Toughness and $[a, b]$-factor with inclusion/exclusion properties*

Zefang Wu^{1}, Guizhen $\mathrm{Liu}^{2} \&$ Qinglin $\mathrm{Yu}^{2,3, \dagger}$
${ }^{1}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, P. R. China
${ }^{2}$ School of Mathematics, Shandong University, Jinan, Shandong, P. R. China
${ }^{3}$ Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

Abstract

In this paper, we investigate the existence of $[a, b]$-factors with inclusion/exclusion properties under the toughness condition. We prove that if an incomplete graph G satisfies $t(G) \geqslant(a-1)+\frac{a}{b}$ and a, b are two integers with $b>a>1$, then for any two given edges e_{1} and e_{2} there exist an $[a, b]$-factor including e_{1}, e_{2}; and an [a,b]-factor including e_{1} and excluding e_{2}; as well as an [a,b]-factor excluding e_{1}, e_{2} unless e_{1} and e_{2} have a common end in the case of $a=2$. For complete graphs, we obtain a similar result.

Keywords $[a, b]$-factor, inclusion/exclusion property, toughness.
MSC(2000): 05C70

>	Citation: Z. Wu, et al. Science China: Mathematics Journal Sample. Sci China Ser A, 2010, 53, doi:
$10.1007 / \mathrm{s} 11425-009-0044-4$	

1 Introduction

All graphs considered are simple and finite. We refer the reader to [1] for terminology and notation not defined here.

Let G be a graph. The degree of a vertex v in G is denoted by $\operatorname{deg}_{G}(v)$. For any disjoint subsets $X, Y \subseteq V(G), E_{G}(X, Y)$ denotes the set of edges with one end in X and the other in Y and $e_{G}(X, Y)=$ $\left|E_{G}(X, Y)\right|$. We use $E_{G}(X)$ to denote the set of edges with both ends in X.

For $X \subseteq V(G)$, the neighbor set of X in G, denoted by $N_{G}(X)$, is defined to be the set of all vertices adjacent to vertices in X. We use $G[X]$ to denote the subgraph induced by X.

For an integer-valued function f defined on a finite set X, we denote

$$
f(X)=\sum_{x \in X} f(x), \quad f(\emptyset)=0
$$

Given a function $f: V(G) \longrightarrow \mathbb{Z}^{+}$, we say that G has an f-factor if there exists a spanning subgraph F of G such that $\operatorname{deg}_{F}(v)=f(v)$ for every $v \in V(G)$. When $f(v)=k$ for all $v \in V(G), F$ is called a k-factor.

[^0]Let g, f be integer-valued functions defined on $V(G)$. Then G has a (g, f)-factor if there exists a spanning subgraph F of G such that $g(v) \leqslant \operatorname{deg}_{F}(v) \leqslant f(v)$ for every vertex $v \in V(G)$. In particular, if $g(v)=a, f(v)=b$ for all $v \in V(G), F$ is called an $[a, b]$-factor.

If G is not complete, the toughness of $G, t(G)$, is defined by

$$
t(G)=\min _{S}\left\{\frac{|S|}{\omega(G-S)}\right\}
$$

where the minimum is taken over all vertex cuts S of G, and $\omega(G)$ denotes the number of components in G. For complete graph K_{n}, we define $t\left(K_{n}\right)=n-1$. A graph G is k-tough if $t(G) \geqslant k$.

Chvátal introduced the concept of toughness in [4], and mainly studied the relationship between toughness and the existence of Hamilton cycles and k-factors. He conjectured that every k-tough graph G $\left(k \in \mathbb{Z}^{+}\right)$has a k-factor if $k|V(G)|$ is even. Enomoto, Jackson, Katerinis and Saito [5] confirmed Chvátal's conjecture and showed that the result is sharp. Chen [2], Katerinis and Wang [7], Wang, Wu and Yu [11] studied the relationships between k-toughness of graphs and the existences of f-factors with various inclusion/exclusion properties.

As a generalization of Chvátal's conjecture, Katerinis [6] studied the relationship between toughness and the existence of f-factors, as well as $[a, b]$-factors. Katerinis proved the following theorem.

Theorem 1.1 (Katerinis [6]). Let G be a graph and a, b be two positive integers with $b \geqslant a$. If $t(G) \geqslant$ $(a-1)+\frac{a}{b}$ and $a|V(G)| \equiv 0(\bmod 2)$ when $a=b$, then G has an $[a, b]$-factor.

Later, Chen and Liu obtained a stronger result.
Theorem 1.2 (Chen and Liu [3]). Let G be a graph and a, b be integers with $b \geqslant a \geqslant 2$. If $t(G) \geqslant a-1+\frac{a}{b}$ and $a|V(G)|$ is even when $a=b$, then for every edge e of G, there exists an $[a, b]$-factor containing e, and there exists another $[a, b]$-factor excluding e.

In this paper, we consider the existence of $[a, b]$-factors with inclusion and/or exclusion of two edges in terms of toughness.

2 Preliminary Results

In order to prove the main theorems, we use the characterization of (g, f)-factors due to Lovász [9].
Theorem $2.1((g, f)$-Factor Theorem). Let G be a graph and f, g be integer-valued functions defined on $V(G)$ such that $g(x) \leqslant f(x)$ for all $x \in V(G)$. Then G has a (g, f)-factor if and only if for all disjoint sets $S, T \subseteq V(G)$

$$
q_{G}(S, T)+\sum_{x \in T}\left(g(x)-\operatorname{deg}_{G-S}(x)\right) \leqslant f(S)
$$

where $q_{G}(S, T)$ denotes the number of components C of $G-(S \cup T)$ such that $g(x)=f(x)$ for all $x \in V(C)$ and $e_{G}(T, V(C))+\sum_{x \in V(C)} f(x) \equiv 1(\bmod 2)$. (Hereafter, such a component C is called odd component.)

The lemma below can be deduced from Theorem 2.1.
Lemma 2.2 (Lam et al. [8]). Let G be a graph, and g and f be two integer-valued functions defined on $V(G)$ such that $0 \leqslant g(x)<f(x) \leqslant \operatorname{deg}_{G}(x)$ for all $x \in V(G)$. Let E_{1} and E_{2} be two disjoint subsets of $E(G)$. Then G has a (g, f)-factor F such that $E_{1} \subseteq E(F)$ and $E_{2} \cap E(F)=\emptyset$ if and only if for any disjoint subsets S and T of $V(G)$,

$$
\sum_{x \in T}\left(g(x)-\operatorname{deg}_{G-S}(x)\right) \leqslant f(S)-\alpha\left(S, T ; E_{1}, E_{2}\right)-\beta\left(S, T ; E_{1}, E_{2}\right)
$$

where $U=V(G)-(S \cup T), \alpha\left(S, T ; E_{1}, E_{2}\right)=2\left|E_{1} \cap E_{G}(S)\right|+\left|E_{1} \cap E_{G}(S, U)\right|$ and $\beta\left(S, T ; E_{1}, E_{2}\right)=$ $2\left|E_{2} \cap E_{G}(T)\right|+\left|E_{2} \cap E_{G}(T, U)\right|$.

In addition, we also need the following lemmas.
Lemma 2.3. Let G be a graph and a, b be two positive integers with $b>a$. Suppose that there exists a pair of disjoint subsets S and T of $V(G)$ such that

$$
\begin{equation*}
\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right) \geqslant b|S|-3 \tag{1}
\end{equation*}
$$

(a) Given S, if T is a minimal set with respect to (1), then $\operatorname{deg}_{G-S}(v)<a$ for all $v \in T$;
(b) given T, if S is a minimal set with respect to (1), then $\operatorname{deg}_{T}(v)>b$ for all $v \in S$.

Proof. As T is minimal with respect to (1), for any vertex $v \in T$,

$$
\begin{equation*}
\sum_{x \in T-v}\left(a-\operatorname{deg}_{G-S}(x)\right)<b|S|-3 \tag{2}
\end{equation*}
$$

Combining (1) and (2), we have $a-\operatorname{deg}_{G-S}(v)>0$, i.e., $\operatorname{deg}_{G-S}(v)<a$.
Similarly, as S is minimal with respect to (1), for any vertex $v \in S$,

$$
\begin{equation*}
\sum_{x \in T}\left(a-\operatorname{deg}_{G-(S-v)}(x)\right)<b|S-v|-3 . \tag{3}
\end{equation*}
$$

Combining (1) with (3), we have

$$
e_{G}(S, T)-e_{G}(S-v, T)>b
$$

Thus $\operatorname{deg}_{T}(v)=e_{G}(S, T)-e_{G}(S-v, T)>b$.
A subset I of $V(G)$ is an independent set of G if no two vertices of I are adjacent in G and a subset C of $V(G)$ is a covering set if every edge of G has at least one end in C.

Lemma 2.4 (Katerinis [6]). Let G be a graph and T_{1}, \ldots, T_{a-1} (T_{j} allows to be empty) be a partition of $V(G)$ such that $\operatorname{deg}_{G}(x) \leqslant j$ if $x \in T_{j}$. Then there exist a covering set C and an independent set I of $V(G)$ such that

$$
\sum_{j=1}^{a-1}(a-j) c_{j} \leqslant \sum_{j=1}^{a-1}(a-1)(a-j) i_{j}
$$

where $\left|C \cap T_{j}\right|=c_{j}$ and $\left|I \cap T_{j}\right|=i_{j}$ for every $1 \leqslant j \leqslant a-1$.
By the definition of toughness, we can easily show the following result.
Lemma 2.5. Let G be an incomplete graph with toughness $t(G) \geqslant(a-1)+\frac{a}{b}$, where a, b are two positive integers with $b \geqslant a \geqslant 2$. Then $\delta(G)>a$. Moreover, if $a>2$, then $\delta(G)>a+1$.
Proof. Since G is not complete, then $\delta(G) \geqslant 2 t(G) \geqslant 2 a-2+\frac{2 a}{b}$. The conclusion follows directly.

3 Main Theorems

We consider the inclusion and/or exclusion properties for complete graphs and incomplete graphs, respectively. We start with the case that G is an incomplete graph.

Lemma 3.1. Let G be a graph with toughness $t(G) \geqslant a-1+\frac{a}{b}$, where a, b are integers satisfying $b>a \geqslant 2$. Let S, T be a pair of disjoint subsets of $V(G)$. If $S \neq \emptyset$ and $T \neq \emptyset$, then

$$
\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right) \leqslant b|S|-4
$$

Proof. Suppose, to the contrary, that there exists a pair of disjoint subsets of $V(G), S$ and T with $|S|>0,|T|>0$ satisfying:

$$
\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right)>b|S|-4
$$

By integrality,

$$
\begin{equation*}
\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right) \geqslant b|S|-3 \tag{4}
\end{equation*}
$$

Moreover, suppose that S, T is a pair of minimal sets with respect to (4). Then by Lemma 2.3, for any vertex $x \in T$, $\operatorname{deg}_{G-S}(x)<a$ and for any vertex $x \in S,|T| \geqslant \operatorname{deg}_{T}(x)>b$ and so $|T| \geqslant b+1$.

For all $i, 0 \leqslant i \leqslant a-1$, define

$$
T_{i}=\left\{x \in T: \operatorname{deg}_{G-S}(x)=i\right\}
$$

Denote $\left|T_{0}\right|=t_{0}$ and $G_{0}=G\left[T-T_{0}\right]=G\left[T_{1} \cup \cdots \cup T_{a-1}\right]$. Clearly, $\operatorname{deg}_{G_{0}}(x) \leqslant i$ for every $x \in T_{i}$. So, by Lemma 2.5, there exist a covering set C and an independent set I of G_{0} such that

$$
\begin{equation*}
\sum_{j=1}^{a-1}(a-1)(a-j) i_{j} \geqslant \sum_{j=1}^{a-1}(a-j) c_{j} \tag{5}
\end{equation*}
$$

where $i_{j}=\left|I \cap T_{j}\right|$ and $c_{j}=\left|C \cap T_{j}\right|$ for all $j, 1 \leqslant j \leqslant a-1$. Clearly, We may assume that I is maximal in G_{0}. Moreover, we could assume that $I \cap C=\emptyset$ and $I \cup C=V\left(G_{0}\right)$. Note that $I \cup C=V\left(G_{0}\right)$ is followed from maximality of I and definition of covering sets. If $I \cap C \neq \emptyset$, set $C_{0}=C-I$. Clearly, the new set C_{0} is still a covering set and $I \cup C_{0}=V\left(G_{0}\right)$. Now $|I|=\sum_{j=1}^{a-1} i_{j} \geqslant 1$. According to (4),

$$
\begin{equation*}
a t_{0}+\sum_{j=1}^{a-1}(a-j) i_{j}+\sum_{j=1}^{a-1}(a-j) c_{j} \geqslant b|S|-3 \tag{6}
\end{equation*}
$$

Let $Y=S \cup C \cup N_{G-S-T}(I)$. Then

$$
|Y|=\left|S \cup C \cup N_{G-S-T}(I)\right| \leqslant|S|+\sum_{j=1}^{a-1} j \cdot i_{j}+|C|-e_{G}(C, I)
$$

and $\omega(G-Y) \geqslant \sum_{j=1}^{a-1} i_{j}+t_{0}$. From the maximality of I, it follows that $|C| \leqslant e_{G}(C, I)$ and if the equality in $|C| \leqslant e_{G}(C, I)$ holds, then $\operatorname{deg}_{I}(x)=1$ for all $x \in C$. We claim that

$$
|Y| \geqslant t(G) \cdot \omega(G-Y)
$$

If Y is a cut set, we are done. Otherwise, $1 \leqslant\left|I \cup T_{0}\right| \leqslant \omega(G-Y)=1$ and so $|I|=1$. Therefore, any vertex in C has at most one neighbor not in Y, and hence for every vertex $x \in T,|Y| \geqslant|S|+\operatorname{deg}_{G-S}(x) \geqslant$ $\operatorname{deg}_{G}(x) \geqslant \delta(G) \geqslant t(G)$.

Next, we show the following claim.
Claim. $C \neq \emptyset$.
If $C=\emptyset$, then $|T|=t_{0}+|I|$. Since $|S| \geqslant|Y|-\sum_{j=1}^{a-1} j \cdot i_{j} \geqslant t(G) \cdot\left(t_{0}+\sum_{j=1}^{a-1} i_{j}\right)-\sum_{j=1}^{a-1} j \cdot i_{j}$ and $t(G) \geqslant a-1+\frac{a}{b}$, it follows from (6) that

$$
a t_{0}+\sum_{j=1}^{a-1}(a-j) i_{j} \geqslant(b a-b+a) t_{0}+\sum_{j=1}^{a-1}(b a-b+a-b j) i_{j}-3
$$

Then by $b>a \geqslant 2$ we have $a-1 \leqslant(a-1)\left(|T|-t_{0}\right) \leqslant \sum_{j=1}^{a-1}(b a-b-b j+j) i_{j} \leqslant 3-(b a-b) t_{0} \leqslant 3-3 t_{0}$. On the other hand, as $|T| \geqslant b+1$ and $b>a \geqslant 2$, we have $(a-1)|T| \geqslant 4$ if $t_{0}=0$ and $(a-1)\left(|T|-t_{0}\right) \geqslant$ $a-1 \geqslant 1>3-3 t_{0}$ if $t_{0}>1$, which is impossible in either case. The claim is proved.

As $t_{0} \geqslant 0$ and $b>a \geqslant 2$, there are several cases to consider.
Case 1. $t_{0}=0, b=3$.
Note that when $b=3$ and $a=2$, for every vertex $x \in C$, since $x \in T$, $\operatorname{deg}_{G-S}(x)<a=2$, and hence $\operatorname{deg}_{I}(x)=1$.

We claim that $G[C]$ is either a singleton or a complete subgraph. Suppose there are two distinct nonadjacent vertices x_{0}, y_{0} in C. Let $Y^{\prime}=Y-\left\{x_{0}, y_{0}\right\}$. Since $\operatorname{deg}_{I}\left(x_{0}\right)=\operatorname{deg}_{I}\left(y_{0}\right)=1$, we have $\omega\left(G-Y^{\prime}\right) \geqslant \sum_{j=1}^{a-1} i_{j}$ and $\left|Y^{\prime}\right| \leqslant|S|+\sum_{j=1}^{a-1} j \cdot i_{j}-2$.

We show that $\left|Y^{\prime}\right| \geqslant t(G) \cdot \sum_{j=1}^{a-1} i_{j}$. If $\sum_{j=1}^{a-1} i_{j}>1$, as $\omega\left(G-Y^{\prime}\right) \geqslant \sum_{j=1}^{a-1} i_{j}>1, Y^{\prime}$ is a vertex cut. Hence, $\left|Y^{\prime}\right| \geqslant t(G) \cdot \omega\left(G-Y^{\prime}\right) \geqslant t(G) \cdot \sum_{j=1}^{a-1} i_{j}$. If $\sum_{j=1}^{a-1} i_{j}=1$, let $I^{\prime}=\left\{x_{0}, y_{0}\right\}$ and $C^{\prime}=T-I^{\prime}$. Clearly, I^{\prime} is independent in G_{0} and $\left|I^{\prime}\right|>|I|$, contradicting with the maximality of I.

Thus, $|S| \geqslant\left|Y^{\prime}\right|-\sum_{j=1}^{a-1} j \cdot i_{j}+2 \geqslant \sum_{j=1}^{a-1}(t(G)-j) i_{j}+2$. Using (5), (6) and $t(G) \geqslant a-1+\frac{a}{b}$, we obtain

$$
\sum_{j=1}^{a-1}(a-1)(a-j) i_{j} \geqslant \sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}+2 b-3>\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}
$$

which is impossible, because $(a-1)(a-j) \leqslant b a-b-b j+j$ and $i_{j} \geqslant 0$ for all $j, 1 \leqslant j \leqslant a-1$.
Now $|C| \leqslant \operatorname{deg}_{G-S}(x)<a=2$ for every vertex $x \in C$. By Claim, $C \neq \emptyset$. Then $|C|=1$. Let $Y^{\prime \prime}=Y-C$. Clearly, $\left|Y^{\prime \prime}\right| \leqslant|S|+\sum_{j=1}^{a-1} j \cdot i_{j}-1, \omega\left(G-Y^{\prime \prime}\right) \geqslant \sum_{j=1}^{a-1} i_{j}$ and $\left|Y^{\prime \prime}\right| \geqslant t(G) \cdot \sum_{j=1}^{a-1} i_{j}$. It follows from (6) and $|S| \geqslant \sum_{j=1}^{a-1}(t(G)-j) i_{j}+1$ that

$$
\sum_{j=1}^{a-1}(a-j) i_{j}+(a-1) \geqslant \sum_{j=1}^{a-1}(b a-b+a-b j) i_{j}+b-3 .
$$

Therefore, $\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j} \leqslant a-1=1$. That is, $|I|=i_{1} \leqslant 1$ and thus $|T|=|I|+|C|=2$, a contradiction.

Case 2. $t_{0}=0, b>3$ or $t_{0}=1, b=3$.
We may assume that for any vertex $x \in C, \operatorname{deg}_{I}(x)=1$. If there exists a vertex in C with at least two neighbors in I, then $|Y| \leqslant|S|+\sum_{j=1}^{a-1} j \cdot i_{j}-1$. Thus, $|S| \geqslant t(G) \cdot\left(t_{0}+\sum_{j=1}^{a-1} i_{j}\right)-\sum_{j=1}^{a-1} j \cdot i_{j}+1$. Using (5) and (6), we have

$$
\sum_{j=1}^{a-1}(a-1)(a-j) i_{j} \geqslant(b a-b) t_{0}+\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}+b-3>\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}
$$

a contradiction.
Now, let $y_{0} \in C$ and $Y^{\prime}=Y-\left\{y_{0}\right\}$. Clearly, $\left|Y^{\prime}\right| \leqslant|S|+\sum_{j=1}^{a-1} j \cdot i_{j}-1$ and $\omega\left(G-Y^{\prime}\right) \geqslant t_{0}+\sum_{j=1}^{a-1} i_{j}$ as $\operatorname{deg}_{I}\left(y_{0}\right)=1$. Similarly, it is not difficult to show that $\left|Y^{\prime}\right| \geqslant t(G) \cdot\left(t_{0}+\sum_{j=1}^{a-1} i_{j}\right)$. Thus, $|S| \geqslant$ $t(G) \cdot\left(t_{0}+\sum_{j=1}^{a-1} i_{j}\right)-\sum_{j=1}^{a-1} j \cdot i_{j}+1$.

Using (5) and (6) again, we have $\sum_{j=1}^{a-1}(a-1)(a-j) i_{j}>\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}$, a contradiction.
Case 3. $t_{0}=1, b>3$ or $t_{0} \geqslant 2$.
Note that $|S| \geqslant|Y|-\sum_{j=1}^{a-1} j \cdot i_{j} \geqslant t(G) \cdot\left(t_{0}+\sum_{j=1}^{a-1} i_{j}\right)-\sum_{j=1}^{a-1} j \cdot i_{j}$ and $t(G) \geqslant a-1+\frac{a}{b}$. Therefore, according to (5) and (6),

$$
\sum_{j=1}^{a-1}(a-1)(a-j) i_{j} \geqslant(b a-b) t_{0}+\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}-3
$$

If $t_{0} \geqslant 2$ (resp. $t_{0}=1, b>3$), as $b>a \geqslant 2$, then $(b a-b) t_{0} \geqslant 2(b a-b) \geqslant 2 b \geqslant 6$ (resp. $(b a-b) t_{0}=$ $b a-b \geqslant b>3)$, and thus $\sum_{j=1}^{a-1}(a-1)(a-j) i_{j}>\sum_{j=1}^{a-1}(b a-b-b j+j) i_{j}$, a contradiction.

The proof is complete.
Now we are ready to prove the main theorem.

Theorem 3.2. Let a, b be two integers with $b>a>1$ and $e_{1}=u_{1} u_{2}, e_{2}=v_{1} v_{2}$ be two distinct edges of an incomplete graph G. If $t(G) \geqslant(a-1)+\frac{a}{b}$, then G contains an $[a, b]$-factor including e_{1} and e_{2}; and an $[a, b]$-factor including e_{1} and excluding e_{2}; as well as an $[a, b]$-factor excluding e_{1} and e_{2} unless e_{1} and e_{2} have a common end in the case of $a=2$.

Proof. Let E_{1}, E_{2} be two edge sets (one of E_{1} and E_{2} is allowed to be empty) with $E_{1} \cup E_{2}=\left\{e_{1}, e_{2}\right\}$. The theorem holds if and only if G contains an $[a, b]$-factor F such that $E_{1} \subseteq E(F)$ and $E_{2} \cap E(F)=\emptyset$. Suppose, to the contrary, that G does not contain such an $[a, b]$-factor F. Then, by Lemma 2.2, there exists a pair of disjoint subsets S, T of $V(G)$ such that

$$
\begin{equation*}
\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right)>b|S|-\alpha\left(S, T ; E_{1}, E_{2}\right)-\beta\left(S, T ; E_{1}, E_{2}\right) \tag{7}
\end{equation*}
$$

where $U=V(G)-S-T, \alpha\left(S, T ; E_{1}, E_{2}\right)=2\left|E_{1} \cap E_{G}(S)\right|+\left|E_{1} \cap E_{G}(S, U)\right|$ and $\beta\left(S, T ; E_{1}, E_{2}\right)=$ $2\left|E_{2} \cap E_{G}(T)\right|+\left|E_{2} \cap E_{G}(T, U)\right|$.

On the other hand, as $t(G) \geqslant(a-1)+\frac{a}{b}$, by Theorem 1.1, G contains an $[a, b]$-factor. It follows from Theorem 2.1 that

$$
\begin{equation*}
q_{G}(S, T)+\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right) \leqslant b|S| \tag{8}
\end{equation*}
$$

By assumption $b>a$, we have $q_{G}(S, T)=0$.
Claim. $S \neq \emptyset$ and $T \neq \emptyset$.
Clearly, $S \cup T \neq \emptyset$. Otherwise, $\alpha\left(S, T ; E_{1}, E_{2}\right)=0, \beta\left(S, T ; E_{1}, E_{2}\right)=0$, and then (7) yields $\sum_{x \in T}(a-$ $\left.\operatorname{deg}_{G-S}(x)\right)>b|S|$, a contradiction to (8).

Case 1. $S=\emptyset$ and $T \neq \emptyset$. Then $\alpha\left(S, T ; E_{1}, E_{2}\right)=0$. It follows from (7) and (8) that $\beta\left(S, T ; E_{1}, E_{2}\right) \neq$ 0 . Then $E_{2} \neq \emptyset$, and hence either $E_{2}=\left\{e_{2}\right\}$ or $E_{2}=\left\{e_{1}, e_{2}\right\}$.

If $E_{2}=\left\{e_{2}\right\}$, according to (7), there exist two subsets $S=\emptyset, T \neq \emptyset$ of $V(G)$ such that $\sum_{x \in T}(a-$ $\left.\operatorname{deg}_{G-S}(x)\right)>b|S|-\alpha\left(S, T ; E_{1}^{\prime}, E_{2}^{\prime}\right)-\beta\left(S, T ; E_{1}^{\prime}, E_{2}^{\prime}\right)$ for $E_{1}^{\prime}=\emptyset$ and $E_{2}^{\prime}=\left\{e_{2}\right\}$. From Lemma 2.2, G contains no $[a, b]$-factors excluding e_{2}, a contradiction to Theorem 1.2.

Next assume $E_{2}=\left\{e_{1}, e_{2}\right\}$, which is the case of excluding e_{1} and e_{2}. Then (7) becomes

$$
\sum_{x \in T}\left(a-\operatorname{deg}_{G}(x)\right)>-2\left|E_{2} \cap E_{G}(T)\right|-\left|E_{2} \cap E_{G}(U, T)\right|
$$

If $a=2$, then $\delta(G)>a$ by Lemma 2.5. So, for any vertex $x \in T, \operatorname{deg}_{G}(x) \geqslant a+1$. Hence $-|T| \geqslant \sum_{x \in T}\left(a-\operatorname{deg}_{G}(x)\right)>-2\left|E_{2} \cap E_{G}(T)\right|-\left|E_{2} \cap E_{G}(U, T)\right|$. According to the relationship between E_{2} and $E_{G}(T)$ or between E_{2} and $E_{G}(U, T)$, there are several cases to discuss. If $E_{2} \subseteq E_{G}(T)$, then $|T| \geqslant 4$ because e_{1}, e_{2} share no common ends when $a=2$ by assumption. But $-|T|>-2\left|E_{2} \cap E_{G}(T)\right|-$ $\left|E_{2} \cap E_{G}(U, T)\right|=-4$, a contradiction. For other cases, we can deduce contradictions in similar ways.

If $a \geqslant 3$, then $\delta(G)>a+1$ by Lemma 2.5. Thus $\operatorname{deg}_{G}(x) \geqslant a+2$ for all $x \in T$. Therefore, $-2|T| \geqslant \sum_{x \in T}\left(a-\operatorname{deg}_{G}(x)\right)>-2\left|E_{2} \cap E_{G}(T)\right|-\left|E_{2} \cap E_{G}(U, T)\right|$, which is impossible.

Case 2. $S \neq \emptyset$ and $T=\emptyset$. Then $\beta\left(S, T ; E_{1}, E_{2}\right)=2\left|E_{2} \cap E_{G}(T)\right|+\left|E_{2} \cap E_{G}(T, U)\right|=0$. It follows from (7) and (8) again that $\alpha\left(S, T ; E_{1}, E_{2}\right) \neq 0$. Thus, $\left|E_{1}\right| \geqslant 1$, and then $E_{1}=\left\{e_{1}\right\}$ or $E_{1}=\left\{e_{1}, e_{2}\right\}$.

If $E_{1}=\left\{e_{1}\right\}$, from (7), we have $b|S|<\alpha\left(S, T ; E_{1}, E_{2}\right)=2\left|E_{1} \cap E_{G}(S)\right|+\left|E_{1} \cap E_{G}(S, U)\right| \leqslant 2$, which is impossible since $b>a>1$.

If $E_{1}=\left\{e_{1}, e_{2}\right\}$, then $b|S|-2\left|E_{1} \cap E_{G}(S)\right|-\left|E_{1} \cap E_{G}(S, U)\right|<\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right)=0$. As $b \geqslant 3$, it follows that $3|S|<2\left|E_{1} \cap E_{G}(S)\right|+\left|E_{1} \cap E_{G}(S, U)\right|$. Note that $E_{1}=\left\{e_{1}, e_{2}\right\}$. There are several cases to discuss based on the relationship between E_{1} and $E_{G}(S)$ or between E_{1} and $E_{G}(S, U)$. We only consider the case of $E_{1} \subseteq E_{G}(S)$, i.e., $e_{1} \in E_{G}(S)$ and $e_{2} \in E_{G}(S)$. For other cases, the proofs go along the same
line. If $e_{1} \in E_{G}(S)$ and $e_{2} \in E_{G}(S)$, then $|S| \geqslant 3$ and $3|S| \geqslant 9>4=2\left|E_{1} \cap E_{G}(S)\right|+\left|E_{1} \cap E_{G}(S, U)\right|$, a contradiction.

This completes the proof of the Claim.
Now as $S \neq \emptyset$ and $T \neq \emptyset$, it follows from Lemma 3.1 that

$$
\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right) \leqslant b|S|-4
$$

But $\alpha\left(S, T ; E_{1}, E_{2}\right)+\beta\left(S, T ; E_{1}, E_{2}\right) \leqslant 4$ and (7) reads $\sum_{x \in T}\left(a-\operatorname{deg}_{G-S}(x)\right)>b|S|-4$, a contradiction.

We call a graph G an $[a, b]$-graph if $a \leqslant \operatorname{deg}_{G}(v) \leqslant b$ for all $v \in V(G)$. For almost regular graphs, Thomassen [10] proved the existence of all "almost regular factors".

Lemma 3.3 (Thomassen [10]). If G is an $[r, r+1]$-graph, then G has a $[k, k+1]$-factor for all k, $0 \leqslant k \leqslant r$.

Applying the above result, we obtain an inclusion/exclusion theorem for complete graphs.
Theorem 3.4. Let a, b be two integers with $b>a>1$ and $e_{1}=u_{1} v_{1}, e_{2}=u_{2} v_{2}$ be two distinct edges of a complete graph G.
(a) If $t(G) \geqslant(a-1)+\frac{a}{b}$, then G contains an $[a, b]$-factor including e_{1} and e_{2};
(b) if $t(G) \geqslant a+\frac{a}{b}$, it contains an $[a, b]$-factor including e_{1} and excluding e_{2}; as well as an $[a, b]$-factor excluding e_{1} and e_{2} if $V\left(e_{1}\right) \cap V\left(e_{2}\right)=\emptyset$.
Proof. Clearly, there exists a Hamiltonian cycle C_{G}, in G, which includes e_{1} and e_{2}. Moreover, $G_{1}=$ $G-E\left(C_{G}\right)$ is a $(\delta(G)-2)$-regular graph. If $t(G) \geqslant a-1+\frac{a}{b}$, then $\delta(G)=t(G) \geqslant a$. As $0 \leqslant a-2 \leqslant \delta(G)-2$, by Lemma 3.3, G_{1} contains an $[a-2, a-1]$-factor F_{1}. Then $C_{G} \cup F_{1}$ is a desired [$\left.a, b\right]$-factor of G, including e_{1} and e_{2}.

Since G is complete, $G-e_{2}$ contains a Hamiltonian cycle C_{G}^{\prime} including e_{1} when $|V(G)| \geqslant 5$. Now $G_{2}=G-e_{2}-E\left(C_{G}^{\prime}\right)$ is a $[\delta(G)-3, \delta(G)-2]$-graph. As $t(G) \geqslant a+\frac{a}{b}, 0 \leqslant a-2 \leqslant \delta(G)-3$ and G_{2} has an $[a-2, a-1]$-factor F_{2} by Lemma 3.3. Therefore, $C_{G}^{\prime} \cup F_{2}$ is an $[a, a+1]$-factor, also an [$\left.a, b\right]$-factor of G including e_{1} and excluding e_{2}. If $|V(G)|=4$, it is not difficult to show that G contains a [2,3]-factor including one edge and excluding another.

It remains to show that G contains an $[a, b]$-factor excluding e_{1} and e_{2}. Since $V\left(e_{1}\right) \cap V\left(e_{2}\right)=\emptyset$, $G_{3}=G-\left\{e_{1}, e_{2}\right\}$ is a $[\delta(G)-1, \delta(G)]$-graph. As $\delta(G) \geqslant a+1, G_{3}$ has an $[a, a+1]$-factor F_{3} by Lemma 3.3. Trivially, F_{3} is the desired $[a, b]$-factor.

4 Remarks

The conditions in Theorems 3.2 and 3.4 are necessary for the conclusions.
Remark 4.1. The condition $a>1$ is necessary. If $a=1$, there exist many graphs with toughness $t(G) \geqslant \frac{1}{b}$ but containing no [1,b]-factors including/excluding one edge of G. Such examples can be found in [3].
Remark 4.2. When discussing the exclusion of e_{1} and e_{2}, the condition $V\left(e_{1}\right) \cap V\left(e_{2}\right)=\emptyset$ is necessary, when G is complete or $a=2$. Let $G=K_{a+2}$ and e_{1}, e_{2} are two edges with a common end. It is easy to see that G contains no $[a, b]$-factor excluding e_{1}, e_{2}. For the case of $a=2$, see Figure 1 .

Acknowledgements The authors are indebted to the anonymous referees for their valuable comments and suggestions.

Figure 1: A graph with toughness $\frac{3}{2}$ contains no [2,4]-factor excluding e_{1}, e_{2}

References

1 Bondy J A, Murty U S R. Graph Theory. GTM-244, Springer, Berlin, 2008
2 Chen C P. Toughness of graphs and k-factors with given properties. Ars Combin, 1992, 34: 55-64
3 Chen C P, Liu G. Toughness of graphs and [a,b]-factors with prescribed properties. J Combin Math Combin Comput, 1992, 12: 215-221
4 Chvátal V. Tough graphs and Hamiltonian circuits. Discrete Math, 1973, 5: 215-228
5 Enomoto H, Jackson B, Katerinis P, Saito A. Toughness and the existence of k-factors. J Graph Theory, 1985, 9: 87-95
6 Katerinis P. Toughness of graphs and the existence of factors. Discrete Math, 1990, 80: 81-92
7 Katerinis P, Wang T. Toughness of graphs and 2-factors with given properties. Ars Combin, (to appear)
8 Lam P C B, Liu G, Li G, Shui W C. Orthogonal (g, f)-factorization in networks. Networks, 2000, 35: 274-278
9 Lovász L. Subgraphs with prescribed valencies. J Combin Theory, 1970, 8: 391-416
10 Thomassen C. A remark on the factor theorems of Lovász and Tutte. J Graph Theory, 1981, 5: 441-442
11 Wang T, Wu Z, Yu Q L. 2-Tough graphs and f-factors with given properties. Utilitas Math, (to appear)

[^0]: *This work is supported by Natural Sciences and Engineering Research Council of Canada, Shandong University Visiting Scholar Fund and PCSIRT Project of the Ministry of Education of China.
 ${ }^{\dagger}$ Corresponding author: yu@tru.ca

