairwise crossing n-partitions of V (H) such that

(P1) every block of each partition induces a connected subgraph of V(H),
(P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices in both blocks),

then G X K, is a minor of GOH.

Proof. Since G is y-chromatic, there exists a y-coloring ¢ of V(G) such that c(v) = i when v € V(G) is colored i for all
1 <i < x.Clearly, {v € V(G) : c(v) =i} induces an independent setin G forall 1 < i < x.Suppose that {A; 1, Ai2, . . ., Ain},
1 < i < x are x pairwise crossing n-partitions of V (H) satisfying properties (P1) and (P2).

For each vertex v € V(G) and each 1 <j < n, let

Vi(v) = {(v,u) 1 u € Ac) j}-

Since for each i, U};] Aij = V(H), then UJ'.’:1 V;j(v) is an H-layer of GOH. And it is not difficult to show that the collection of
sets {Vj(v) : 1 <j < n,v e V(G)}is apartition of V(GOH). Now, we check that G X K, < GOH by definition.

For each v € V(G) and each 1 < j < n, it follows from (P1) that {u : u € Ac(,),;} induces a connected subgraph in H, and
hence V;(v) induces a connected subgraph in GOH by the definition of the Cartesian product.

1 Suppose that K5 < K30K3. Then V(K30K3) has branch sets Xy, . . ., Xs, each of which is connected by at least one edge. If there exists X;, say Xi, such
that [X;| = 1, then A(K30K3) = 4, contradicting the fact that X; is adjacent to X; for all 2 < i < 6. Thus, |X;| > 2 and Z?Zl |Xil > 12 > 9 = |[V(K50K3)|, a
contradiction.

2 Ifa <8, then x <35and2y > x %
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Consider an edge e = (v1, k)(v3, ) € E(GXK,). If e is of type (1) (a horizontal edge) or of type (3), then viv, € E(G).
Clearly, c(v1) # c(v2). Thus, Acwy)k N Acwy),i 7 9 by the assumption that these x n-partitions are pairwise crossing.
Assume Ug € Acwy) k N Acuy),l- Then (vy, ug) € Vi(vq) is adjacent to (vy, ug) € Vi(vp) in GOH. If e is of type (2) (a vertical
edge), vi = vy, k # |, it follows from (P2) that there is an edge uju, € V(H) where uy € Ac)k and Uy € Ac(yy),1- SO,
(v1, uq7) € Vi(vq) is adjacent to (v, uy) € Vi(v2) in GOH. Hence, there is an edge connecting Vi (v{) and V;(v;).

Therefore, there is a correspondence G X K, > (v, j) <> V;(v) € V(GOH). So, G X K, is a minor of GOH. O

Now we are ready to prove the main theorems.

Proof of Theorem 2.1. By Lemma 3.1, we only need to find x pairwise crossing bi-partitions of V(Q, ) satisfying properties
(P1) and (P2).
For 1 <i < x, define

Ai,O = {(j],jz, . ’jX) Zji = Oandj,-/ =0or 1, i/ 75 l}
and
Ai1 ={G1,J2, .-+, Jy) tJi=1andjy = 0or1,i # i}.

Clearly, {Aio,Ai1}, 1 << yx,are x bi-partitions of V(Q, ). Both A; g and A; 1 induce a graph isomorphic to Q,_;. So, (P1) is
true. Moreover, (P2) is obvious. Arbitrarily choose these two blocks from two different bi-partitions, say A;, x and A;, ;, where
k, lare O or 1. Then

©,...,0,iy=k,0,...,i,=10,...,0) eAil,,<ﬂAi2,l.
Hence these x partitions are pairwise crossing. This completes the proof. O

Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find x pairwise n-partitions of V(K7). Suppose V(K,) =
{1,2,...,n}.Forevery 1 <i < x and every 1 <j < n, define

Aij=A{, ... b1, g b, oo ) 1<y <ny i # )

It is easy to show that {A; 1, Ai2, ..., Ais}, 1 < i < x,are x pairwise crossing n-partitions of V(K{) satisfying properties
(P1)and (P2). O

We proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, let {1, ..., a} be the vertex set of K,, where a is defined as in the assertion.
Since (‘F;) > x, we have at least x = x(G) different bi-partitions {A; 1, A12},...,{A, 1,A, 2} suchthat 1 € A;; and

|Aia| = [5] foralli,1<i<a.

Next, we prove that these x bi-partitions are pairwise crossing and satisfy (P1) and (P2). Since Kj is a complete graph, it is
obvious that (P1) and (P2) hold. Arbitrarily choose two blocks, say A; i, A; i, where k, [ are 1 or 2, from different bi-partitions.
We would like to show that A; y N A;; # @. Since |A; 1 UA; 2| = |Aj1 UAj2| = a, |Ai1| = |Aj1] = 5] and 1 € A NAj 1, then
Ai1NAj1 # 0,50Ai, NAj» # W and A1 NAj» # ¥. Then we have A; x N A;j; # 4. This completes the proof. O

We include one more result of the same style as a conclusion of this note.

Proposition 3.2. If G is a graph with chromatic number 4, then G X K3 < GOKa.

Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions of V(Kq) = {1,2,...,9} with
properties (P1) and (P2). Since Ky is a complete graph, (P1) and (P2) always hold for any tri-partition. On the other hand, we
can always define a family {A;; : 1 <i <4, 1 <j < 3} of three-element subsets of {1, ..., 9} such that

1 ifi#i;

0 ifi=1i,j#7,

as 3 is a prime (see, e.g., [5,7] for details). Then {A; 1, Ai 2, Ai3}, 1 < i < 4, are four pairwise crossing partitions. O

|Aij N Ay j| =

Remark 3. In fact, Proposition 3.2 is better than the special case (n = 3) of Theorem 2.2. Moreover, when G is sufficiently
dense, say G = K4, we have Ky ¥ K3 < K40Ko. It is a special case of Kj 11 K K, < Kj+10K2, where p is a prime. This result is
widely known (see, e.g., [7]).
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