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a b s t r a c t

LetG�H andG�H denote the strong and Cartesian products of graphsG andH , respectively.
In this note, we investigate the graph minor in products of graphs. In particular, we show
that, for any simple connected graph G, the graph G � K2 is a minor of the graph G�Qr by
a construction method, where Qr is an r-cube and r = χ(G). This generalizes an earlier
result of Kotlov [2].

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Graphs considered in this note are finite, undirected, simple and connected. We use [1] for terminology and notation not
defined here. The strong product G1 �G2 of two graphs G1 and G2 has vertex set V (G1)×V (G2) and two vertices (u1, v1) and
(u2, v2) are adjacent if and only if (1) u1 is adjacent to u2 and v1 = v2 (we call it a horizontal edge); or (2) u1 = u2 and v1 is
adjacent to v2 (we call it a vertical edge); or (3) u1 is adjacent to u2 and v1 is adjacent to v2 (referred to as a type (3) edge).
For example, K2 � K2 = K4. The Cartesian product G1�G2 of two graphs G1 and G2 is obtained from G1 � G2 by deleting the
‘type (3)’ edges. For example, K2�K2 = C4. The well-known n-dimensional cube or n-cube Qn can be viewed as the Cartesian
product of n copies of Q1 = K2.
A graph H on vertex set {1, . . . , n} is a minor of a graph G, denoted by H � G, if there are disjoint subsets V1, . . . , Vn of

V (G) such that: (1) every Vi induces a connected subgraph of G; and (2) whenever ij is an edge inH , there is an edge between
Vi and Vj in G.
Kotlov [2] initiated the study of the minor in products of graphs and proved the following result.

Theorem 1.1 (Kotlov [2]). For every bipartite graph G, the strong product G � K2 is a minor of G�C4.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of graphs. Later, Wood [4] and Chandran,
Kostochka and Raju [5] continued the study of cliqueminors in a Cartesian product of graphs. In particular,Wood [4] showed
that the lexicographic product G ◦ H is a minor of G�H�H for every bipartite graph G and every connected graph H . In this
note, we continue the study of the strong product minor in a Cartesian product started by Kotlov [2] and obtain several
results in this direction.
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2. Main results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The proof techniques are mainly
constructive. As usual, χ denotes the chromatic number of G.

Theorem 2.1. Let G be a connected graph with chromatic number χ . Then G � K2 � G�Qχ .

Denote the Hamming graph Kk1�Kk2� · · ·�Kkd with k1 = k2 = · · · = kd = n by K
d
n . With a similar construction, we can

obtain the following theorem.

Theorem 2.2. Let G be a connected graph with chromatic number χ . Then G � Kn � G�K
χ
n .

Theorem 2.3. Let G be a connected graph. Then G � K2 � G�Ka, where a is an integer satisfying
(
a−1
d
a
2 e

)
> χ(G).

Remark 1. If we choose a as small as possible (i.e., a = min{m :
(
m−1
d
m
2 e

)
> χ(G)}), the result is sharp when χ is small and G

is sufficiently dense. For example, for any bipartite graph G which is sufficiently dense, G � K2 6� G�K3 (see [2]). If G = K3,
then we have K3 � K2 6� K3�K3, 1 but K3 � K2 � K3�K4.

What follows is an immediate corollary of the above.

Corollary 2.4. For every 3-colorable graph G, the graph G � K2 is a minor of G�K4.

Hadwiger [6] linked the chromatic number of a graph G to the maximum size of its clique minor. He conjectured that
every k-chromatic graph has a Kk-minor. This is one of themost intriguing conjectures in today’s graph theory. TheHadwiger
number η(G) of a graph G is the maximum n such that Kn is a minor of G. A lot of research has been done on determining the
Hadwiger number in special classes of graphs (see [3–5]).
Setting G = Kχ in Theorem 2.3, we readily obtain the following result on the Hadwiger number of a Hamming graph.

Corollary 2.5. η(Kχ�Ka) > 2χ , if
(
a−1
d
a
2 e

)
> χ .

Remark 2. In [4],Wood proved that η(Kn�Km) > n
√
m
2 −O(n+

√
m). It is not hard to verify thatwhenχ 6 35,2 Corollary 2.5

is an improvement of Wood’s result.

3. Proofs of the main results

Before giving the proofs of main results, a few definitions and a lemma are required. They play important roles in the
proofs of theorems. Let us call two partitions P, P ′ of the same set A crossing if every block of P intersects every block of P ′.
A partition containing k blocks is called a k-partition.

Lemma 3.1. Let G,H be two graphs and χ = χ(G). If there exist χ pairwise crossing n-partitions of V (H) such that

(P1) every block of each partition induces a connected subgraph of V (H),
(P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices in both blocks),

then G � Kn is a minor of G�H.

Proof. Since G is χ-chromatic, there exists a χ-coloring c of V (G) such that c(v) = i when v ∈ V (G) is colored i for all
1 6 i 6 χ . Clearly, {v ∈ V (G) : c(v) = i} induces an independent set in G for all 1 6 i 6 χ . Suppose that {Ai,1, Ai,2, . . . , Ai,n},
1 6 i 6 χ are χ pairwise crossing n-partitions of V (H) satisfying properties (P1) and (P2).
For each vertex v ∈ V (G) and each 1 6 j 6 n, let

Vj(v) = {(v, u) : u ∈ Ac(v),j}.

Since for each i,
⋃n
j=1 Ai,j = V (H), then

⋃n
j=1 Vj(v) is an H-layer of G�H . And it is not difficult to show that the collection of

sets {Vj(v) : 1 6 j 6 n, v ∈ V (G)} is a partition of V (G�H). Now, we check that G � Kn � G�H by definition.
For each v ∈ V (G) and each 1 6 j 6 n, it follows from (P1) that {u : u ∈ Ac(v),j} induces a connected subgraph in H , and

hence Vj(v) induces a connected subgraph in G�H by the definition of the Cartesian product.

1 Suppose that K6 � K3�K3 . Then V (K3�K3) has branch sets X1, . . . , X6 , each of which is connected by at least one edge. If there exists Xi , say X1 , such
that |X1| = 1, then∆(K3�K3) = 4, contradicting the fact that X1 is adjacent to Xi for all 2 6 i 6 6. Thus, |Xi| > 2 and

∑6
i=1 |Xi| > 12 > 9 = |V (K3�K3)|, a

contradiction.
2 If a 6 8, then χ 6 35 and 2χ > χ

√
m
2 .
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Consider an edge e = (v1, k)(v2, l) ∈ E(G � Kn). If e is of type (1) (a horizontal edge) or of type (3), then v1v2 ∈ E(G).
Clearly, c(v1) 6= c(v2). Thus, Ac(v1),k ∩ Ac(v2),l 6= ∅ by the assumption that these χ n-partitions are pairwise crossing.
Assume u0 ∈ Ac(v1),k ∩ Ac(v2),l. Then (v1, u0) ∈ Vk(v1) is adjacent to (v2, u0) ∈ Vl(v2) in G�H . If e is of type (2) (a vertical
edge), v1 = v2, k 6= l, it follows from (P2) that there is an edge u1u2 ∈ V (H) where u1 ∈ Ac(v1),k and u2 ∈ Ac(v2),l. So,
(v1, u1) ∈ Vk(v1) is adjacent to (v2, u2) ∈ Vl(v2) in G�H . Hence, there is an edge connecting Vk(v1) and Vl(v2).
Therefore, there is a correspondence G � Kn 3 (v, j)↔ Vj(v) ⊆ V (G�H). So, G � Kn is a minor of G�H . �

Now we are ready to prove the main theorems.

Proof of Theorem 2.1. By Lemma 3.1, we only need to find χ pairwise crossing bi-partitions of V (Qχ ) satisfying properties
(P1) and (P2).
For 1 6 i 6 χ , define

Ai,0 = {(j1, j2, . . . , jχ ) : ji = 0 and ji′ = 0 or 1, i′ 6= i}

and

Ai,1 = {(j1, j2, . . . , jχ ) : ji = 1 and ji′ = 0 or 1, i′ 6= i}.

Clearly, {Ai,0, Ai,1}, 1 6 i 6 χ , are χ bi-partitions of V (Qχ ). Both Ai,0 and Ai,1 induce a graph isomorphic to Qχ−1. So, (P1) is
true. Moreover, (P2) is obvious. Arbitrarily choose these two blocks from two different bi-partitions, say Ai1,k and Ai2,l, where
k, l are 0 or 1. Then

(0, . . . , 0, i1 = k, 0, . . . , i2 = l, 0, . . . , 0) ∈ Ai1,k ∩ Ai2,l.

Hence these χ partitions are pairwise crossing. This completes the proof. �

Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find χ pairwise n-partitions of V (Kχn ). Suppose V (Kn) =
{1, 2, . . . , n}. For every 1 6 i 6 χ and every 1 6 j 6 n, define

Ai,j = {(l1, . . . , li−1, j, li+1, . . . , ln) : 1 6 li′ 6 n, i′ 6= i}.

It is easy to show that {Ai,1, Ai,2, . . . , Ai,n}, 1 6 i 6 χ , are χ pairwise crossing n-partitions of V (K
χ
n ) satisfying properties

(P1) and (P2). �

We proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, let {1, . . . , a} be the vertex set of Ka, where a is defined as in the assertion.
Since

(
a−1
d
a
2 e

)
> χ , we have at least χ = χ(G) different bi-partitions {A1,1, A1,2}, . . . , {Aχ,1, Aχ,2} such that 1 ∈ Ai,1 and

|Ai,1| = b a2c for all i, 1 6 i 6 a.
Next, we prove that theseχ bi-partitions are pairwise crossing and satisfy (P1) and (P2). Since Ka is a complete graph, it is

obvious that (P1) and (P2) hold. Arbitrarily choose two blocks, say Ai,k, Aj,l, where k, l are 1 or 2, from different bi-partitions.
We would like to show that Ai,k ∩ Aj,l 6= ∅. Since |Ai,1 ∪ Ai,2| = |Aj,1 ∪ Aj,2| = a, |Ai,1| = |Aj,1| = b a2c and 1 ∈ Ai,1 ∩ Aj,1, then
Ai,1 ∩ Aj,1 6= ∅, so Ai,2 ∩ Aj,2 6= ∅ and Ai,1 ∩ Aj,2 6= ∅. Then we have Ai,k ∩ Aj,l 6= ∅. This completes the proof. �

We include one more result of the same style as a conclusion of this note.

Proposition 3.2. If G is a graph with chromatic number 4, then G � K3 � G�K9.

Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions of V (K9) = {1, 2, . . . , 9} with
properties (P1) and (P2). Since K9 is a complete graph, (P1) and (P2) always hold for any tri-partition. On the other hand, we
can always define a family {Ai,j : 1 6 i 6 4, 1 6 j 6 3} of three-element subsets of {1, . . . , 9} such that

|Ai,j ∩ Ai′,j′ | =
{
1 if i 6= i′;
0 if i = i′, j 6= j′,

as 3 is a prime (see, e.g., [5,7] for details). Then {Ai,1, Ai,2, Ai,3}, 1 6 i 6 4, are four pairwise crossing partitions. �

Remark 3. In fact, Proposition 3.2 is better than the special case (n = 3) of Theorem 2.2. Moreover, when G is sufficiently
dense, say G = K4, we have K4 � K3 � K4�K9. It is a special case of Kp+1 � Kp � Kp+1�Kp2 , where p is a prime. This result is
widely known (see, e.g., [7]).
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