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1. Introduction

In this paper we consider component factors of graphs, which are defined as follows. For a set § of connected graphs, a
spanning subgraph F of a graph G is called an $-factor of G if every component of F is an element of §. An §-factor is also
referred as a component factor. There have been many papers on component factors of graphs, but in most cases, 4 contains
K, (i.e., a single edge), but it is relatively rare that 4 contains no small component. In addition, it is known that if 8 does not
contain K3, then in most cases finding a criterion for a graph to have an $§-factor is very difficult since finding a maximum
4-subgraph of a given graph is an NP-complete problem. In this paper we obtain several sufficient conditions in terms of
the number of isolated vertices for a graph to have a component factor such that each component has order at least three.

We begin with some notation and definitions. We consider a finite simple graph G with vertex set V(G) and edge set
E(G), which has neither loops nor multiple edges. We denote by |G| the order of G. For a subset S € V(G), G — S denotes the
subgraph of G induced by V(G) — S. For a vertex v of G, the degree of v and the neighborhood of v in G are denoted by dg(v)
and Ng(v), respectively. In particular, ds(v) = |Ng(v)|. The minimum degree and the maximum degree of G are denoted by
3(G) and A(G), respectively. Denote by «(G) the independence number of G, which is the maximum cardinality among the
independent sets of vertices of G. Let iso(G) and Iso(G) denote the number of isolated vertices and the set of isolated vertices
of G, respectively. In particular, iso(G) = |Iso(G)|. For sets X and Y, X C Y means that X is a proper subset of Y.

We denote the complete graph, the path and the cycle of order n by K, P, and C,, respectively. We denote the complete
bipartite graph by K;, . A criterion for a graph to have a star-factor is given below.

Theorem 1 (Amahashi and Kano [1]). A graph G has a star-factor, i.e., {K1 1, ..., K1 n}-factor, if and only if iso(G — S) < n|S|
forall S C V(G).

A graph R is called factor-critical if for every vertex x of R, R — x has a 1-factor (K,-factor). A graph H is called a sun if
H = K1, H = K or H is the corona of a factor-critical graph R with order at least three, i.e., H is obtained from R by adding
anew vertex w = w(v) together with a new edge vw for every vertex v of R (Fig. 1). A sun with order at least 6 is called a
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Fig. 1. A factor-critical graph R and the sun H obtained from R.

big sun. The number of sum components of G is denoted by sun(G). The next theorem gives a criterion for a graph to have
a path-factor each of whose components is of order at least three. Note that a shorter proof of the following theorem and a
formula for a maximum {Ps, P4, Ps}-subgraph of a graph was given in [2].

Theorem 2 (Kaneko [3]). A graph G has a {Ps, P4, Ps}-factor (i.e., P>s-factor)if and only if sun(G —S) < 2|S| forallS C V(G).
In this paper we consider the following problem, and give partial answers to the problem.

Problem 1. Let G be a graph and A be a positive rational number. If iso(G — S) < A|S|forall ¥ # S C V(G), what factor
does G have?

2. Component factors with large components

In this section, we first prove the next theorem.

Theorem 3. If a graph G satisfies
2
iso(G—15) < §|S| forallS C V(G),

then G has a {Ps, P4, Ps}-factor.

Proof. Suppose that G satisfies the condition but has no {Ps, P4, Ps}-factor. By Theorem 2, there exists a subset S C V(G)
such that sun(G — S) > 2IS|. Assume that there exist a isolated vertices, b K;’s and ¢ big sun components Hy, H,, . .., H,
where |H;| > 6, in G — S. We choose one vertex from each K, component of G — S, and denote the set of such vertices by X.
Then |X| = b. For each H;, let R; denote the factor-critical subgraph of H; and let Y; = V(R;). Theniso(H; —Y;) = |Y;| = |H;|/2.
LetY = U[_, Y;. So we have

Cc
. |H;l
iso(G—(SUXUY))=a+b+ —_—
Moreover, it follows that
sun(G —S)
SUXUY| < — + |X| 4+ Y| (fromsun(G—S) > 2|S|)

a+b+c )
_ afbte o N IHl

2 L)
il

3 —~ |H 3.

IA

This contradicts the condition that iso(G — S’) < (2/3)|S’| forallS’ C V(G). &

Let m > 1 be an integer Let G = K;;, + (2m + 1)K5, which is a graph obtained from K;, and (2m + 1)K, by joining every
vertex of K, to every vertex of (2m + 1)K,. Then G has no {Ps, P4, Ps}-factor. Let T C V(G) be an independent set with
IT| > 2. ThenT € V((2m 4 1)K;) and so [Ng(T)| = |T| + m. If |[T| < 2m, then i(G — Ng(T)) < 2|Ng(T)|/3, otherwise
i(G— Ng(T)) = 2|Ng(T)|/34+1=2m+ 1.Since §(G) > m+ 1> 2,50i(G—S) < 2|S|/3+ 1forallS C V(G). Therefore
the condition of Theorem 3 is sharp.

The next lemma is knows as Harlem Theorem, which is a generalization of Hall's Theorem.

Lemma 1. Let G be a bipartite graph with bipartition (U, W), andf : U — {1,2,3,.. .LIf W| =), f(x) and
ING(S)| = Y f(x) forall##S C U,

xeS

then G has a star-factor F such that each vertex u of U satisfies dr (u) = f(u), that is, every u is the center of a star Ky ) in F.
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We next consider graphs satisfying iso(G — S) < |S|/2 forall S C V(G).

Lemma 2. If |G| < 6andiso(G—S) < |S|/2forall S C V(G), then G has a {K1 2, K1 3, Ks}-factor.

Proof. It is clear that if G satisfies the condition, then §(G) > 2 and |G| > 3.If |G| = 3, then G is connected and has a
K; »-factor. If |G| = 4, then A(G) = 3, which implies that G has a K; 3-factor. Assume |G| = 5. If G has two non-adjacent
vertices x and y, then 2 = |{x, y}| = iso(G — (V(G) — {x,¥})) < |[V(G) — {x,y}|/2 = 3/2, a contradiction. Hence G is a
complete graph K5, and so it has a Ks-factor. Now we consider the case of |G| = 6. By Theorem 2, G has a {Ps, P4, Ps}-factor,
say F. Then F must be a Ps-factor, which is a K; ,-factor. Therefore the lemma holds. =

Theorem 4. If a graph G satisfies

S
iso(G—195) < % forallS C V(G),

then G has a {K; 2, K1 3, Ks5}-factor.
Proof. Itis clear that |G| > 3 and §(G) > 2. Use induction on the lexicographic order of (|G|, |E(G)|). So we assume that the
theorem holds for a graph H with either |H| < |G| or |[H| = |G| and |[E(H)| < |E(G)|. Moreover, we may assume that G is
connected and |G| > 7 by Lemma 2. Let
S
B = min {|2—| —iso(G — S)|S C V(G) and iso(G — S) > 1} .

Then B8 > 0 asiso(G — S) < |S|/2. For a vertex x with d;(x) = §(G), we have 8 < |[Ng(x)|/2 — iso(G — Ng(x)) and so

8(6) = dg(x) = IN¢(x)| = 2(B +is0(G — Ng(x))) = 2(B + 1). (1)
Take a maximal vertex subset S such that |S|/2 — iso(G — S) = 8. Then

S/

|2—| —iso(G—S) > B forallS C S’ C V(G). (2)

Claim 1. G — S has no component of order two or three.
Assume that G — S has a component D isomorphic to K;. Let V(D) = {x, y}. Then

SYUNIE 06— su ) = 21!

— (iso(G—=S)+1) <8,
a contradiction.
Assume that G — S has a component D of order three. Let V(D) = {x, y, z}. Then

w —is0(G — (SU {x,y}) = |S|T+2 — so(G =5+ 1) =4,

a contradiction to the maximality of S.
Claim 2. Every component D of G — S with |D| > 4 has a {K; », K1 3, Ks}-factor.

Let X be a non-empty subset of V(D). Then by (2), we have

ISUX] . IS| .
—iso(G— (SUX)) > B = > —iso(G —S).

Thus |X]/2 > iso(D — X), which implies that D has a {K; », K 3, Ks}-factor by the induction hypothesis.
By Claim 1,let G — S = ak; U (Dl U---u Dc), where V(aK;) = Iso(G — S) = {uy, ..., ug} and each D; is a component of
G — S with |D;| > 4.1t is immediate that

a=iso(G—S)=|S|/2—B8=>1. (3)
We construct a bipartite graph B with vertex set V(B) = SUU, where U = {uy, uy, ..., g}, such that two verticesu; € U
and x € S are adjacent in B if and only if u; and x are joined by an edge of G.
Claim 3. Forevery @ #Y C U, we have [Ng(Y)| > 2|Y| + 28, and |Ng(U)| = 2|U| 4+ 28 = |S|.

It follows from (3) and the choice of S that |[Ng(U)| = |S| = 2a + 28 = 2|U| + 28. Assume that there exists a subset
@ # Y’ C U such that Ng(Y') < 2|Y’| 4+ 28. Then, by the definition of 8, N3(Y") = Ng(Y’) C S satisfies

INe(Y)|
2

Y'] < iso(G — Ng(Y")) < B <Y,

a contradiction. Hence the claim holds.
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Fig. 2. A graph has no {K; ,, K; 3, K5 }-factor.

Claim 4. If 8 > 2, then the theorem holds.
Assume 8 > 2.Then §(G) > 6 by (1).Itis obvious that G has an edge e such that G—e is connected. Let X C V(G—e) = V(G).
Ifiso(G — X) > 1, then

X X
iso(G—e—X)fiso(G—X)—i—Zg|2—|_5+2§%.

If iso(G — X) = 0, then iso(G — e — X) < 2. Further iso(G — e — X) > 1 implies |X| > 5 as 6(G — e) > 5. Hence if
iso(G —X) = 0, theniso(G — e — X) < 2 < |X]|/2. Therefore by the induction hypothesis, G — e has a {K; », K; 3, Ks}-factor,
which is of course the desired factor of G.

From Claim 4 and the definition of 8, it remains to consider the cases of § € {0, 1/2, 1, 3/2}. Note that |S| = 2|U| + 28.

Case 1.8 = 0.

Deﬁnej'?: U—{1,2,3...}byf(u) =2forallu € U.Then by Lemma 1 and Claim 3, B has a K; ,-factor with centers in
U. Hence by Claim 2, G has a {K; 3, K73, Ks}-factor.

Case2.8 = 1/2.

In this case, |S| = 2|U| + 1. Choose a vertex u; € U and definef : U — {1,2,3,...} by f(uy) = 3 and f(u;) = 2 for all
uj € U — {uy}. Then [Ng(Y)| = >, f(x) forall Y € U by Claim 3. Hence by Lemma 1, B has a {K », K1 3}-factor. Therefore
we can obtain a {Kj », K7 3, Ks}-factor of G.

Case3.8 = 1.

Clearly, §(G) > 4 by (1). We consider two subcases.

Subcase 3.1. |U| > 2.

In this case, |[S| = 2|U| + 2. Choose two vertex uy,u, € U and definef : U — {1,2,3,...}byf(uy) = f(uy) = 3
and f(u;) = 2 forallu; € U — {uy, uz}. Then [Ng(Y)| > ) ., f(x) forall Y C U by Claim 3. Hence, by Lemma 1, B has a
{K1.2, K7 3}-factor and so G has a {K; 2, K1 3, Ks}-factor.

Subcase 3.2. |U| = 1.

Itis clear that |S| = 2|U|+2 =4and V(G) #SUUas |G| > 7.LetH =G— (SUU),U = {u}and S = {sq, S, S3, S4}.
Consider G — {s1, u, s3}. If iso(G — {sq, u, s} — X) < |X|/2 forallX € V(G) — {s1, u, 53}, then the theorem follows by the
induction hypothesis. So we may assume there exists a subsetR C V(G) —{s1, u, s,} such thatiso(G—{sy, s, S2} —R) > |R|/2.
However it follows that

3 _[RI+3 Rl [RU{s1,u, s}

— —_— < —— = —is0(G—{s;,u,55}—R) < B =1,
3 5 5 5 (G—{s1,u,2} —R) < B
a contradiction.
Case 4. B = 3/2.

By (1), we have §(G) > 5. Let uv, vw € E(G). Then for every X C V(G) — {u, v, w} with iso(G — {u, v, w} — X) > 1,it
follows that
- X U {u, v, wj < X1
2 2
Ifiso(G—{u, v, w}—X) = 0, then obviously iso(G—{u, v, w} —X) < |X]|/2. Hence by the induction hypothesis, G—{u, v, w}
has a {Kj 2, Kj 3, Ks}-factor, which can be extended to a {K; 3, K7 3, Ks}-factor of G.
Consequently the theorem is proved. W

iso(G — {u, v, w} — X)

We now show that the condition in Theorem 4 is sharp. Consider a graph G given in Fig. 2. Then G satisfies iso(G — S) <
(IS|+ 1)/2forall S C V(G), but has no {Kj », K1 3, K5 }-factor. Hence the condition of the theorem is sharp in this sense. The
condition of Theorem 4 is sufficient but not necessary. For example, let G = K 3 (or C3,, where m > 2). Then G contains a
{K1.2, K13, Ks}-factor but dissatisfies the condition of Theorem 4.
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