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1 Introduction

All graphs considered are simple and finite. We refer the reader to [1] for terminology and notation not

defined here.

Let G be a graph. The degree of a vertex v in G is denoted by degG(v). For any disjoint subsets

X,Y ⊆ V (G), EG(X,Y ) denotes the set of edges with one end in X and the other in Y and eG(X,Y ) =

|EG(X,Y )|. We use EG(X) to denote the set of edges with both ends in X.

For X ⊆ V (G), the neighbor set of X in G, denoted by NG(X), is defined to be the set of all vertices

adjacent to vertices in X. We use G[X] to denote the subgraph induced by X.

For an integer-valued function f defined on a finite set X, we denote

f(X) =
∑
x∈X

f(x), f(∅) = 0.

Given a function f : V (G) −→ Z+, we say that G has an f-factor if there exists a spanning subgraph

F of G such that degF (v) = f(v) for every v ∈ V (G). When f(v) = k for all v ∈ V (G), F is called a

k-factor.
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Let g, f be integer-valued functions defined on V (G). Then G has a (g, f)-factor if there exists a

spanning subgraph F of G such that g(v) 6 degF (v) 6 f(v) for every vertex v ∈ V (G). In particular, if

g(v) = a, f(v) = b for all v ∈ V (G), F is called an [a, b]-factor.

If G is not complete, the toughness of G, t(G), is defined by

t(G) = min
S

{
|S|

ω(G− S)

}
,

where the minimum is taken over all vertex cuts S of G, and ω(G) denotes the number of components in

G. For complete graph Kn, we define t(Kn) = n− 1. A graph G is k-tough if t(G) > k.

Chvátal introduced the concept of toughness in [4], and mainly studied the relationship between tough-

ness and the existence of Hamilton cycles and k-factors. He conjectured that every k-tough graph G

(k ∈ Z+) has a k-factor if k|V (G)| is even. Enomoto, Jackson, Katerinis and Saito [5] confirmed Chvátal’s

conjecture and showed that the result is sharp. Chen [2], Katerinis and Wang [7], Wang, Wu and Yu

[11] studied the relationships between k-toughness of graphs and the existences of f -factors with various

inclusion/exclusion properties.

As a generalization of Chvátal’s conjecture, Katerinis [6] studied the relationship between toughness

and the existence of f -factors, as well as [a, b]-factors. Katerinis proved the following theorem.

Theorem 1.1 (Katerinis [6]). Let G be a graph and a, b be two positive integers with b > a. If t(G) >
(a− 1) + a

b and a|V (G)| ≡ 0 (mod 2) when a = b, then G has an [a, b]-factor.

Later, Chen and Liu obtained a stronger result.

Theorem 1.2 (Chen and Liu [3]). Let G be a graph and a, b be integers with b > a > 2. If t(G) > a−1+ a
b

and a|V (G)| is even when a = b, then for every edge e of G, there exists an [a, b]-factor containing e, and

there exists another [a, b]-factor excluding e.

In this paper, we consider the existence of [a, b]-factors with inclusion and/or exclusion of two edges in

terms of toughness.

2 Preliminary Results

In order to prove the main theorems, we use the characterization of (g, f)-factors due to Lovász [9].

Theorem 2.1 ((g, f)-Factor Theorem). Let G be a graph and f, g be integer-valued functions defined on

V (G) such that g(x) 6 f(x) for all x ∈ V (G). Then G has a (g, f)-factor if and only if for all disjoint

sets S, T ⊆ V (G)

qG(S, T ) +
∑
x∈T

(
g(x)− degG−S(x)

)
6 f(S),

where qG(S, T ) denotes the number of components C of G−(S∪T ) such that g(x) = f(x) for all x ∈ V (C)

and eG
(
T, V (C)

)
+

∑
x∈V (C)

f(x) ≡ 1 (mod 2). (Hereafter, such a component C is called odd component.)

The lemma below can be deduced from Theorem 2.1.

Lemma 2.2 (Lam et al. [8]). Let G be a graph, and g and f be two integer-valued functions defined on

V (G) such that 0 6 g(x) < f(x) 6 degG(x) for all x ∈ V (G). Let E1 and E2 be two disjoint subsets of

E(G). Then G has a (g, f)-factor F such that E1 ⊆ E(F ) and E2 ∩ E(F ) = ∅ if and only if for any

disjoint subsets S and T of V (G),∑
x∈T

(
g(x)− degG−S(x)

)
6 f(S)− α(S, T ;E1, E2)− β(S, T ;E1, E2),
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where U = V (G) − (S ∪ T ), α(S, T ;E1, E2) = 2|E1 ∩ EG(S)| + |E1 ∩ EG(S,U)| and β(S, T ;E1, E2) =

2|E2 ∩EG(T )|+ |E2 ∩ EG(T,U)|.

In addition, we also need the following lemmas.

Lemma 2.3. Let G be a graph and a, b be two positive integers with b > a. Suppose that there exists a

pair of disjoint subsets S and T of V (G) such that∑
x∈T

(
a− degG−S(x)

)
> b|S| − 3. (1)

(a) Given S, if T is a minimal set with respect to (1), then degG−S(v) < a for all v ∈ T ;

(b) given T , if S is a minimal set with respect to (1), then degT (v) > b for all v ∈ S.

Proof. As T is minimal with respect to (1), for any vertex v ∈ T ,∑
x∈T−v

(
a− degG−S(x)

)
< b|S| − 3. (2)

Combining (1) and (2), we have a− degG−S(v) > 0, i.e., degG−S(v) < a.

Similarly, as S is minimal with respect to (1), for any vertex v ∈ S,∑
x∈T

(
a− degG−(S−v)(x)

)
< b|S − v| − 3. (3)

Combining (1) with (3), we have

eG(S, T )− eG(S − v, T ) > b.

Thus degT (v) = eG(S, T )− eG(S − v, T ) > b.

A subset I of V (G) is an independent set of G if no two vertices of I are adjacent in G and a subset

C of V (G) is a covering set if every edge of G has at least one end in C.

Lemma 2.4 (Katerinis [6]). Let G be a graph and T1, . . . , Ta−1 (Tj allows to be empty) be a partition of

V (G) such that degG(x) 6 j if x ∈ Tj. Then there exist a covering set C and an independent set I of

V (G) such that
a−1∑
j=1

(a− j)cj 6
a−1∑
j=1

(a− 1)(a− j)ij ,

where |C ∩ Tj | = cj and |I ∩ Tj | = ij for every 1 6 j 6 a− 1.

By the definition of toughness, we can easily show the following result.

Lemma 2.5. Let G be an incomplete graph with toughness t(G) > (a−1)+ a
b , where a, b are two positive

integers with b > a > 2. Then δ(G) > a. Moreover, if a > 2, then δ(G) > a+ 1.

Proof. Since G is not complete, then δ(G) > 2t(G) > 2a− 2 + 2a
b . The conclusion follows directly.

3 Main Theorems

We consider the inclusion and/or exclusion properties for complete graphs and incomplete graphs, re-

spectively. We start with the case that G is an incomplete graph.

Lemma 3.1. Let G be a graph with toughness t(G) > a − 1 + a
b , where a, b are integers satisfying

b > a > 2. Let S, T be a pair of disjoint subsets of V (G). If S ̸= ∅ and T ̸= ∅, then∑
x∈T

(
a− degG−S(x)

)
6 b|S| − 4.



4 First1 L N et al. Sci China Math January 2010 Vol. 53 No. 1

Proof. Suppose, to the contrary, that there exists a pair of disjoint subsets of V (G), S and T with

|S| > 0, |T | > 0 satisfying: ∑
x∈T

(
a− degG−S(x)

)
> b|S| − 4.

By integrality, ∑
x∈T

(
a− degG−S(x)

)
> b|S| − 3. (4)

Moreover, suppose that S, T is a pair of minimal sets with respect to (4). Then by Lemma 2.3, for any

vertex x ∈ T , degG−S(x) < a and for any vertex x ∈ S, |T | > degT (x) > b and so |T | > b+ 1.

For all i, 0 6 i 6 a− 1, define

Ti = {x ∈ T : degG−S(x) = i}.

Denote |T0| = t0 and G0 = G[T − T0] = G[T1 ∪ · · · ∪ Ta−1]. Clearly, degG0
(x) 6 i for every x ∈ Ti. So,

by Lemma 2.5, there exist a covering set C and an independent set I of G0 such that

a−1∑
j=1

(a− 1)(a− j)ij >
a−1∑
j=1

(a− j)cj , (5)

where ij = |I ∩ Tj | and cj = |C ∩ Tj | for all j, 1 6 j 6 a− 1. Clearly, We may assume that I is maximal

in G0. Moreover, we could assume that I ∩ C = ∅ and I ∪ C = V (G0). Note that I ∪ C = V (G0) is

followed from maximality of I and definition of covering sets. If I ∩ C ̸= ∅, set C0 = C − I. Clearly, the

new set C0 is still a covering set and I ∪ C0 = V (G0). Now |I| =
∑a−1

j=1 ij > 1. According to (4),

at0 +
a−1∑
j=1

(a− j)ij +
a−1∑
j=1

(a− j)cj > b|S| − 3. (6)

Let Y = S ∪ C ∪NG−S−T (I). Then

|Y | = |S ∪ C ∪NG−S−T (I)| 6 |S|+
a−1∑
j=1

j · ij + |C| − eG(C, I)

and ω(G−Y ) >
∑a−1

j=1 ij+t0. From the maximality of I, it follows that |C| 6 eG(C, I) and if the equality

in |C| 6 eG(C, I) holds, then degI(x) = 1 for all x ∈ C. We claim that

|Y | > t(G) · ω(G− Y ).

If Y is a cut set, we are done. Otherwise, 1 6 |I ∪ T0| 6 ω(G − Y ) = 1 and so |I| = 1. Therefore, any

vertex in C has at most one neighbor not in Y , and hence for every vertex x ∈ T , |Y | > |S|+degG−S(x) >
degG(x) > δ(G) > t(G).

Next, we show the following claim.

Claim. C ̸= ∅.
If C = ∅, then |T | = t0 + |I|. Since |S| > |Y | −

∑a−1
j=1 j · ij > t(G) · (t0 +

∑a−1
j=1 ij) −

∑a−1
j=1 j · ij and

t(G) > a− 1 + a
b , it follows from (6) that

at0 +

a−1∑
j=1

(a− j)ij > (ba− b+ a)t0 +

a−1∑
j=1

(ba− b+ a− bj)ij − 3.

Then by b > a > 2 we have a− 1 6 (a− 1)(|T | − t0) 6
∑a−1

j=1 (ba− b− bj+ j)ij 6 3− (ba− b)t0 6 3− 3t0.

On the other hand, as |T | > b+1 and b > a > 2, we have (a− 1)|T | > 4 if t0 = 0 and (a− 1)(|T | − t0) >
a− 1 > 1 > 3− 3t0 if t0 > 1, which is impossible in either case. The claim is proved.
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As t0 > 0 and b > a > 2, there are several cases to consider.

Case 1. t0 = 0, b = 3.

Note that when b = 3 and a = 2, for every vertex x ∈ C, since x ∈ T , degG−S(x) < a = 2, and hence

degI(x) = 1.

We claim that G[C] is either a singleton or a complete subgraph. Suppose there are two distinct

nonadjacent vertices x0, y0 in C. Let Y ′ = Y − {x0, y0}. Since degI(x0) = degI(y0) = 1, we have

ω(G− Y ′) >
∑a−1

j=1 ij and |Y ′| 6 |S|+
∑a−1

j=1 j · ij − 2.

We show that |Y ′| > t(G) ·
∑a−1

j=1 ij . If
∑a−1

j=1 ij > 1, as ω(G− Y ′) >
∑a−1

j=1 ij > 1, Y ′ is a vertex cut.

Hence, |Y ′| > t(G) · ω(G − Y ′) > t(G) ·
∑a−1

j=1 ij . If
∑a−1

j=1 ij = 1, let I ′ = {x0, y0} and C ′ = T − I ′.

Clearly, I ′ is independent in G0 and |I ′| > |I|, contradicting with the maximality of I.

Thus, |S| > |Y ′| −
∑a−1

j=1 j · ij + 2 >
∑a−1

j=1

(
t(G) − j

)
ij + 2. Using (5), (6) and t(G) > a − 1 + a

b , we

obtain
a−1∑
j=1

(a− 1)(a− j)ij >
a−1∑
j=1

(ba− b− bj + j)ij + 2b− 3 >
a−1∑
j=1

(ba− b− bj + j)ij ,

which is impossible, because (a− 1)(a− j) 6 ba− b− bj + j and ij > 0 for all j, 1 6 j 6 a− 1.

Now |C| 6 degG−S(x) < a = 2 for every vertex x ∈ C. By Claim, C ̸= ∅. Then |C| = 1. Let

Y ′′ = Y − C. Clearly, |Y ′′| 6 |S|+
∑a−1

j=1 j · ij − 1, ω(G− Y ′′) >
∑a−1

j=1 ij and |Y ′′| > t(G) ·
∑a−1

j=1 ij . It

follows from (6) and |S| >
∑a−1

j=1

(
t(G)− j

)
ij + 1 that

a−1∑
j=1

(a− j)ij + (a− 1) >
a−1∑
j=1

(ba− b+ a− bj)ij + b− 3.

Therefore,
∑a−1

j=1 (ba − b − bj + j)ij 6 a − 1 = 1. That is, |I| = i1 6 1 and thus |T | = |I| + |C| = 2, a

contradiction.

Case 2. t0 = 0, b > 3 or t0 = 1, b = 3.

We may assume that for any vertex x ∈ C, degI(x) = 1. If there exists a vertex in C with at least two

neighbors in I, then |Y | 6 |S|+
∑a−1

j=1 j · ij − 1. Thus, |S| > t(G) · (t0 +
∑a−1

j=1 ij)−
∑a−1

j=1 j · ij +1. Using

(5) and (6), we have

a−1∑
j=1

(a− 1)(a− j)ij > (ba− b)t0 +
a−1∑
j=1

(ba− b− bj + j)ij + b− 3 >
a−1∑
j=1

(
ba− b− bj + j

)
ij ,

a contradiction.

Now, let y0 ∈ C and Y ′ = Y −{y0}. Clearly, |Y ′| 6 |S|+
∑a−1

j=1 j · ij − 1 and ω(G−Y ′) > t0+
∑a−1

j=1 ij

as degI(y0) = 1. Similarly, it is not difficult to show that |Y ′| > t(G) · (t0 +
∑a−1

j=1 ij). Thus, |S| >
t(G) · (t0 +

∑a−1
j=1 ij)−

∑a−1
j=1 j · ij + 1.

Using (5) and (6) again, we have
∑a−1

j=1 (a− 1)(a− j)ij >
∑a−1

j=1

(
ba− b− bj + j

)
ij , a contradiction.

Case 3. t0 = 1, b > 3 or t0 > 2.

Note that |S| > |Y | −
∑a−1

j=1 j · ij > t(G) · (t0 +
∑a−1

j=1 ij)−
∑a−1

j=1 j · ij and t(G) > a− 1+ a
b . Therefore,

according to (5) and (6),

a−1∑
j=1

(a− 1)(a− j)ij > (ba− b)t0 +

a−1∑
j=1

(ba− b− bj + j)ij − 3.

If t0 > 2 (resp. t0 = 1, b > 3), as b > a > 2, then (ba − b)t0 > 2(ba − b) > 2b > 6 (resp. (ba − b)t0 =

ba− b > b > 3), and thus
∑a−1

j=1 (a− 1)(a− j)ij >
∑a−1

j=1 (ba− b− bj + j)ij , a contradiction.

The proof is complete.

Now we are ready to prove the main theorem.
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Theorem 3.2. Let a, b be two integers with b > a > 1 and e1 = u1u2, e2 = v1v2 be two distinct edges of

an incomplete graph G. If t(G) > (a− 1) + a
b , then G contains an [a, b]-factor including e1 and e2; and

an [a, b]-factor including e1 and excluding e2; as well as an [a, b]-factor excluding e1 and e2 unless e1 and

e2 have a common end in the case of a = 2.

Proof. Let E1, E2 be two edge sets (one of E1 and E2 is allowed to be empty) with E1 ∪ E2 = {e1, e2}.
The theorem holds if and only if G contains an [a, b]-factor F such that E1 ⊆ E(F ) and E2 ∩E(F ) = ∅.
Suppose, to the contrary, that G does not contain such an [a, b]-factor F . Then, by Lemma 2.2, there

exists a pair of disjoint subsets S, T of V (G) such that∑
x∈T

(
a− degG−S(x)

)
> b|S| − α(S, T ;E1, E2)− β(S, T ;E1, E2), (7)

where U = V (G) − S − T, α(S, T ;E1, E2) = 2|E1 ∩ EG(S)| + |E1 ∩ EG(S,U)| and β(S, T ;E1, E2) =

2|E2 ∩EG(T )|+ |E2 ∩ EG(T,U)|.
On the other hand, as t(G) > (a− 1) + a

b , by Theorem 1.1, G contains an [a, b]-factor. It follows from

Theorem 2.1 that

qG(S, T ) +
∑
x∈T

(
a− degG−S(x)

)
6 b|S|. (8)

By assumption b > a, we have qG(S, T ) = 0.

Claim. S ̸= ∅ and T ̸= ∅.
Clearly, S ∪ T ̸= ∅. Otherwise, α(S, T ;E1, E2) = 0, β(S, T ;E1, E2) = 0, and then (7) yields

∑
x∈T

(
a −

degG−S(x)
)
> b|S|, a contradiction to (8).

Case 1. S = ∅ and T ̸= ∅. Then α(S, T ;E1, E2) = 0. It follows from (7) and (8) that β(S, T ;E1, E2) ̸=
0. Then E2 ̸= ∅, and hence either E2 = {e2} or E2 = {e1, e2}.

If E2 = {e2}, according to (7), there exist two subsets S = ∅, T ̸= ∅ of V (G) such that
∑
x∈T

(
a −

degG−S(x)
)
> b|S| − α(S, T ;E′

1, E
′
2) − β(S, T ;E′

1, E
′
2) for E′

1 = ∅ and E′
2 = {e2}. From Lemma 2.2, G

contains no [a, b]-factors excluding e2, a contradiction to Theorem 1.2.

Next assume E2 = {e1, e2}, which is the case of excluding e1 and e2. Then (7) becomes∑
x∈T

(
a− degG(x)

)
> −2|E2 ∩ EG(T )| − |E2 ∩EG(U, T )|.

If a = 2, then δ(G) > a by Lemma 2.5. So, for any vertex x ∈ T , degG(x) > a + 1. Hence

−|T | >
∑
x∈T

(
a− degG(x)

)
> −2|E2 ∩ EG(T )| − |E2 ∩ EG(U, T )|. According to the relationship between

E2 and EG(T ) or between E2 and EG(U, T ), there are several cases to discuss. If E2 ⊆ EG(T ), then

|T | > 4 because e1, e2 share no common ends when a = 2 by assumption. But −|T | > −2|E2 ∩EG(T )| −
|E2 ∩EG(U, T )| = −4, a contradiction. For other cases, we can deduce contradictions in similar ways.

If a > 3, then δ(G) > a + 1 by Lemma 2.5. Thus degG(x) > a + 2 for all x ∈ T . Therefore,

−2|T | >
∑
x∈T

(
a− degG(x)

)
> −2|E2 ∩EG(T )| − |E2 ∩ EG(U, T )|, which is impossible.

Case 2. S ̸= ∅ and T = ∅. Then β(S, T ;E1, E2) = 2|E2 ∩ EG(T )| + |E2 ∩ EG(T,U)| = 0. It follows

from (7) and (8) again that α(S, T ;E1, E2) ̸= 0. Thus, |E1| > 1, and then E1 = {e1} or E1 = {e1, e2}.
If E1 = {e1}, from (7), we have b|S| < α(S, T ;E1, E2) = 2|E1 ∩ EG(S)|+ |E1 ∩ EG(S,U)| 6 2, which

is impossible since b > a > 1.

If E1 = {e1, e2}, then b|S| − 2|E1 ∩EG(S)| − |E1 ∩EG(S,U)| <
∑
x∈T

(
a− degG−S(x)

)
= 0. As b > 3, it

follows that 3|S| < 2|E1 ∩EG(S)|+ |E1 ∩EG(S,U)|. Note that E1 = {e1, e2}. There are several cases to

discuss based on the relationship between E1 and EG(S) or between E1 and EG(S,U). We only consider

the case of E1 ⊆ EG(S), i.e., e1 ∈ EG(S) and e2 ∈ EG(S). For other cases, the proofs go along the same
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line. If e1 ∈ EG(S) and e2 ∈ EG(S), then |S| > 3 and 3|S| > 9 > 4 = 2|E1 ∩ EG(S)|+ |E1 ∩ EG(S,U)|,
a contradiction.

This completes the proof of the Claim.

Now as S ̸= ∅ and T ̸= ∅, it follows from Lemma 3.1 that∑
x∈T

(a− degG−S(x)) 6 b|S| − 4.

But α(S, T ;E1, E2)+β(S, T ;E1, E2) 6 4 and (7) reads
∑

x∈T (a−degG−S(x)) > b|S|−4, a contradiction.

We call a graph G an [a, b]-graph if a 6 degG(v) 6 b for all v ∈ V (G). For almost regular graphs,

Thomassen [10] proved the existence of all “almost regular factors”.

Lemma 3.3 (Thomassen [10]). If G is an [r, r + 1]-graph, then G has a [k, k + 1]-factor for all k,

0 6 k 6 r.

Applying the above result, we obtain an inclusion/exclusion theorem for complete graphs.

Theorem 3.4. Let a, b be two integers with b > a > 1 and e1 = u1v1, e2 = u2v2 be two distinct edges of

a complete graph G.

(a) If t(G) > (a− 1) + a
b , then G contains an [a, b]-factor including e1 and e2;

(b) if t(G) > a+ a
b , it contains an [a, b]-factor including e1 and excluding e2; as well as an [a, b]-factor

excluding e1 and e2 if V (e1) ∩ V (e2) = ∅.

Proof. Clearly, there exists a Hamiltonian cycle CG, in G, which includes e1 and e2. Moreover, G1 =

G−E(CG) is a (δ(G)−2)-regular graph. If t(G) > a−1+ a
b , then δ(G) = t(G) > a. As 0 6 a−2 6 δ(G)−2,

by Lemma 3.3, G1 contains an [a−2, a−1]-factor F1. Then CG∪F1 is a desired [a, b]-factor of G, including

e1 and e2.

Since G is complete, G − e2 contains a Hamiltonian cycle C ′
G including e1 when |V (G)| > 5. Now

G2 = G− e2 −E(C ′
G) is a [δ(G)− 3, δ(G)− 2]-graph. As t(G) > a+ a

b , 0 6 a− 2 6 δ(G)− 3 and G2 has

an [a− 2, a− 1]-factor F2 by Lemma 3.3. Therefore, C ′
G ∪F2 is an [a, a+1]-factor, also an [a, b]-factor of

G including e1 and excluding e2. If |V (G)| = 4, it is not difficult to show that G contains a [2, 3]-factor

including one edge and excluding another.

It remains to show that G contains an [a, b]-factor excluding e1 and e2. Since V (e1) ∩ V (e2) = ∅,
G3 = G− {e1, e2} is a [δ(G)− 1, δ(G)]-graph. As δ(G) > a+ 1, G3 has an [a, a+ 1]-factor F3 by Lemma

3.3. Trivially, F3 is the desired [a, b]-factor.

4 Remarks

The conditions in Theorems 3.2 and 3.4 are necessary for the conclusions.

Remark 4.1. The condition a > 1 is necessary. If a = 1, there exist many graphs with toughness

t(G) > 1
b but containing no [1, b]-factors including/excluding one edge of G. Such examples can be found

in [3].

Remark 4.2. When discussing the exclusion of e1 and e2, the condition V (e1)∩ V (e2) = ∅ is necessary,

when G is complete or a = 2 . Let G = Ka+2 and e1, e2 are two edges with a common end. It is easy to

see that G contains no [a, b]-factor excluding e1, e2. For the case of a = 2, see Figure 1.
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e1 e2

a = 2, b = 4

Figure 1: A graph with toughness 3
2 contains no [2, 4]-factor excluding e1, e2
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