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a b s t r a c t

In this paper we obtain sufficient conditions using isolated vertices for component factors
with each component of order at least three. In particular,we show that if a graphG satisfies
iso(G − S) ≤ |S|/2 for all S ⊂ V (G), then G has a {K1,2, K1,3, K5}-factor, where iso(G − S)
denotes the number of isolated vertices in G− S.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider component factors of graphs, which are defined as follows. For a set S of connected graphs, a
spanning subgraph F of a graph G is called an S-factor of G if every component of F is an element of S. An S-factor is also
referred as a component factor. There have beenmany papers on component factors of graphs, but in most cases, S contains
K2 (i.e., a single edge), but it is relatively rare that S contains no small component. In addition, it is known that if S does not
contain K2, then in most cases finding a criterion for a graph to have an S-factor is very difficult since finding a maximum
S-subgraph of a given graph is an NP-complete problem. In this paper we obtain several sufficient conditions in terms of
the number of isolated vertices for a graph to have a component factor such that each component has order at least three.
We begin with some notation and definitions. We consider a finite simple graph G with vertex set V (G) and edge set

E(G), which has neither loops nor multiple edges. We denote by |G| the order of G. For a subset S ⊆ V (G), G− S denotes the
subgraph of G induced by V (G)− S. For a vertex v of G, the degree of v and the neighborhood of v in G are denoted by dG(v)
and NG(v), respectively. In particular, dG(v) = |NG(v)|. The minimum degree and the maximum degree of G are denoted by
δ(G) and∆(G), respectively. Denote by α(G) the independence number of G, which is the maximum cardinality among the
independent sets of vertices of G. Let iso(G) and Iso(G) denote the number of isolated vertices and the set of isolated vertices
of G, respectively. In particular, iso(G) = |Iso(G)|. For sets X and Y , X ⊂ Y means that X is a proper subset of Y .
We denote the complete graph, the path and the cycle of order n by Kn, Pn and Cn, respectively. We denote the complete

bipartite graph by Kn,m. A criterion for a graph to have a star-factor is given below.

Theorem 1 (Amahashi and Kano [1]). A graph G has a star-factor, i.e., {K1,1, . . . , K1,n}-factor, if and only if iso(G− S) ≤ n|S|
for all S ⊂ V (G).

A graph R is called factor-critical if for every vertex x of R, R − x has a 1-factor (K2-factor). A graph H is called a sun if
H = K1, H = K2 or H is the corona of a factor-critical graph R with order at least three, i.e., H is obtained from R by adding
a new vertex w = w(v) together with a new edge vw for every vertex v of R (Fig. 1). A sun with order at least 6 is called a

∗ Corresponding author.
E-mail address: luhongliang215@sina.com (H. Lu).

0893-9659/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2009.11.003



Author's personal copy

386 M. Kano et al. / Applied Mathematics Letters 23 (2010) 385–389

Fig. 1. A factor-critical graph R and the sun H obtained from R.

big sun. The number of sum components of G is denoted by sun(G). The next theorem gives a criterion for a graph to have
a path-factor each of whose components is of order at least three. Note that a shorter proof of the following theorem and a
formula for a maximum {P3, P4, P5}-subgraph of a graph was given in [2].

Theorem 2 (Kaneko [3]). A graph G has a {P3, P4, P5}-factor (i.e., P≥3-factor) if and only if sun(G− S) ≤ 2|S| for all S ⊂ V (G).
In this paper we consider the following problem, and give partial answers to the problem.

Problem 1. Let G be a graph and λ be a positive rational number. If iso(G − S) ≤ λ|S| for all ∅ 6= S ⊂ V (G), what factor
does G have?

2. Component factors with large components

In this section, we first prove the next theorem.

Theorem 3. If a graph G satisfies

iso(G− S) ≤
2
3
|S| for all S ⊂ V (G),

then G has a {P3, P4, P5}-factor.

Proof. Suppose that G satisfies the condition but has no {P3, P4, P5}-factor. By Theorem 2, there exists a subset S ⊂ V (G)
such that sun(G − S) > 2|S|. Assume that there exist a isolated vertices, b K2’s and c big sun components H1,H2, . . . ,Hc ,
where |Hi| ≥ 6, in G− S. We choose one vertex from each K2 component of G− S, and denote the set of such vertices by X .
Then |X | = b. For eachHi, let Ri denote the factor-critical subgraph ofHi and let Yi = V (Ri). Then iso(Hi−Yi) = |Yi| = |Hi|/2.
Let Y = ∪ri=1 Yi. So we have

iso(G− (S ∪ X ∪ Y )) = a+ b+
c∑
i=1

|Hi|
2
.

Moreover, it follows that

|S ∪ X ∪ Y | <
sun(G− S)

2
+ |X | + |Y | (from sun(G− S) > 2|S|)

=
a+ b+ c
2

+ b+
c∑
i=1

|Hi|
2

≤
3
2

(
a+ b+

c∑
i=1

|Hi|
2

)
=
3
2
iso(G− (S ∪ X ∪ Y )).

This contradicts the condition that iso(G− S ′) ≤ (2/3)|S ′| for all S ′ ⊂ V (G). �

Letm ≥ 1 be an integer Let G = Km + (2m+ 1)K2, which is a graph obtained from Km and (2m+ 1)K2 by joining every
vertex of Km to every vertex of (2m + 1)K2. Then G has no {P3, P4, P5}-factor. Let T ⊆ V (G) be an independent set with
|T | ≥ 2. Then T ⊆ V ((2m + 1)K2) and so |NG(T )| = |T | + m. If |T | ≤ 2m, then i(G − NG(T )) ≤ 2|NG(T )|/3, otherwise
i(G− NG(T )) = 2|NG(T )|/3+ 1 = 2m+ 1. Since δ(G) ≥ m+ 1 ≥ 2, so i(G− S) ≤ 2|S|/3+ 1 for all S ⊆ V (G). Therefore
the condition of Theorem 3 is sharp.
The next lemma is knows as Harlem Theorem, which is a generalization of Hall’s Theorem.

Lemma 1. Let G be a bipartite graph with bipartition (U,W ), and f : U → {1, 2, 3, . . .}. If |W | =
∑
x∈U f (x) and

|NG(S)| ≥
∑
x∈S

f (x) for all ∅ 6= S ⊆ U,

then G has a star-factor F such that each vertex u of U satisfies dF (u) = f (u), that is, every u is the center of a star K1,f (u) in F .
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We next consider graphs satisfying iso(G− S) ≤ |S|/2 for all S ⊂ V (G).

Lemma 2. If |G| ≤ 6 and iso(G− S) ≤ |S|/2 for all S ⊂ V (G), then G has a {K1,2, K1,3, K5}-factor.
Proof. It is clear that if G satisfies the condition, then δ(G) ≥ 2 and |G| ≥ 3. If |G| = 3, then G is connected and has a
K1,2-factor. If |G| = 4, then ∆(G) = 3, which implies that G has a K1,3-factor. Assume |G| = 5. If G has two non-adjacent
vertices x and y, then 2 = |{x, y}| = iso(G − (V (G) − {x, y})) ≤ |V (G) − {x, y}|/2 = 3/2, a contradiction. Hence G is a
complete graph K5, and so it has a K5-factor. Now we consider the case of |G| = 6. By Theorem 2, G has a {P3, P4, P5}-factor,
say F . Then F must be a P3-factor, which is a K1,2-factor. Therefore the lemma holds. �

Theorem 4. If a graph G satisfies

iso(G− S) ≤
|S|
2

for all S ⊆ V (G),

then G has a {K1,2, K1,3, K5}-factor.

Proof. It is clear that |G| ≥ 3 and δ(G) ≥ 2. Use induction on the lexicographic order of (|G|, |E(G)|). So we assume that the
theorem holds for a graph H with either |H| < |G| or |H| = |G| and |E(H)| < |E(G)|. Moreover, we may assume that G is
connected and |G| ≥ 7 by Lemma 2. Let

β = min
{
|S|
2
− iso(G− S)|S ⊂ V (G) and iso(G− S) ≥ 1

}
.

Then β ≥ 0 as iso(G− S) ≤ |S|/2. For a vertex xwith dG(x) = δ(G), we have β ≤ |NG(x)|/2− iso(G− NG(x)) and so

δ(G) = dG(x) = |NG(x)| ≥ 2(β + iso(G− NG(x))) ≥ 2(β + 1). (1)

Take a maximal vertex subset S such that |S|/2− iso(G− S) = β . Then

|S ′|
2
− iso(G− S ′) > β for all S ⊂ S ′ ⊂ V (G). (2)

Claim 1. G− S has no component of order two or three.
Assume that G− S has a component D isomorphic to K2. Let V (D) = {x, y}. Then

|S ∪ {x}|
2

− iso(G− (S ∪ {x})) =
|S| + 1
2
− (iso(G− S)+ 1) < β,

a contradiction.
Assume that G− S has a component D of order three. Let V (D) = {x, y, z}. Then

|S ∪ {x, y}|
2

− iso(G− (S ∪ {x, y})) =
|S| + 2
2
− (iso(G− S)+ 1) = β,

a contradiction to the maximality of S.

Claim 2. Every component D of G− S with |D| ≥ 4 has a {K1,2, K1,3, K5}-factor.
Let X be a non-empty subset of V (D). Then by (2), we have

|S ∪ X |
2
− iso(G− (S ∪ X)) > β =

|S|
2
− iso(G− S).

Thus |X |/2 > iso(D− X), which implies that D has a {K1,2, K1,3, K5}-factor by the induction hypothesis.
By Claim 1, let G− S = aK1 ∪

(
D1 ∪ · · · ∪ Dc

)
, where V (aK1) = Iso(G− S) = {u1, . . . , ua} and each Di is a component of

G− S with |Di| ≥ 4. It is immediate that

a = iso(G− S) = |S|/2− β ≥ 1. (3)

We construct a bipartite graph Bwith vertex set V (B) = S∪U , where U = {u1, u2, . . . , ua}, such that two vertices ui ∈ U
and x ∈ S are adjacent in B if and only if ui and x are joined by an edge of G.

Claim 3. For every ∅ 6= Y ⊆ U, we have |NB(Y )| ≥ 2|Y | + 2β , and |NB(U)| = 2|U| + 2β = |S|.
It follows from (3) and the choice of S that |NB(U)| = |S| = 2a + 2β = 2|U| + 2β . Assume that there exists a subset

∅ 6= Y ′ ⊂ U such that NB(Y ′) < 2|Y ′| + 2β . Then, by the definition of β , NB(Y ′) = NG(Y ′) ⊂ S satisfies

|Y ′| ≤ iso(G− NG(Y ′)) ≤
|NG(Y ′)|
2

− β < |Y ′|,

a contradiction. Hence the claim holds.
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Fig. 2. A graph has no {K1,2, K1,3, K5}-factor.

Claim 4. If β ≥ 2, then the theorem holds.
Assumeβ ≥ 2. Then δ(G) ≥ 6 by (1). It is obvious thatG has an edge e such thatG−e is connected. Let X ⊂ V (G−e) = V (G).
If iso(G− X) ≥ 1, then

iso(G− e− X) ≤ iso(G− X)+ 2 ≤
|X |
2
− β + 2 ≤

|X |
2
.

If iso(G − X) = 0, then iso(G − e − X) ≤ 2. Further iso(G − e − X) ≥ 1 implies |X | ≥ 5 as δ(G − e) ≥ 5. Hence if
iso(G− X) = 0, then iso(G− e− X) ≤ 2 ≤ |X |/2. Therefore by the induction hypothesis, G− e has a {K1,2, K1,3, K5}-factor,
which is of course the desired factor of G.
From Claim 4 and the definition of β , it remains to consider the cases of β ∈ {0, 1/2, 1, 3/2}. Note that |S| = 2|U| + 2β .
Case 1. β = 0.
Define f : U → {1, 2, 3 . . .} by f (u) = 2 for all u ∈ U . Then by Lemma 1 and Claim 3, B has a K1,2-factor with centers in

U . Hence by Claim 2, G has a {K1,2, K1,3, K5}-factor.
Case 2. β = 1/2.
In this case, |S| = 2|U| + 1. Choose a vertex u1 ∈ U and define f : U → {1, 2, 3, . . .} by f (u1) = 3 and f (ui) = 2 for all

ui ∈ U − {u1}. Then |NB(Y )| ≥
∑
x∈Y f (x) for all Y ⊆ U by Claim 3. Hence by Lemma 1, B has a {K1,2, K1,3}-factor. Therefore

we can obtain a {K1,2, K1,3, K5}-factor of G.
Case 3. β = 1.
Clearly, δ(G) ≥ 4 by (1). We consider two subcases.
Subcase 3.1. |U| ≥ 2.
In this case, |S| = 2|U| + 2. Choose two vertex u1, u2 ∈ U and define f : U → {1, 2, 3, . . .} by f (u1) = f (u2) = 3

and f (ui) = 2 for all ui ∈ U − {u1, u2}. Then |NB(Y )| ≥
∑
x∈Y f (x) for all Y ⊆ U by Claim 3. Hence, by Lemma 1, B has a

{K1,2, K1,3}-factor and so G has a {K1,2, K1,3, K5}-factor.
Subcase 3.2. |U| = 1.
It is clear that |S| = 2|U| + 2 = 4 and V (G) 6= S ∪ U as |G| ≥ 7. Let H = G − (S ∪ U), U = {u} and S = {s1, s2, s3, s4}.

Consider G − {s1, u, s2}. If iso(G − {s1, u, s2} − X) ≤ |X |/2 for all X ⊆ V (G) − {s1, u, s2}, then the theorem follows by the
induction hypothesis. Sowemay assume there exists a subset R ⊆ V (G)−{s1, u, s2} such that iso(G−{s1, s, s2}−R) > |R|/2.
However it follows that

3
2
=
|R| + 3
2
−
|R|
2
<
|R ∪ {s1, u, s2}|

2
− iso(G− {s1, u, s2} − R) ≤ β = 1,

a contradiction.
Case 4. β = 3/2.
By (1), we have δ(G) ≥ 5. Let uv, vw ∈ E(G). Then for every X ⊆ V (G) − {u, v, w} with iso(G − {u, v, w} − X) ≥ 1, it

follows that

iso(G− {u, v, w} − X) ≤
|X ∪ {u, v, w}|

2
− β ≤

|X |
2
.

If iso(G−{u, v, w}−X) = 0, then obviously iso(G−{u, v, w}−X) ≤ |X |/2. Hence by the induction hypothesis,G−{u, v, w}
has a {K1,2, K1,3, K5}-factor, which can be extended to a {K1,2, K1,3, K5}-factor of G.
Consequently the theorem is proved. �

We now show that the condition in Theorem 4 is sharp. Consider a graph G given in Fig. 2. Then G satisfies iso(G− S) ≤
(|S| + 1)/2 for all S ⊂ V (G), but has no {K1,2, K1,3, K5}-factor. Hence the condition of the theorem is sharp in this sense. The
condition of Theorem 4 is sufficient but not necessary. For example, let G = K1,3 (or C3m, where m ≥ 2). Then G contains a
{K1,2, K1,3, K5}-factor but dissatisfies the condition of Theorem 4.
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