• ARTICLES •

January 2010 Vol. 53 No. 1: 1–10 doi: 10.1007/s11425-010-0000-0

Toughness and [a, b]-factor with inclusion/exclusion properties^{*}

Zefang Wu¹, Guizhen Liu² & Qinglin Yu^{2,3,†}

¹Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, P. R. China ²School of Mathematics, Shandong University, Jinan, Shandong, P. R. China ³Department of Mathematics and Statistics, Thompson Rivers University, Kamloops, BC, Canada

Abstract In this paper, we investigate the existence of [a, b]-factors with inclusion/exclusion properties under the toughness condition. We prove that if an incomplete graph G satisfies $t(G) \ge (a-1) + \frac{a}{b}$ and a, b are two integers with b > a > 1, then for any two given edges e_1 and e_2 there exist an [a, b]-factor including e_1, e_2 ; and an [a, b]-factor including e_1 and excluding e_2 ; as well as an [a, b]-factor excluding e_1, e_2 unless e_1 and e_2 have a common end in the case of a = 2. For complete graphs, we obtain a similar result.

Keywords [a, b]-factor, inclusion/exclusion property, toughness.

MSC(2000): 05C70

Citation: Z. Wu, et al. Science China: Mathematics Journal Sample. Sci
 China Ser A, 2010, 53, doi: 10.1007/s11425-009-0044-4

1 Introduction

All graphs considered are simple and finite. We refer the reader to [1] for terminology and notation not defined here.

Let G be a graph. The degree of a vertex v in G is denoted by $\deg_G(v)$. For any disjoint subsets $X, Y \subseteq V(G), E_G(X, Y)$ denotes the set of edges with one end in X and the other in Y and $e_G(X, Y) = |E_G(X, Y)|$. We use $E_G(X)$ to denote the set of edges with both ends in X.

For $X \subseteq V(G)$, the *neighbor set* of X in G, denoted by $N_G(X)$, is defined to be the set of all vertices adjacent to vertices in X. We use G[X] to denote the subgraph induced by X.

For an integer-valued function f defined on a finite set X, we denote

$$f(X) = \sum_{x \in X} f(x), \quad f(\emptyset) = 0.$$

Given a function $f: V(G) \longrightarrow \mathbb{Z}^+$, we say that G has an *f*-factor if there exists a spanning subgraph F of G such that $\deg_F(v) = f(v)$ for every $v \in V(G)$. When f(v) = k for all $v \in V(G)$, F is called a k-factor.

^{*}This work is supported by Natural Sciences and Engineering Research Council of Canada, Shandong University Visiting Scholar Fund and PCSIRT Project of the Ministry of Education of China. †Corresponding author: yu@tru.ca

Let g, f be integer-valued functions defined on V(G). Then G has a (g, f)-factor if there exists a spanning subgraph F of G such that $g(v) \leq \deg_F(v) \leq f(v)$ for every vertex $v \in V(G)$. In particular, if g(v) = a, f(v) = b for all $v \in V(G)$, F is called an [a, b]-factor.

If G is not complete, the *toughness* of G, t(G), is defined by

$$t(G) = \min_{S} \left\{ \frac{|S|}{\omega(G-S)} \right\},$$

where the minimum is taken over all vertex cuts S of G, and $\omega(G)$ denotes the number of components in G. For complete graph K_n , we define $t(K_n) = n - 1$. A graph G is k-tough if $t(G) \ge k$.

Chvátal introduced the concept of toughness in [4], and mainly studied the relationship between toughness and the existence of Hamilton cycles and k-factors. He conjectured that every k-tough graph G $(k \in \mathbb{Z}^+)$ has a k-factor if k|V(G)| is even. Enomoto, Jackson, Katerinis and Saito [5] confirmed Chvátal's conjecture and showed that the result is sharp. Chen [2], Katerinis and Wang [7], Wang, Wu and Yu [11] studied the relationships between k-toughness of graphs and the existences of f-factors with various inclusion/exclusion properties.

As a generalization of Chvátal's conjecture, Katerinis [6] studied the relationship between toughness and the existence of f-factors, as well as [a, b]-factors. Katerinis proved the following theorem.

Theorem 1.1 (Katerinis [6]). Let G be a graph and a, b be two positive integers with $b \ge a$. If $t(G) \ge (a-1) + \frac{a}{b}$ and $a|V(G)| \equiv 0 \pmod{2}$ when a = b, then G has an [a, b]-factor.

Later, Chen and Liu obtained a stronger result.

Theorem 1.2 (Chen and Liu [3]). Let G be a graph and a, b be integers with $b \ge a \ge 2$. If $t(G) \ge a-1+\frac{a}{b}$ and a|V(G)| is even when a = b, then for every edge e of G, there exists an [a,b]-factor containing e, and there exists another [a,b]-factor excluding e.

In this paper, we consider the existence of [a, b]-factors with inclusion and/or exclusion of two edges in terms of toughness.

2 Preliminary Results

In order to prove the main theorems, we use the characterization of (g, f)-factors due to Lovász [9].

Theorem 2.1 ((g, f)-Factor Theorem). Let G be a graph and f, g be integer-valued functions defined on V(G) such that $g(x) \leq f(x)$ for all $x \in V(G)$. Then G has a (g, f)-factor if and only if for all disjoint sets $S, T \subseteq V(G)$

$$q_G(S,T) + \sum_{x \in T} \left(g(x) - \deg_{G-S}(x) \right) \leqslant f(S),$$

where $q_G(S,T)$ denotes the number of components C of $G - (S \cup T)$ such that g(x) = f(x) for all $x \in V(C)$ and $e_G(T, V(C)) + \sum_{x \in V(C)} f(x) \equiv 1 \pmod{2}$. (Hereafter, such a component C is called odd component.)

The lemma below can be deduced from Theorem 2.1.

Lemma 2.2 (Lam et al. [8]). Let G be a graph, and g and f be two integer-valued functions defined on V(G) such that $0 \leq g(x) < f(x) \leq \deg_G(x)$ for all $x \in V(G)$. Let E_1 and E_2 be two disjoint subsets of E(G). Then G has a (g, f)-factor F such that $E_1 \subseteq E(F)$ and $E_2 \cap E(F) = \emptyset$ if and only if for any disjoint subsets S and T of V(G),

$$\sum_{x \in T} (g(x) - \deg_{G-S}(x)) \leqslant f(S) - \alpha(S, T; E_1, E_2) - \beta(S, T; E_1, E_2)$$

where $U = V(G) - (S \cup T), \alpha(S, T; E_1, E_2) = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, U)|$ and $\beta(S, T; E_1, E_2) = 2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, U)|.$

In addition, we also need the following lemmas.

Lemma 2.3. Let G be a graph and a, b be two positive integers with b > a. Suppose that there exists a pair of disjoint subsets S and T of V(G) such that

$$\sum_{x \in T} \left(a - \deg_{G-S}(x) \right) \ge b|S| - 3.$$
(1)

- (a) Given S, if T is a minimal set with respect to (1), then $\deg_{G-S}(v) < a$ for all $v \in T$;
- (b) given T, if S is a minimal set with respect to (1), then $\deg_T(v) > b$ for all $v \in S$.

Proof. As T is minimal with respect to (1), for any vertex $v \in T$,

$$\sum_{x \in T-v} \left(a - \deg_{G-S}(x) \right) < b|S| - 3.$$
(2)

Combining (1) and (2), we have $a - \deg_{G-S}(v) > 0$, i.e., $\deg_{G-S}(v) < a$.

Similarly, as S is minimal with respect to (1), for any vertex $v \in S$,

$$\sum_{x \in T} \left(a - \deg_{G - (S - v)}(x) \right) < b|S - v| - 3.$$
(3)

Combining (1) with (3), we have

 $e_G(S,T) - e_G(S-v,T) > b.$ Thus $\deg_T(v) = e_G(S,T) - e_G(S-v,T) > b.$

A subset I of V(G) is an *independent set* of G if no two vertices of I are adjacent in G and a subset C of V(G) is a *covering set* if every edge of G has at least one end in C.

Lemma 2.4 (Katerinis [6]). Let G be a graph and T_1, \ldots, T_{a-1} (T_j allows to be empty) be a partition of V(G) such that $\deg_G(x) \leq j$ if $x \in T_j$. Then there exist a covering set C and an independent set I of V(G) such that

$$\sum_{j=1}^{a-1} (a-j)c_j \leqslant \sum_{j=1}^{a-1} (a-1)(a-j)i_j,$$

where $|C \cap T_j| = c_j$ and $|I \cap T_j| = i_j$ for every $1 \leq j \leq a - 1$.

By the definition of toughness, we can easily show the following result.

Lemma 2.5. Let G be an incomplete graph with toughness $t(G) \ge (a-1) + \frac{a}{b}$, where a, b are two positive integers with $b \ge a \ge 2$. Then $\delta(G) > a$. Moreover, if a > 2, then $\delta(G) > a + 1$.

Proof. Since G is not complete, then $\delta(G) \ge 2t(G) \ge 2a - 2 + \frac{2a}{b}$. The conclusion follows directly. \Box

3 Main Theorems

We consider the inclusion and/or exclusion properties for complete graphs and incomplete graphs, respectively. We start with the case that G is an incomplete graph.

Lemma 3.1. Let G be a graph with toughness $t(G) \ge a - 1 + \frac{a}{b}$, where a, b are integers satisfying $b > a \ge 2$. Let S, T be a pair of disjoint subsets of V(G). If $S \ne \emptyset$ and $T \ne \emptyset$, then

$$\sum_{x \in T} \left(a - \deg_{G-S}(x) \right) \leqslant b|S| - 4.$$

Proof. Suppose, to the contrary, that there exists a pair of disjoint subsets of V(G), S and T with |S| > 0, |T| > 0 satisfying:

$$\sum_{x \in T} \left(a - \deg_{G-S}(x) \right) > b|S| - 4.$$

$$\sum_{x \in T} \left(a - \deg_{G-S}(x) \right) \ge b|S| - 3.$$
(4)

By integrality,

Moreover, suppose that S, T is a pair of minimal sets with respect to (4). Then by Lemma 2.3, for any vertex $x \in T$, $\deg_{G-S}(x) < a$ and for any vertex $x \in S$, $|T| \ge \deg_T(x) > b$ and so $|T| \ge b + 1$.

For all $i, 0 \leq i \leq a - 1$, define

$$T_i = \{x \in T : \deg_{G-S}(x) = i\}$$

Denote $|T_0| = t_0$ and $G_0 = G[T - T_0] = G[T_1 \cup \cdots \cup T_{a-1}]$. Clearly, $\deg_{G_0}(x) \leq i$ for every $x \in T_i$. So, by Lemma 2.5, there exist a covering set C and an independent set I of G_0 such that

$$\sum_{j=1}^{a-1} (a-1)(a-j)i_j \ge \sum_{j=1}^{a-1} (a-j)c_j,$$
(5)

where $i_j = |I \cap T_j|$ and $c_j = |C \cap T_j|$ for all $j, 1 \leq j \leq a-1$. Clearly, We may assume that I is maximal in G_0 . Moreover, we could assume that $I \cap C = \emptyset$ and $I \cup C = V(G_0)$. Note that $I \cup C = V(G_0)$ is followed from maximality of I and definition of covering sets. If $I \cap C \neq \emptyset$, set $C_0 = C - I$. Clearly, the new set C_0 is still a covering set and $I \cup C_0 = V(G_0)$. Now $|I| = \sum_{j=1}^{a-1} i_j \geq 1$. According to (4),

$$at_0 + \sum_{j=1}^{a-1} (a-j)i_j + \sum_{j=1}^{a-1} (a-j)c_j \ge b|S| - 3.$$
(6)

Let $Y = S \cup C \cup N_{G-S-T}(I)$. Then

$$|Y| = |S \cup C \cup N_{G-S-T}(I)| \leq |S| + \sum_{j=1}^{a-1} j \cdot i_j + |C| - e_G(C, I)$$

and $\omega(G-Y) \ge \sum_{j=1}^{a-1} i_j + t_0$. From the maximality of *I*, it follows that $|C| \le e_G(C, I)$ and if the equality in $|C| \le e_G(C, I)$ holds, then $\deg_I(x) = 1$ for all $x \in C$. We claim that

$$|Y| \ge t(G) \cdot \omega(G - Y).$$

If Y is a cut set, we are done. Otherwise, $1 \leq |I \cup T_0| \leq \omega(G - Y) = 1$ and so |I| = 1. Therefore, any vertex in C has at most one neighbor not in Y, and hence for every vertex $x \in T$, $|Y| \geq |S| + \deg_{G-S}(x) \geq \deg_G(x) \geq \delta(G) \geq t(G)$.

Next, we show the following claim.

Claim. $C \neq \emptyset$.

If $C = \emptyset$, then $|T| = t_0 + |I|$. Since $|S| \ge |Y| - \sum_{j=1}^{a-1} j \cdot i_j \ge t(G) \cdot (t_0 + \sum_{j=1}^{a-1} i_j) - \sum_{j=1}^{a-1} j \cdot i_j$ and $t(G) \ge a - 1 + \frac{a}{b}$, it follows from (6) that

$$at_0 + \sum_{j=1}^{a-1} (a-j)i_j \ge (ba-b+a)t_0 + \sum_{j=1}^{a-1} (ba-b+a-bj)i_j - 3$$

Then by $b > a \ge 2$ we have $a - 1 \le (a - 1)(|T| - t_0) \le \sum_{j=1}^{a-1} (ba - b - bj + j)i_j \le 3 - (ba - b)t_0 \le 3 - 3t_0$. On the other hand, as $|T| \ge b + 1$ and $b > a \ge 2$, we have $(a - 1)|T| \ge 4$ if $t_0 = 0$ and $(a - 1)(|T| - t_0) \ge a - 1 \ge 1 > 3 - 3t_0$ if $t_0 > 1$, which is impossible in either case. The claim is proved. As $t_0 \ge 0$ and $b > a \ge 2$, there are several cases to consider.

Case 1. $t_0 = 0, b = 3.$

Note that when b = 3 and a = 2, for every vertex $x \in C$, since $x \in T$, $\deg_{G-S}(x) < a = 2$, and hence $\deg_I(x) = 1.$

We claim that G[C] is either a singleton or a complete subgraph. Suppose there are two distinct

we chain that G[C] is either a singleton of a complete subgraph. Suppose there are two distinct nonadjacent vertices x_0, y_0 in C. Let $Y' = Y - \{x_0, y_0\}$. Since $\deg_I(x_0) = \deg_I(y_0) = 1$, we have $\omega(G - Y') \ge \sum_{j=1}^{a-1} i_j$ and $|Y'| \le |S| + \sum_{j=1}^{a-1} j \cdot i_j - 2$. We show that $|Y'| \ge t(G) \cdot \sum_{j=1}^{a-1} i_j$. If $\sum_{j=1}^{a-1} i_j > 1$, as $\omega(G - Y') \ge \sum_{j=1}^{a-1} i_j > 1$, Y' is a vertex cut. Hence, $|Y'| \ge t(G) \cdot \omega(G - Y') \ge t(G) \cdot \sum_{j=1}^{a-1} i_j$. If $\sum_{j=1}^{a-1} i_j = 1$, let $I' = \{x_0, y_0\}$ and C' = T - I'. Clearly, I' is independent in G_0 and |I'| > |I|, contradicting with the maximality of I. Thus, $|S| \ge |Y'| - \sum_{j=1}^{a-1} j \cdot i_j + 2 \ge \sum_{j=1}^{a-1} (t(G) - j)i_j + 2$. Using (5), (6) and $t(G) \ge a - 1 + \frac{a}{b}$, we obtain

obtain

$$\sum_{j=1}^{a-1} (a-1)(a-j)i_j \ge \sum_{j=1}^{a-1} (ba-b-bj+j)i_j + 2b-3 > \sum_{j=1}^{a-1} (ba-b-bj+j)i_j,$$

which is impossible, because $(a-1)(a-j) \leq ba-b-bj+j$ and $i_j \geq 0$ for all $j, 1 \leq j \leq a-1$.

Now $|C| \leq \deg_{G-S}(x) < a = 2$ for every vertex $x \in C$. By Claim, $C \neq \emptyset$. Then |C| = 1. Let Y'' = Y - C. Clearly, $|Y''| \leq |S| + \sum_{j=1}^{a-1} j \cdot i_j - 1$, $\omega(G - Y'') \geq \sum_{j=1}^{a-1} i_j$ and $|Y''| \geq t(G) \cdot \sum_{j=1}^{a-1} i_j$. It follows from (6) and $|S| \geq \sum_{j=1}^{a-1} (t(G) - j)i_j + 1$ that

$$\sum_{j=1}^{a-1} (a-j)i_j + (a-1) \ge \sum_{j=1}^{a-1} (ba-b+a-bj)i_j + b - 3.$$

Therefore, $\sum_{j=1}^{a-1} (ba - b - bj + j)i_j \leq a - 1 = 1$. That is, $|I| = i_1 \leq 1$ and thus |T| = |I| + |C| = 2, a contradiction.

Case 2. $t_0 = 0, b > 3$ or $t_0 = 1, b = 3$.

We may assume that for any vertex $x \in C$, $\deg_I(x) = 1$. If there exists a vertex in C with at least two neighbors in I, then $|Y| \leq |S| + \sum_{j=1}^{a-1} j \cdot i_j - 1$. Thus, $|S| \geq t(G) \cdot (t_0 + \sum_{j=1}^{a-1} i_j) - \sum_{j=1}^{a-1} j \cdot i_j + 1$. Using (5) and (6), we have

$$\sum_{j=1}^{a-1} (a-1)(a-j)i_j \ge (ba-b)t_0 + \sum_{j=1}^{a-1} (ba-b-bj+j)i_j + b - 3 > \sum_{j=1}^{a-1} (ba-b-bj+j)i_j,$$

a contradiction.

Now, let $y_0 \in C$ and $Y' = Y - \{y_0\}$. Clearly, $|Y'| \leq |S| + \sum_{j=1}^{a-1} j \cdot i_j - 1$ and $\omega(G - Y') \geq t_0 + \sum_{j=1}^{a-1} i_j$ as $\deg_I(y_0) = 1$. Similarly, it is not difficult to show that $|Y'| \geq t(G) \cdot (t_0 + \sum_{j=1}^{a-1} i_j)$. Thus, $|S| \geq 1$ $t(G) \cdot (t_0 + \sum_{j=1}^{a-1} i_j) - \sum_{j=1}^{a-1} j \cdot i_j + 1.$

Using (5) and (6) again, we have $\sum_{i=1}^{a-1} (a-1)(a-j)i_j > \sum_{i=1}^{a-1} (ba-b-bj+j)i_j$, a contradiction.

Case 3. $t_0 = 1, b > 3$ or $t_0 \ge 2$. Note that $|S| \ge |Y| - \sum_{j=1}^{a-1} j \cdot i_j \ge t(G) \cdot (t_0 + \sum_{j=1}^{a-1} i_j) - \sum_{j=1}^{a-1} j \cdot i_j$ and $t(G) \ge a - 1 + \frac{a}{b}$. Therefore, according to (5) and (6),

$$\sum_{j=1}^{a-1} (a-1)(a-j)i_j \ge (ba-b)t_0 + \sum_{j=1}^{a-1} (ba-b-bj+j)i_j - 3.$$

If $t_0 \ge 2$ (resp. $t_0 = 1, b > 3$), as $b > a \ge 2$, then $(ba - b)t_0 \ge 2(ba - b) \ge 2b \ge 6$ (resp. $(ba - b)t_0 = ba - b \ge b > 3$), and thus $\sum_{j=1}^{a-1} (a-1)(a-j)i_j > \sum_{j=1}^{a-1} (ba - b - bj + j)i_j$, a contradiction. The proof is complete.

Now we are ready to prove the main theorem.

Theorem 3.2. Let a, b be two integers with b > a > 1 and $e_1 = u_1u_2, e_2 = v_1v_2$ be two distinct edges of an incomplete graph G. If $t(G) \ge (a-1) + \frac{a}{b}$, then G contains an [a,b]-factor including e_1 and e_2 ; and an [a,b]-factor including e_1 and excluding e_2 ; as well as an [a,b]-factor excluding e_1 and e_2 unless e_1 and e_2 have a common end in the case of a = 2.

Proof. Let E_1, E_2 be two edge sets (one of E_1 and E_2 is allowed to be empty) with $E_1 \cup E_2 = \{e_1, e_2\}$. The theorem holds if and only if G contains an [a, b]-factor F such that $E_1 \subseteq E(F)$ and $E_2 \cap E(F) = \emptyset$. Suppose, to the contrary, that G does not contain such an [a, b]-factor F. Then, by Lemma 2.2, there exists a pair of disjoint subsets S, T of V(G) such that

$$\sum_{x \in T} \left(a - \deg_{G-S}(x) \right) > b|S| - \alpha(S, T; E_1, E_2) - \beta(S, T; E_1, E_2), \tag{7}$$

where U = V(G) - S - T, $\alpha(S, T; E_1, E_2) = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, U)|$ and $\beta(S, T; E_1, E_2) = 2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, U)|$.

On the other hand, as $t(G) \ge (a-1) + \frac{a}{b}$, by Theorem 1.1, G contains an [a, b]-factor. It follows from Theorem 2.1 that

$$q_G(S,T) + \sum_{x \in T} \left(a - \deg_{G-S}(x) \right) \leqslant b|S|.$$
(8)

By assumption b > a, we have $q_G(S, T) = 0$.

Claim. $S \neq \emptyset$ and $T \neq \emptyset$.

Clearly, $S \cup T \neq \emptyset$. Otherwise, $\alpha(S,T;E_1,E_2) = 0, \beta(S,T;E_1,E_2) = 0$, and then (7) yields $\sum_{x \in T} (a - \deg_{G-S}(x)) > b|S|$, a contradiction to (8).

Case 1. $S = \emptyset$ and $T \neq \emptyset$. Then $\alpha(S, T; E_1, E_2) = 0$. It follows from (7) and (8) that $\beta(S, T; E_1, E_2) \neq 0$. Then $E_2 \neq \emptyset$, and hence either $E_2 = \{e_2\}$ or $E_2 = \{e_1, e_2\}$.

If $E_2 = \{e_2\}$, according to (7), there exist two subsets $S = \emptyset$, $T \neq \emptyset$ of V(G) such that $\sum_{x \in T} (a - \deg_{G-S}(x)) > b|S| - \alpha(S,T; E'_1, E'_2) - \beta(S,T; E'_1, E'_2)$ for $E'_1 = \emptyset$ and $E'_2 = \{e_2\}$. From Lemma 2.2, G contains no [a, b]-factors excluding e_2 , a contradiction to Theorem 1.2.

Next assume $E_2 = \{e_1, e_2\}$, which is the case of excluding e_1 and e_2 . Then (7) becomes

$$\sum_{x \in T} \left(a - \deg_G(x) \right) > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(U, T)|.$$

If a = 2, then $\delta(G) > a$ by Lemma 2.5. So, for any vertex $x \in T$, $\deg_G(x) \ge a + 1$. Hence $-|T| \ge \sum_{x \in T} (a - \deg_G(x)) > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(U,T)|$. According to the relationship between E_2 and $E_G(T)$ or between E_2 and $E_G(U,T)$, there are several cases to discuss. If $E_2 \subseteq E_G(T)$, then $|T| \ge 4$ because e_1, e_2 share no common ends when a = 2 by assumption. But $-|T| > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(U,T)| = -4$, a contradiction. For other cases, we can deduce contradictions in similar ways.

If $a \ge 3$, then $\delta(G) > a + 1$ by Lemma 2.5. Thus $\deg_G(x) \ge a + 2$ for all $x \in T$. Therefore, $-2|T| \ge \sum_{x \in T} (a - \deg_G(x)) > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(U,T)|$, which is impossible.

Case 2. $S \neq \emptyset$ and $T = \emptyset$. Then $\beta(S, T; E_1, E_2) = 2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, U)| = 0$. It follows from (7) and (8) again that $\alpha(S, T; E_1, E_2) \neq 0$. Thus, $|E_1| \ge 1$, and then $E_1 = \{e_1\}$ or $E_1 = \{e_1, e_2\}$.

If $E_1 = \{e_1\}$, from (7), we have $b|S| < \alpha(S,T; E_1, E_2) = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S,U)| \le 2$, which is impossible since b > a > 1.

If $E_1 = \{e_1, e_2\}$, then $b|S| - 2|E_1 \cap E_G(S)| - |E_1 \cap E_G(S, U)| < \sum_{x \in T} (a - \deg_{G-S}(x)) = 0$. As $b \ge 3$, it

follows that $3|S| < 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S,U)|$. Note that $E_1 = \{e_1, e_2\}$. There are several cases to discuss based on the relationship between E_1 and $E_G(S)$ or between E_1 and $E_G(S,U)$. We only consider the case of $E_1 \subseteq E_G(S)$, i.e., $e_1 \in E_G(S)$ and $e_2 \in E_G(S)$. For other cases, the proofs go along the same

line. If $e_1 \in E_G(S)$ and $e_2 \in E_G(S)$, then $|S| \ge 3$ and $3|S| \ge 9 > 4 = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S,U)|$, a contradiction.

This completes the proof of the Claim.

Now as $S \neq \emptyset$ and $T \neq \emptyset$, it follows from Lemma 3.1 that

$$\sum_{x \in T} (a - \deg_{G-S}(x)) \leqslant b|S| - 4.$$

But $\alpha(S,T;E_1,E_2) + \beta(S,T;E_1,E_2) \leq 4$ and (7) reads $\sum_{x \in T} (a - \deg_{G-S}(x)) > b|S| - 4$, a contradiction.

We call a graph G an [a,b]-graph if $a \leq \deg_G(v) \leq b$ for all $v \in V(G)$. For almost regular graphs, Thomassen [10] proved the existence of all "almost regular factors".

Lemma 3.3 (Thomassen [10]). If G is an [r, r + 1]-graph, then G has a [k, k + 1]-factor for all k, $0 \le k \le r$.

Applying the above result, we obtain an inclusion/exclusion theorem for complete graphs.

Theorem 3.4. Let a, b be two integers with b > a > 1 and $e_1 = u_1v_1, e_2 = u_2v_2$ be two distinct edges of a complete graph G.

- (a) If $t(G) \ge (a-1) + \frac{a}{b}$, then G contains an [a,b]-factor including e_1 and e_2 ;
- (b) if $t(G) \ge a + \frac{a}{b}$, it contains an [a, b]-factor including e_1 and excluding e_2 ; as well as an [a, b]-factor excluding e_1 and e_2 if $V(e_1) \cap V(e_2) = \emptyset$.

Proof. Clearly, there exists a Hamiltonian cycle C_G , in G, which includes e_1 and e_2 . Moreover, $G_1 = G - E(C_G)$ is a $(\delta(G) - 2)$ -regular graph. If $t(G) \ge a - 1 + \frac{a}{b}$, then $\delta(G) = t(G) \ge a$. As $0 \le a - 2 \le \delta(G) - 2$, by Lemma 3.3, G_1 contains an [a - 2, a - 1]-factor F_1 . Then $C_G \cup F_1$ is a desired [a, b]-factor of G, including e_1 and e_2 .

Since G is complete, $G - e_2$ contains a Hamiltonian cycle C'_G including e_1 when $|V(G)| \ge 5$. Now $G_2 = G - e_2 - E(C'_G)$ is a $[\delta(G) - 3, \delta(G) - 2]$ -graph. As $t(G) \ge a + \frac{a}{b}, \ 0 \le a - 2 \le \delta(G) - 3$ and G_2 has an [a - 2, a - 1]-factor F_2 by Lemma 3.3. Therefore, $C'_G \cup F_2$ is an [a, a + 1]-factor, also an [a, b]-factor of G including e_1 and excluding e_2 . If |V(G)| = 4, it is not difficult to show that G contains a [2, 3]-factor including one edge and excluding another.

It remains to show that G contains an [a, b]-factor excluding e_1 and e_2 . Since $V(e_1) \cap V(e_2) = \emptyset$, $G_3 = G - \{e_1, e_2\}$ is a $[\delta(G) - 1, \delta(G)]$ -graph. As $\delta(G) \ge a + 1$, G_3 has an [a, a + 1]-factor F_3 by Lemma 3.3. Trivially, F_3 is the desired [a, b]-factor.

4 Remarks

The conditions in Theorems 3.2 and 3.4 are necessary for the conclusions.

Remark 4.1. The condition a > 1 is necessary. If a = 1, there exist many graphs with toughness $t(G) \ge \frac{1}{b}$ but containing no [1, b]-factors including/excluding one edge of G. Such examples can be found in [3].

Remark 4.2. When discussing the exclusion of e_1 and e_2 , the condition $V(e_1) \cap V(e_2) = \emptyset$ is necessary, when G is complete or a = 2. Let $G = K_{a+2}$ and e_1, e_2 are two edges with a common end. It is easy to see that G contains no [a, b]-factor excluding e_1, e_2 . For the case of a = 2, see Figure 1.

Acknowledgements The authors are indebted to the anonymous referees for their valuable comments and suggestions.

Figure 1: A graph with toughness $\frac{3}{2}$ contains no [2, 4]-factor excluding e_1, e_2

References

- 1 Bondy J A, Murty U S R. Graph Theory. GTM-244, Springer, Berlin, 2008
- 2 Chen C P. Toughness of graphs and k-factors with given properties. Ars Combin, 1992, 34: 55-64
- 3 Chen C P, Liu G. Toughness of graphs and [a, b]-factors with prescribed properties. J Combin Math Combin Comput, 1992, 12: 215–221
- 4 Chvátal V. Tough graphs and Hamiltonian circuits. Discrete Math, 1973, 5: 215-228
- 5 Enomoto H, Jackson B, Katerinis P, Saito A. Toughness and the existence of k-factors. J Graph Theory, 1985, 9: 87–95
- 6 $\,$ Katerinis P. Toughness of graphs and the existence of factors. Discrete Math, 1990, 80: 81–92 $\,$
- 7 Katerinis P, Wang T. Toughness of graphs and 2-factors with given properties. Ars Combin, (to appear)
- 8 Lam P C B, Liu G, Li G, Shui W C. Orthogonal (g, f)-factorization in networks. Networks, 2000, 35: 274–278
- 9 Lovász L. Subgraphs with prescribed valencies. J Combin Theory, 1970, 8: 391-416
- 10 Thomassen C. A remark on the factor theorems of Lovász and Tutte. J Graph Theory, 1981, 5: 441–442
- 11 Wang T, Wu Z, Yu Q L. 2-Tough graphs and f-factors with given properties. Utilitas Math, (to appear)